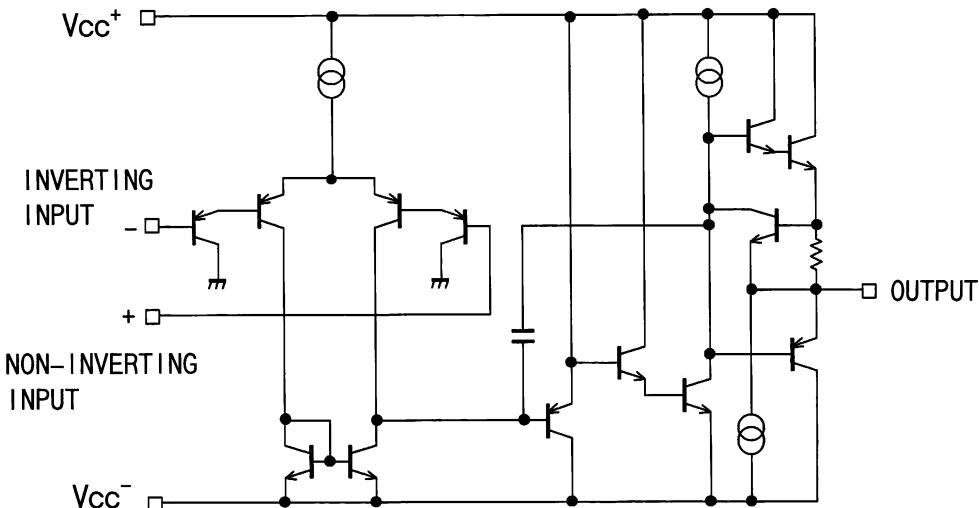
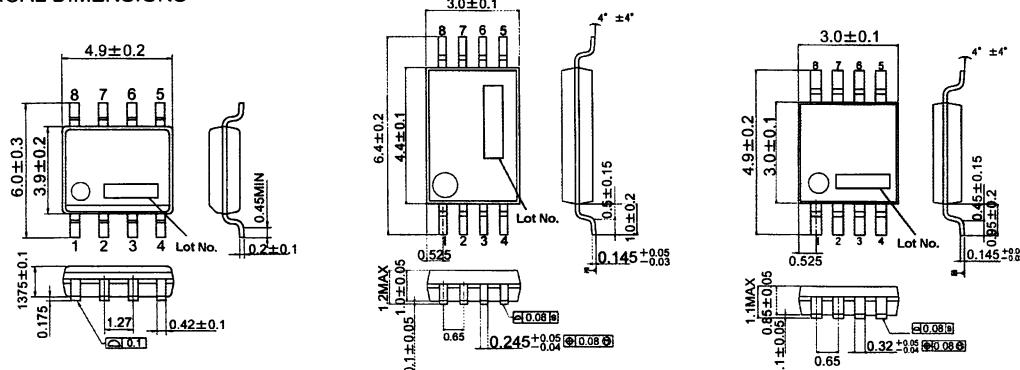


|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STRUCTURE      | SILICON MONOLITHIC INTEGRATED CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FUNCTION       | SIGNATURE SERIES GROUND SENSE DUAL OPERATIONAL AMPLIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PRODUCT SERIES | <b>LM358DT LM358PT LM358ST<br/>LM358WDT LM358WPT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FEATURES       | <ul style="list-style-type: none"> <li>• Operating temperature range 0[°C] to +70[°C] (Commercial grade)</li> <li>• 2[kV] ESD protection (LM358WDT,LM358WPT)</li> <li>• Large signal voltage gain 100[V/mV] Typ</li> <li>• Wide supply voltage range           <ul style="list-style-type: none"> <li>Single supply +3[V] to +32[V]</li> <li>Dual supply <math>\pm 1.5[V]</math> to <math>\pm 16[V]</math></li> </ul> </li> <li>• Low supply current drain 0.5[mA/AMP] Typ</li> <li>• Common-mode input voltage range includes ground</li> <li>• Low input offset and bias parameters :           <ul style="list-style-type: none"> <li>Input offset voltage 2[mV] Typ</li> <li>Input offset current 2[nA] Typ</li> </ul> </li> <li>• Differential input voltage range equal to the power supply voltage</li> <li>• Large output voltage swing 0[V] to <math>V_{cc^+}</math>-1.5[V]</li> <li>• Internal frequency compensation</li> </ul> |


○BLOCK DIAGRAM




○PIN No. • PIN NAME

| PIN No. | PIN NAME              |
|---------|-----------------------|
| 1       | OUTPUT 1              |
| 2       | INVERTING INPUT 1     |
| 3       | NON-INVERTING INPUT 1 |
| 4       | $V_{cc^-}$            |
| 5       | NON-INVERTING INPUT 2 |
| 6       | INVERTING INPUT 2     |
| 7       | OUTPUT 2              |
| 8       | $V_{cc^+}$            |

## ○SCHEMATIC DIAGRAM(Each Operational Amplifier)



## ○PHYSICAL DIMENSIONS



This drawing is subject to change without notice.

LM358DT/WDT (SOpackage8) (Unit : [mm]) LM358PT/WPT (TSSOP8) (Unit : [mm]) LM358ST (Mini SO8) (Unit : [mm])

○ABSOLUTE MAXIMUM RATINGS ( $T_a=25[^\circ\text{C}]$ )

| Parameter                    | Symbol     | Rating      | Unit |
|------------------------------|------------|-------------|------|
| Supply Voltage               | $V_{cc^+}$ | +32         | V    |
| Power Dissipation            | Pd         | 450(*1)(*4) | mW   |
|                              |            | 500(*2)(*4) | mW   |
|                              |            | 470(*3)(*4) | mW   |
| Operating Temperature        | $T_{opr}$  | 0 to +70    | °C   |
| Storage Temperature Range    | $T_{stg}$  | -65 to +150 | °C   |
| Maximum junction Temperature | $T_{jmax}$ | +150        | °C   |

(\*1) To use at temperature above  $T_a=25[^\circ\text{C}]$  reduce 3.60[mW]/[°C].(\*2) To use at temperature above  $T_a=25[^\circ\text{C}]$  reduce 4.00[mW]/[°C].(\*3) To use at temperature above  $T_a=25[^\circ\text{C}]$  reduce 3.76[mW]/[°C].

(\*4) Mounted on a glass epoxy PCB(70[mm]×70[mm]×1.6[mm]).

(\*5) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than  $V_{cc^-}$ .○OPERATING CONDITION ( $T_a=0[^\circ\text{C}]$  to +70[°C])

| Parameter      | Symbol     | Rating                        | Unit |
|----------------|------------|-------------------------------|------|
| Supply Voltage | $V_{cc^+}$ | +3.0 to +32.0 (Single Supply) | V    |
|                |            | ± 1.5 to ± 16.0 (Dual Supply) |      |

○ELECTRICAL CHARACTERISTICS (Unless otherwise specified  $V_{CC^+}=+5[V]$ 、 $V_{CC^-}=0[V]$ )

| Parameter                       | Symbol                           | Temperature Range | Guaranteed Limit |      |                        | Unit   | Condition                                                                              |
|---------------------------------|----------------------------------|-------------------|------------------|------|------------------------|--------|----------------------------------------------------------------------------------------|
|                                 |                                  |                   | Min.             | Typ. | Max.                   |        |                                                                                        |
| Input Offset Voltage (*6)       | V <sub>IO</sub>                  | 25°C              | -                | 2    | 7                      | mV     | VO=1.4[V], RS=0[Ω]<br>5[V]<V <sub>CC^+</sub> <30[V]<br>0<VIC<V <sub>CC^+</sub> -1.5[V] |
|                                 |                                  | Full range        | -                | -    | 9                      |        |                                                                                        |
| Input Offset Current (*6)       | I <sub>IO</sub>                  | 25°C              | -                | 2    | 30                     | nA     | VO=1.4[V]                                                                              |
|                                 |                                  | Full range        | -                | -    | 40                     |        |                                                                                        |
| Input Bias Current (*6)         | I <sub>IB</sub>                  | 25°C              | -                | 20   | 150                    | nA     | VO=1.4[V]                                                                              |
|                                 |                                  | Full range        | -                | -    | 200                    |        |                                                                                        |
| Large Signal Voltage Gain       | A <sub>VD</sub>                  | 25°C              | 25               | 100  | -                      | V/mV   | V <sub>CC^+</sub> =15[V], VO=1.4[V] to 11.4[V]<br>RL=2[kΩ]                             |
| Supply Voltage Rejection Ratio  | S <sub>VR</sub>                  | 25°C              | 65               | 100  | -                      | dB     | RS≤10[kΩ], V <sub>CC^+</sub> =5[V] to 30[V]                                            |
|                                 |                                  | Full range        | 65               | -    | -                      |        |                                                                                        |
| Supply Current(All Amp)         | I <sub>CC</sub>                  | Full range        | -                | 0.7  | 1.2                    | mA     | V <sub>CC^+</sub> =5[V], No Load<br>V <sub>CC^+</sub> =30[V], No Load                  |
|                                 |                                  | Full range        | -                | -    | 2                      |        |                                                                                        |
| Input Common mode Voltage Range | V <sub>ICM</sub>                 | 25°C              | -                | -    | V <sub>CC^+</sub> -1.5 | V      | V <sub>CC^+</sub> =30[V]                                                               |
|                                 |                                  | Full range        | -                | -    | V <sub>CC^+</sub> -2.0 |        |                                                                                        |
| Common mode Rejection Ratio     | C <sub>MR</sub>                  | 25°C              | 70               | 85   | -                      | dB     | RS≤10[kΩ]                                                                              |
|                                 |                                  | Full range        | 60               | -    | -                      |        |                                                                                        |
| Output Current Source (*7)      | I <sub>source</sub>              | 25°C              | 20               | 40   | 60                     | mA     | V <sub>CC^+</sub> =15[V], VO=+2[V], VID=+1[V]                                          |
| Output Sink Current (*7)        | I <sub>sink</sub>                | 25°C              | 10               | 20   | -                      | mA     | VO=+2[V], V <sub>CC^+</sub> =15[V], VID=-1[V]                                          |
|                                 |                                  |                   | 12               | 50   | -                      | μA     | VO=+0.2[V], V <sub>CC^+</sub> =15[V], VID=-1[V]                                        |
| Output Voltage Swing            | V <sub>opp</sub>                 | 25°C              | 0                | -    | V <sub>CC^+</sub> -1.5 | V      | RL=2[kΩ]                                                                               |
|                                 |                                  | Full range        | 0                | -    | V <sub>CC^+</sub> -2.0 | V      |                                                                                        |
| High Level Output Voltage       | V <sub>OH</sub>                  | 25°C              | 27               | 28   | -                      | V      | V <sub>CC^+</sub> =30[V], RL=10[kΩ]                                                    |
|                                 |                                  | Full range        | 27               | -    | -                      | V      |                                                                                        |
| Low Level Output Voltage        | V <sub>OL</sub>                  | 25°C              | -                | 5    | 20                     | mV     | RL=10[kΩ]                                                                              |
|                                 |                                  | Full range        | -                | -    | 20                     | mV     |                                                                                        |
| Slew Rate                       | S <sub>R</sub>                   | 25°C              | -                | 0.6  | -                      | V/μs   | RL=2[kΩ], CL=100[pF], V <sub>CC^+</sub> =15[V]<br>VI=0.5[V]~3[V], Unity Gain           |
| Gain Bandwidth Product          | G <sub>BP</sub>                  | 25°C              | -                | 1.1  | -                      | MHz    | V <sub>CC^+</sub> =30[V], RL=2[kΩ], CL=100[pF]<br>VIN=10[mV], f=100[kHz]               |
| Total Harmonic Distortion       | THD                              | 25°C              | -                | 0.02 | -                      | %      | f=1[kHz], AV=20[dB], RL=2[kΩ]<br>CL=100[pF], VO=2[V <sub>pp</sub> ]                    |
| Equivalent Input Noise Voltage  | e <sub>n</sub>                   | 25°C              | -                | 55   | -                      | nV/√Hz | f=1[kHz], RS=100[Ω], V <sub>CC^+</sub> =30[V]                                          |
| Input Offset Voltage Drift      | D <sub>VIO</sub>                 | -                 | -                | 7    | -                      | μV/°C  | -                                                                                      |
| Input Offset Current Drift      | D <sub>IIO</sub>                 | -                 | -                | 10   | -                      | pA/°C  | -                                                                                      |
| Channel Separation              | V <sub>O1</sub> /V <sub>O2</sub> | 25°C              | -                | 120  | -                      | dB     | 1[kHz]≤f≤20[kHz]                                                                       |

(\*6) Absolute value.

(\*7) Under the high temperature environment, consider the power dissipation of IC when select the output current.

When output terminal short-circuits continuously, the output current reduce to climb temperature inside IC by flash.

## ○ APPLICATION EXAMPLE

## (1) Absolute maximum ratings

Absolute maximum ratings are the values, which indicate the limits, within which the given voltage range can be safely charged to the terminal. However, it does not guarantee the circuit operation.

## (2) The example of disabled circuit application

When there is a circuit not in use, it is recommended to make the non-inverting input terminal be the potential in the common-mode input voltage range like in Fig.1.

## (3) Applied voltage to the input terminal

Regardless of power supply voltage,  $V_{CC^-} + 32$  [V] can be applied to input terminals without deterioration or destruction of its characteristics. However, this does not guarantee a circuit operation.

Note that circuits do not operate normally with input voltage not within input common mode voltage in terms of the electrical characteristics.

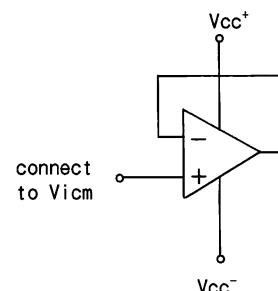



Fig.1 The example of disable circuit

## (4) Operating power supply (single power supply/dual power supply)

The OP-Amp operates if a given level of voltage is applied between  $V_{CC^+}$  and  $V_{CC^-}$ . Therefore, the OP-Amp can be operated under single power supply or dual power supply.

## (5) Power dissipation (Pd)

If the IC is used under excessive power dissipation. An increase in the chip temperature will cause deterioration of the radical characteristics of IC.

For example, reduction of current capability. Take consideration of the effective power dissipation and thermal design with a sufficient margin. Pd is reference to the provided power dissipation curve.

## (6) Short circuits between pins and incorrect mounting

Short circuits between pins and incorrect mounting when mounting the IC on a printed circuits board, take notice of the direction and positioning of the IC.

If IC is mounted erroneously, It may be damaged. Also, when a foreign object is inserted between output, between output and  $V_{CC^+}$  terminal or  $V_{CC^-}$  terminal which causes short circuit, the IC may be damaged.

## (7) Using under strong electromagnetic field

Be careful when using the IC under strong electromagnetic field because it may malfunction.

## (8) Usage of IC

When stress is applied to the IC through warp of the printed circuit board, The characteristics may fluctuate due to the piezo effect.

Be careful of the warp of the printed circuit board.

## (9) Output operation

This IC is configured with a push-pull circuit and Class C output stage. Therefore, when load resistance is connected to the middle point potential of  $V_{CC^+}$  and  $V_{CC^-}$ , this configuration generates crossover distortion when switching between source and sink current.

To suppress crossover distortion, connect a resistor between the output terminal and  $V_{CC^-}$  then increase the bias current to enable Class A operation.

## (10) Testing IC on the set board

When testing IC on the set board, in cases where the capacitor is connected to the low impedance, make sure to discharge per fabrication because there is a possibility that IC may be damaged by stress.

When removing IC from the set board, it is essential to cut supply voltage.

As a countermeasure against the static electricity, observe proper grounding during fabrication process and take due care when carrying and storage it.

## (11) Output terminal capacitor

Transistor in circuits may be damaged when  $V_{CC^+}$  terminal and  $V_{CC^-}$  terminal is shorted with the charged output terminal capacitor.

When IC is used as a comparator or as an application circuit, where oscillation is not activated by an output capacitor, the output capacitor must be kept below  $0.1[\mu F]$  in order to prevent the damage mentioned above.

Be carefull when IC is used as voltage follower application with output capacitance. If capacitance connect output terminal then evaluate for output terminal oscillation.

## Appendix

---

### Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

#### About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available,  
please contact your nearest sales office.

Please contact our sales offices for details ;

|                         |                           |                            |
|-------------------------|---------------------------|----------------------------|
| U.S.A / San Diego       | TEL : +1(858)625-3630     | FAX : +1(858)625-3670      |
| Atlanta                 | TEL : +1(770)754-5972     | FAX : +1(770)754-0691      |
| Dallas                  | TEL : +1(972)312-8818     | FAX : +1(972)312-0330      |
| Germany / Dusseldorf    | TEL : +49(2154)9210       | FAX : +49(2154)921400      |
| United Kingdom / London | TEL : +44(1)908-282-666   | FAX : +44(1)908-282-528    |
| France / Paris          | TEL : +33(0)1 56 97 30 60 | FAX : +33(0) 1 56 97 30 80 |
| China / Hong Kong       | TEL : +852(2)740-6262     | FAX : +852(2)375-8971      |
| Shanghai                | TEL : +86(21)6279-2727    | FAX : +86(21)6247-2066     |
| Dilian                  | TEL : +86(411)8230-8549   | FAX : +86(411)8230-8537    |
| Beijing                 | TEL : +86(10)8525-2483    | FAX : +86(10)8525-2489     |
| Taiwan / Taipei         | TEL : +866(2)2500-6956    | FAX : +866(2)2503-2869     |
| Korea / Seoul           | TEL : +82(2)8182-700      | FAX : +82(2)8182-715       |
| Singapore               | TEL : +65-6332-2322       | FAX : +65-6332-5662        |
| Malaysia / Kuala Lumpur | TEL : +60(3)7958-8355     | FAX : +60(3)7958-8377      |
| Philippines / Manila    | TEL : +63(2)807-6872      | FAX : +63(2)809-1422       |
| Thailand / Bangkok      | TEL : +66(2)254-4890      | FAX : +66(2)256-6334       |

Japan /  
(Internal Sales)

|          |                                                                                                                         |                       |
|----------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Tokyo    | 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082<br>TEL : +81(3)5203-0321                                                          | FAX : +81(3)5203-0300 |
| Yokohama | 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575<br>TEL : +81(45)476-2131                                   | FAX : +81(45)476-2128 |
| Nagoya   | Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya,Aichi 450-0002<br>TEL : +81(52)581-8521                      | FAX : +81(52)561-2173 |
| Kyoto    | 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokujidori, Shimogyo-ku,<br>Kyoto 600-8216<br>TEL : +81(75)311-2121 | FAX : +81(75)314-6559 |

(Contact address for overseas customers in Japan)

|          |                       |                        |
|----------|-----------------------|------------------------|
| Yokohama | TEL : +81(45)476-9270 | FAX : +81(045)476-9271 |
|----------|-----------------------|------------------------|