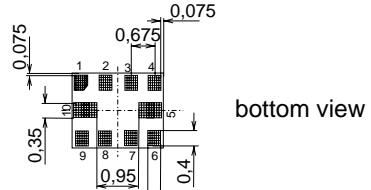
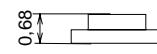
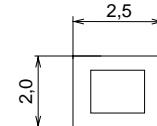


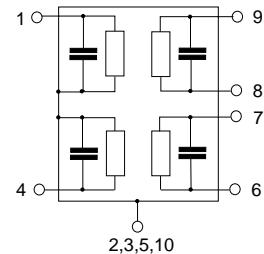
SAW filters for mobile communications

Series/Type: B9200

The following products presented in this data sheet are being withdrawn.




Ordering Code	Substitute Product	Date of Withdrawal	Deadline Last Orders	Last Shipments
B39202B9200G610		2010-05-14	2011-02-28	2011-05-31

For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.


SAW Components
B9200
Low-Loss Dual Band Filter for Mobile Communication
881,5 / 1960,0 MHz
Data Sheet

Chip sized saw package QCS10D
Features

- Low-loss RF filter for mobile telephone CDMA 800/1900 system, receive path
- Usable passband:
 - Filter 1 (CDMA800): 25 MHz
 - Filter 2 (CDMA1900): 60 MHz
- Unbalanced to balanced operation of both filters
- Impedance transformation from 50Ω to 100Ω for both filters
- Ceramic package for Surface Mounted Technology (SMT)

bottom view

side view

top view
Dimensions in mm, approx. weight 12mg
Terminals

- Ni, gold-plated

Pin configuration

1	Input [Filter 1]
4	Input [Filter 2]
6, 7	Output, balanced [Filter 2]
8, 9	Output, balanced [Filter 1]
2, 3, 5, 10	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B9200	B39202-B9200-G610	C61157-A7-A112	F61074-V8153-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	$-30 / +85$	$^{\circ}\text{C}$	
Storage temperature range	T_{stg}	$-40 / +85$	$^{\circ}\text{C}$	
DC voltage	V_{DC}	5	V	
ESD voltage	V_{ESD}^*	50	V	Machine Model, 10 pulses
Input power at CDMA800/1900 Tx bands:				
Filter 1 (CDMA800-Rx)	P_{IN}	15	dBm	continuous wave
Filter 2 (CDMA1900-Rx)	P_{IN}	12	dBm	@ $+55^{\circ}\text{C}$ ambient

* - acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

SAW Components

B9200

Low-Loss Dual Band Filter for Mobile Communication

881,5 / 1960,0 MHz

Data Sheet

Characteristics Filter 1 (CDMA800)

Operating temperature range:

 $T = +25 \pm 2 \text{ }^{\circ}\text{C}$

Terminating source impedance:

 $Z_S = 50 \Omega$ (unbalanced)

Terminating load impedance:

 $Z_L = 100 \Omega$ (balanced) || 100nH

			min.	typ.	max.	
Center frequency		f_c	—	881,50	—	MHz
Maximum insertion attenuation		α_{\max}	—	1,8	2,1	dB
	869,0 ... 894,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	0,6	1,0	dB
	869,0 ... 894,0	MHz				
Input VSWR			—	1,7	1,9	
	869,0 ... 894,0	MHz				
Output VSWR			—	1,8	2,0	
	869,0 ... 894,0	MHz				
Output amplitude balance (S_{31}/S_{21})			-0,5	-0,1/+ 0,1	0,5	dB
	869,0 ... 894,0	MHz				
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)			-5,0	-1/+ 2	5,0	degree
	869,0 ... 894,0	MHz				
Inter-band isolation		α_{\min}	30,0	52,0	—	dB
	1930,0 ... 1990,0	MHz				
Attenuation		α_{\min}	45,0	65,0	—	dB
	10,0 ... 824,0	MHz				
	824,0 ... 849,0	MHz	35,0	48,0	—	dB
	915,0 ... 960,0	MHz	23,0	26,0	—	dB
	960,0 ... 3000,0	MHz	45,0	59,0	—	dB
	3000,0 ... 6000,0	MHz	30,0	60,0	—	dB

SAW Components

B9200

Low-Loss Dual Band Filter for Mobile Communication

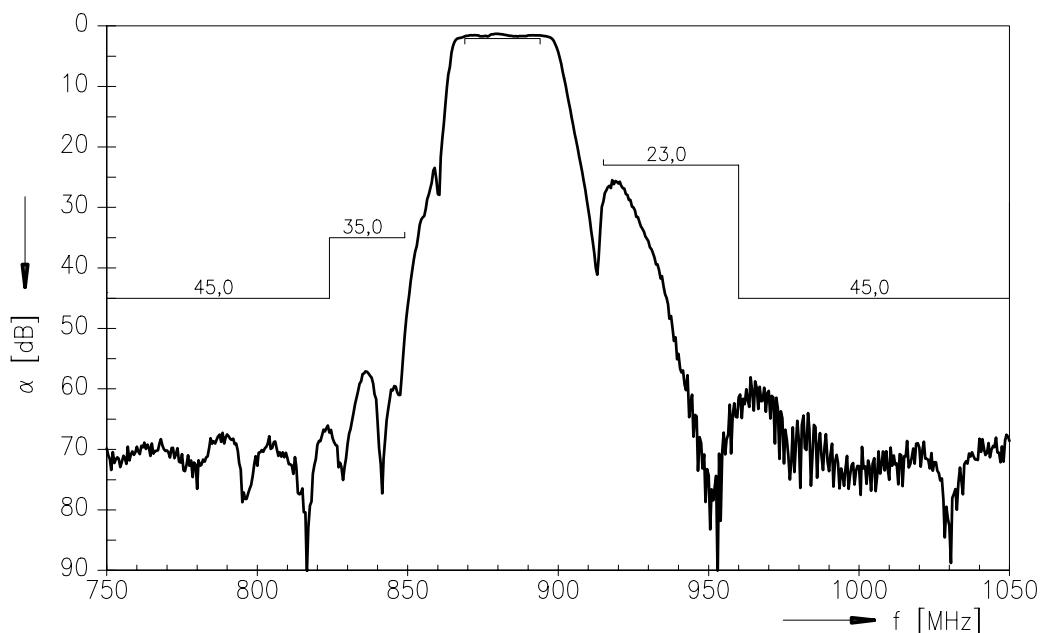
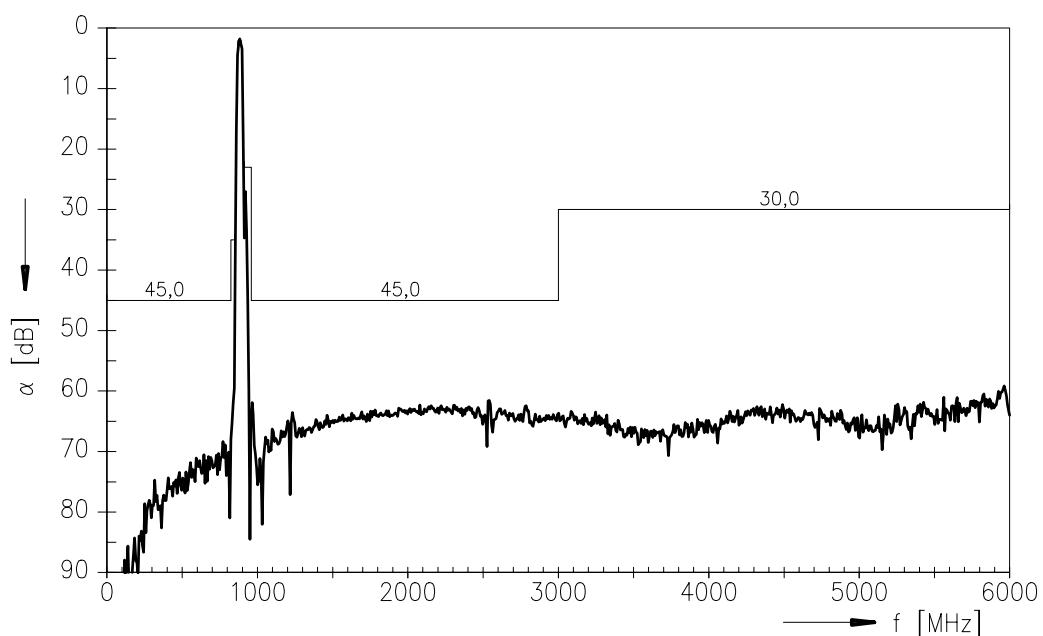
881,5 / 1960,0 MHz

Data Sheet

Characteristics Filter 1 (CDMA800)

Operating temperature range:

 $T = -30$ to $+85^\circ\text{C}$



Terminating source impedance:

 $Z_S = 50 \Omega$ (unbalanced)

Terminating load impedance:

 $Z_L = 100 \Omega$ (balanced) $\parallel 100\text{nH}$

			min.	typ.	max.	
Center frequency		f_c	—	881,50	—	MHz
Maximum insertion attenuation		α_{\max}	—	1,9	2,2	dB
	869,0 ... 894,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	0,7	1,1	dB
	869,0 ... 894,0	MHz				
Input VSWR			—	1,7	1,9	
	869,0 ... 894,0	MHz				
Output VSWR			—	1,8	2,0	
	869,0 ... 894,0	MHz				
Output amplitude balance (S_{31}/S_{21})			-0,5	-0,1 / +0,1	0,5	dB
	869,0 ... 894,0	MHz				
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)			-5,0	-1 / + 2	5,0	degree
	869,0 ... 894,0	MHz				
Inter-band isolation		α_{\min}	30,0	52,0	—	dB
	1930,0 ... 1990,0	MHz				
Attenuation		α_{\min}	45,0	65,0	—	dB
	10,0 ... 824,0	MHz				
	824,0 ... 849,0	MHz	35,0	44,0	—	dB
	915,0 ... 960,0	MHz	23,0	25,0	—	dB
	960,0 ... 3000,0	MHz	45,0	59,0	—	dB
	3000,0 ... 6000,0	MHz	30,0	60,0	—	dB

Transfer function Filter 1 (CDMA800) - spec for 25 °C

Transfer function Filter 1 (CDMA800) - wideband

SAW Components

B9200

Low-Loss Dual Band Filter for Mobile Communication

881,5 / 1960,0 MHz

Data Sheet

Characteristics Filter 2 (CDMA1900)

Operating temperature range:

 $T = +25 \pm 2 \text{ }^{\circ}\text{C}$

Terminating source impedance:

 $Z_S = 50 \Omega$ (unbalanced)

Terminating load impedance:

 $Z_L = 100 \Omega$ (balanced) || 15nH

			min.	typ.	max.	
Center frequency		f_c	—	1960,0	—	MHz
Maximum insertion attenuation		α_{\max}	—	2,6	3,2	dB
	1930,0 ... 1990,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	1,2	1,8	dB
	1930,0 ... 1990,0	MHz				
Input VSWR			—	2,0	2,3	
	1930,0 ... 1990,0	MHz				
Output VSWR			—	2,0	2,3	
	1930,0 ... 1990,0	MHz				
Output amplitude balance (S_{31}/S_{21})			-1,4	-1,0/+ 0,8	1,4	dB
	1930,0 ... 1990,0	MHz				
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)			-12,0	-9/+ 9	12,0	degree
	1930,0 ... 1990,0	MHz				
Inter-band isolation		α_{\min}	30,0	52,0	—	dB
	869,0 ... 894,0	MHz				
Attenuation		α_{\min}	30,0	37,0	—	dB
	10,0 ... 1850,0	MHz				
	1850,0 ... 1910,0	MHz	19,0	20,0	—	dB
	2040,0 ... 2200,0	MHz	25,0	32,0	—	dB
	2200,0 ... 2800,0	MHz	30,0	41,0	—	dB
	2800,0 ... 3400,0	MHz	40,0	46,0	—	dB
	3400,0 ... 6000,0	MHz	35,0	45,0	—	dB

SAW Components

B9200

Low-Loss Dual Band Filter for Mobile Communication

881,5 / 1960,0 MHz

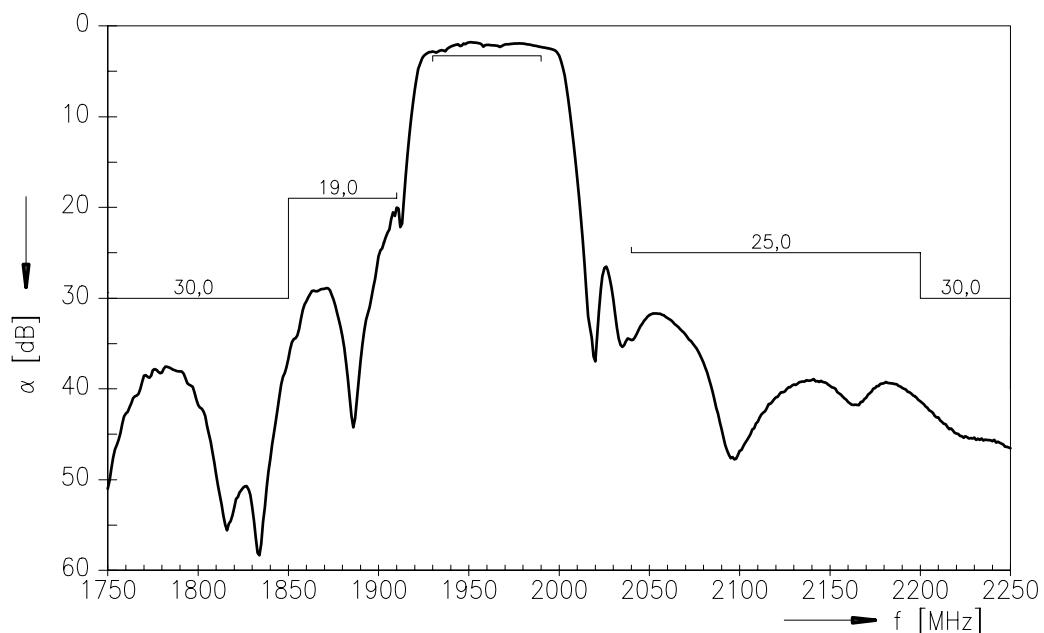
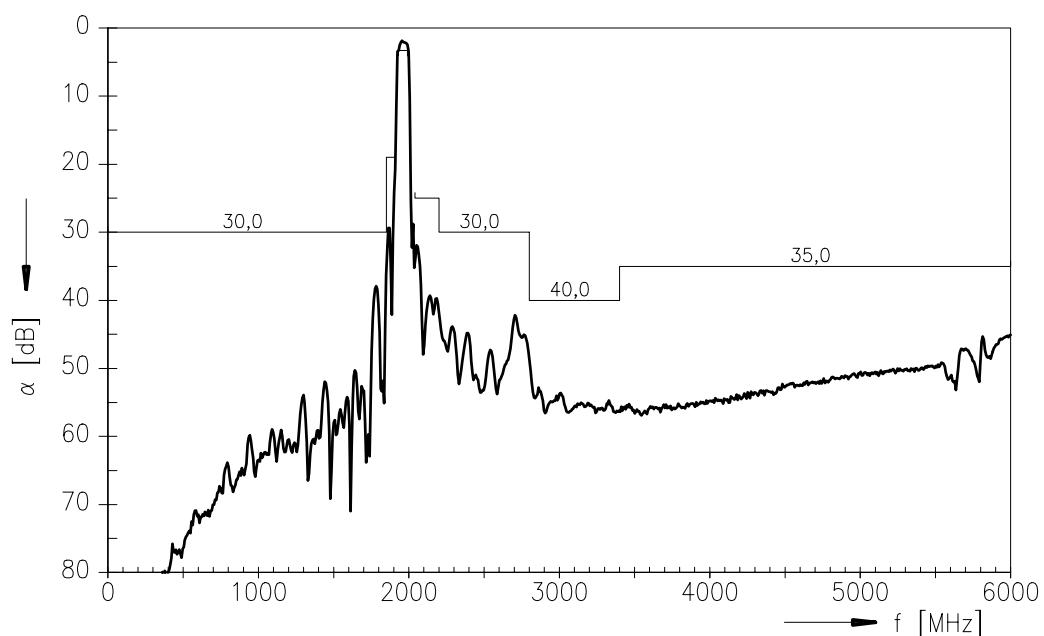
Data Sheet

Characteristics Filter 2 (CDMA1900)

Operating temperature range:

 $T = -30$ to $+85^\circ\text{C}$

Terminating source impedance:



 $Z_S = 50 \Omega$ (unbalanced)

Terminating load impedance:

 $Z_L = 100 \Omega$ (balanced) $\parallel 15\text{nH}$

			min.	typ.	max.	
Center frequency		f_c	—	1960,0	—	MHz
Maximum insertion attenuation		α_{\max}	—	2,7	3,6	dB
	1930,0 ... 1990,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	1,3	2,2 ¹⁾	dB
	1930,0 ... 1990,0	MHz				
Input VSWR			—	2,0	2,3	
	1930,0 ... 1990,0	MHz				
Output VSWR			—	2,0	2,3	
	1930,0 ... 1990,0	MHz				
Output amplitude balance (S_{31}/S_{21})			-1,8	-1,0/+ 1,2	1,8	dB
	1930,0 ... 1990,0	MHz				
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)			-12,0	-9/+ 9	12,0	degree
	1930,0 ... 1990,0	MHz				
Inter-band isolation		α_{\min}	30,0	52,0	—	dB
	869,0 ... 894,0	MHz				
Attenuation		α_{\min}	30,0	37,0	—	dB
	10,0 ... 1850,0	MHz				
	1850,0 ... 1910,0	MHz	15,0	20,0	—	dB
	2040,0 ... 2200,0	MHz	25,0	32,0	—	dB
	2200,0 ... 2800,0	MHz	30,0	41,0	—	dB
	2800,0 ... 3400,0	MHz	40,0	46,0	—	dB
	3400,0 ... 6000,0	MHz	35,0	45,0	—	dB

1) 2,1 for $T = -30$ to $+70^\circ\text{C}$

Transfer function Filter 2 (CDMA1900) - spec for 25 °C

Transfer function Filter 2 (CDMA1900) - wideband

SAW Components

B9200

Low-Loss Dual Band Filter for Mobile Communication

881,5 / 1960,0 MHz

Data Sheet

Published by EPCOS AG

**Surface Acoustic Wave Components Division, SAW MC WT
P.O. Box 80 17 09, 81617 Munich, GERMANY**

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

EPCOS:

[B39202B9200G610](#)