
SCLS393J - APRIL 1998 - REVISED APRIL 2003

- 2-V to 5.5-V V_{CC} Operation
- Max t_{pd} of 11 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Voltage Operation on All Ports
- Schmitt-Trigger Circuitry on A, B, and CLR Inputs for Slow Input Transition Rates
- Edge Triggered From Active-High or Active-Low Gated Logic Inputs

- I_{off} Supports Partial-Power-Down Mode Operation
- Retriggerable for Very Long Output Pulses, up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Glitch-Free Power-Up Reset on Outputs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

ORDERING INFORMATION

TA	PACK	AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QFN – RGY	Tape and reel	SN74LV123ARGYR	LV123A
	SOIC – D	Tube	SN74LV123AD	LV123A
	3010 - D	Tape and reel	SN74LV123ADR	LVIZSA
-40°C to 85°C	SOP - NS	Tape and reel	SN74LV123ANSR	74LV123A
-40 C to 65 C	SSOP – DB	Tape and reel	SN74LV123ADBR	LV123A
	TSSOP – PW	Tube	SN74LV123APW	LV123A
	1330F - FW	Tape and reel	SN74LV123APWR	LVIZSA
	TVSOP - DGV	Tape and reel	SN74LV123ADGVR	LV123A
	CDIP – J	Tube	SNJ54LV123AJ	SNJ54LV123AJ
–55°C to 125°C	CFP – W	FP – W Tube SNJ54LV123AW		SNJ54LV123AW
	LCCC – FK	Tube	SNJ54LV123AFK	SNJ54LV123AFK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NC - No internal connection

SCLS393J - APRIL 1998 - REVISED APRIL 2003

description/ordering information (continued)

The 'LV123A devices are dual retriggerable monostable multivibrators designed for 2-V to 5.5-V V_{CC} operation.

These edge-triggered multivibrators feature output pulse-duration control by three methods. In the first method, the \overline{A} input is low and the \overline{A} input goes high. In the second method, the \overline{A} input is high and the \overline{A} input goes low. In the third method, the \overline{A} input is low, the \overline{A} input is high, and the clear (\overline{CLR}) input goes high.

The output pulse duration is programmable by selecting external resistance and capacitance values. The external timing capacitor must be connected between C_{ext} and R_{ext}/C_{ext} (positive) and an external resistor connected between R_{ext}/C_{ext} and V_{CC} . To obtain variable pulse durations, connect an external variable resistance between R_{ext}/C_{ext} and V_{CC} . The output pulse duration also can be reduced by taking \overline{CLR} low.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. The \overline{A} , B, and \overline{CLR} inputs have Schmitt triggers with sufficient hysteresis to handle slow input transition rates with jitter-free triggering at the outputs.

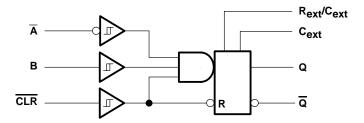
Once triggered, the basic pulse duration can be extended by retriggering the gated low-level-active (\overline{A}) or high-level-active (B) input. Pulse duration can be reduced by taking \overline{CLR} low. The input/output timing diagram illustrates pulse control by retriggering the inputs and early clearing.

During power up, Q outputs are in the low state, and \overline{Q} outputs are in the high state. The outputs are glitch free, without applying a reset pulse.

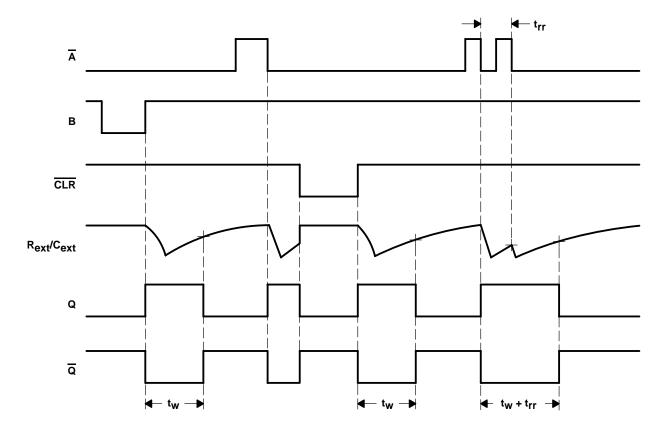
These devices are fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

Pin assignments for these devices are identical to those of the 'AHC123A and 'AHCT123A devices for interchangeability, when allowed.

FUNCTION TABLE (each multivibrator)


ı	NPUTS		OUTPUTS				
CLR	Ā	В	Q	Q			
L	Χ	Х	L	Н			
Х	Н	X	∟†	H [†]			
Х	Χ	L	L†	H [†]			
Н	L	\uparrow	л	ъ			
Н	\downarrow	Н	л	T			
↑	L	Н	л	Т			

[†]These outputs are based on the assumption that the indicated steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the setup.



SCLS393J - APRIL 1998 - REVISED APRIL 2003

logic diagram, each multivibrator (positive logic)

input/output timing diagram

SCLS393J - APRIL 1998 - REVISED APRIL 2003

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	–0.5 V to 7 V
Output voltage range in high or low state, VO (see Notes 1 and 2)	
Output voltage range in power-off state, V _O (see Note 1)	
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	
Continuous output current, I_O ($V_O = 0$ to V_{CC})	
Continuous current through V _{CC} or GND	
Package thermal impedance, θ _{JA} (see Note 3): D package	73°C/W
(see Note 3): DB package	
(see Note 3): DGV package	120°C/W
(see Note 3): NS package	64°C/W
(see Note 3): PW package	108°C/W
(see Note 4): RGY package	39°C/W
Storage temperature range, T _{stq}	35°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 5.5 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.
- 4. The package thermal impedance is calculated in accordance with JESD 51-5.

SCLS393J - APRIL 1998 - REVISED APRIL 2003

recommended operating conditions (see Note 5)

			SN54I	_V123A	SN74L	V123A	UNIT
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
\/	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	V _{CC} ×0.7		$V_{CC} \times 0.7$		V
VIH	nigh-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	V _{CC} ×0.7		$V_{CC} \times 0.7$		V
		V _{CC} = 4.5 V to 5.5 V	V _{CC} ×0.7		$V_{CC} \times 0.7$		
		V _{CC} = 2 V		0.5		0.5	
٧,,,	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
VIL	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	
٧ _I	Input voltage		0	5.5	0	5.5	٧
٧o	Output voltage		0	⁴ √Vcc	0	VCC	٧
		$V_{CC} = 2 V$		-50		-50	μΑ
lou	High-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	5	-2		-2	
ЮН	riigii-ievei output current	$V_{CC} = 3 V \text{ to } 3.6 V$	30	-6		-6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	9	-12		-12	
		V _{CC} = 2 V		50		50	μΑ
lo	Low-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2		2	
lOL	Low-level output current	$V_{CC} = 3 V \text{ to } 3.6 V$		6		6	mA
		V _{CC} = 4.5 V to 5.5 V		12		12	
ъ.	External timing resistance	V _{CC} = 2 V	5k		5k		Ω
R _{ext}	External timing resistance	VCC ≥ 3 V	1k		1k		52
C _{ext}	External timing capacitance		No res	striction	No res	triction	pF
Δt/ΔV _{CC}	Power-up ramp rate		1		1		ms/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 5: Unused R_{ext}/C_{ext} terminals should be left unconnected. All remaining unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCLS393J - APRIL 1998 - REVISED APRIL 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

D _A	DAMETER	TEST CONDITIONS	.,	SN54	1LV123A	L	SN74	LV123A		LINUT
PA	RAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} -0.1			V _{CC} -0.1			
\/a		I _{OH} = -2 mA	2.3 V	2			2			٧
VOH		I _{OH} = -6 mA	3 V	2.48			2.48			V
		I _{OH} = -12 mA	4.5 V	3.8			3.8			
		I _{OL} = 50 μA	2 V to 5.5 V			0.1			0.1	
\/a:		$I_{OL} = 2 \text{ mA}$	2.3 V			0.4			0.4	٧
VOL		I _{OL} = 6 mA	3 V		j.	0.44			0.44	V
		I _{OL} = 12 mA	4.5 V		Ĭ,	0.55			0.55	
	R _{ext} /C _{ext} †	V _I = 5.5 V or GND	2 V to 5.5 V		7. P.	±2.5			±2.5	
lį		V. F.F.V.or.CND	0	ć		±1			±1	μΑ
	\overline{A} , B, and \overline{CLR}	V _I = 5.5 V or GND	0 to 5.5 V			±1			±1	
ICC	Quiescent	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V	000		20			20	μΑ
			2.3 V	Q.		220			220	
	Active state	$V_I = V_{CC}$ or GND,	3 V			280			280	
lcc	(per circuit)	$R_{ext}/C_{ext} = 0.5 V_{CC}$	4.5 V			650			650	μΑ
			5.5 V			975			975	
l _{off}		V_{I} or $V_{O} = 0$ to 5.5 V	0						5	μΑ
C:		VI = Voc or GND	3.3 V		1.9			1.9		n.E
Ci		V _I = V _{CC} or GND	5 V		1.9			1.9		pF

[†] This test is performed with the terminal in the off-state condition.

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			TEST CO	TEST CONDITIONS		T _A = 25°C			SN54LV123A		/123A	UNIT
			TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
Γ.	Pulse	CLR			6			6.5		6.5		no
t _W	duration	A or B trigger			6			6.5	100	6.5		ns
	Doden metal		B 1160	C _{ext} = 100 pF	‡	94		4	7//	‡		ns
t _{rr}	Pulse retri	gger time	$R_{\text{ext}} = 1 \text{ k}\Omega$	$C_{ext} = 0.01 \mu F$	‡	2		\$		‡		μS

[‡] See retriggering data in the *application information* section.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			TEST CO	TEST CONDITIONS		T _A = 25°C			SN54LV123A		SN74LV123A	
	TEST CONDI		SNOTTIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
Γ.	Pulse	CLR			5			5		5		no
t _w	duration	A or B trigger			5			5	N. W	5		ns
Ţ.	Doden sold		B 1160	C _{ext} = 100 pF	‡	76		Ф		‡		ns
t _{rr}	Pulse retri	gger time	$R_{ext} = 1 k\Omega$	C _{ext} = 0.01 μF	‡	1.8		\$		‡		μs

[‡] See retriggering data in the *application information* section.

SCLS393J - APRIL 1998 - REVISED APRIL 2003

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			TEST CO	TEST CONDITIONS		T _A = 25°C			SN54LV123A		SN74LV123A	
			TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
Ţ.	Pulse	CLR			5			5		5		no
^l W	duration	A or B trigger			5			5	7,74	5		ns
Ţ.	Dulaa satsi		B 1 kO	C _{ext} = 100 pF	†	59		(₱)	11/2	†		ns
t _{rr}	Pulse retri	gger time	$R_{\text{ext}} = 1 \text{ k}\Omega$	C _{ext} = 0.01 μF	†	1.5		¢Ť		†		μs

[†] See retriggering data in the *application information* section.

switching characteristics over recommended operating V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1) free-air temperature

PARAMETER	FROM	то	TEST	T,	_A = 25°C	;	SN54L	V123A	SN74L	/123A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	A or B	Q or Q			14.5*	31.4*	1*	37*	1	37	
t _{pd}	CLR	Q or Q	C _L = 15 pF		13*	25*	1*	29.5*	1	29.5	ns
	CLR trigger	Q or Q			15.1*	33.4*	1*	39*	1	39	
	A or B	Q or Q			16.6	36	1	42	1	42	
t _{pd}	CLR	Q or Q	C _L = 50 pF		14.7	32.8	1	34.5	1	34.5	ns
'	CLR trigger	Q or $\overline{\mathbb{Q}}$			17.4	38	1	44	1	44	
			$C_L = 50 \text{ pF},$ $C_{ext} = 28 \text{ pF},$ $R_{ext} = 2 \text{ k}\Omega$		197	260	Long	320		320	ns
t _W ‡		Q or Q	$C_L = 50 \text{ pF},$ $C_{\text{ext}} = 0.01 \mu\text{F},$ $R_{\text{ext}} = 10 k\Omega$	90	100	110	90	110	90	110	μs
			$C_L = 50 \text{ pF},$ $C_{ext} = 0.1 \mu\text{F},$ $R_{ext} = 10 k\Omega$	0.9	1	1.1	0.9	1.1	0.9	1.1	ms
∆t _W §			C _L = 50 pF		±1						%

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

 $[\]ddagger$ t_W = Duration of pulse at Q and \overline{Q} outputs $\S \Delta t_W$ = Output pulse-duration variation (Q and \overline{Q}) between circuits in same package

SCLS393J - APRIL 1998 - REVISED APRIL 2003

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	TEST	T,	Վ = 25° C	;	SN54L\	/123A	SN74L	V123A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	A or B	Q or Q			10.2*	20.6*	1*	24*	1	24	
^t pd	CLR	Q or Q	C _L = 15 pF		9.3*	15.8*	1*	18.5*	1	18.5	ns
	CLR trigger	Q or Q			10.6*	22.4*	1*	26*	1	26	
	A or B	Q or Q			11.8	24.1	1	27.5	1	27.5	
^t pd	CLR	Q or Q	C _L = 50 pF		10.5	19.3	1	22	1	22	ns
	CLR trigger	Q or Q			12.3	25.9	1	29.5	1	29.5	
			$C_L = 50 \text{ pF},$ $C_{ext} = 28 \text{ pF},$ $R_{ext} = 2 \text{ k}\Omega$		182	240	JONG	300		300	ns
t _W †		Q or \overline{Q}	$C_L = 50 \text{ pF},$ $C_{ext} = 0.01 \mu\text{F},$ $R_{ext} = 10 k\Omega$	90	100	110	90	110	90	110	μs
			$C_L = 50 \text{ pF},$ $C_{ext} = 0.1 \mu\text{F},$ $R_{ext} = 10 k\Omega$	0.9	1	1.1	0.9	1.1	0.9	1.1	ms
$_{\Delta t_{W}}$ ‡			C _L = 50 pF		±1					·	%

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

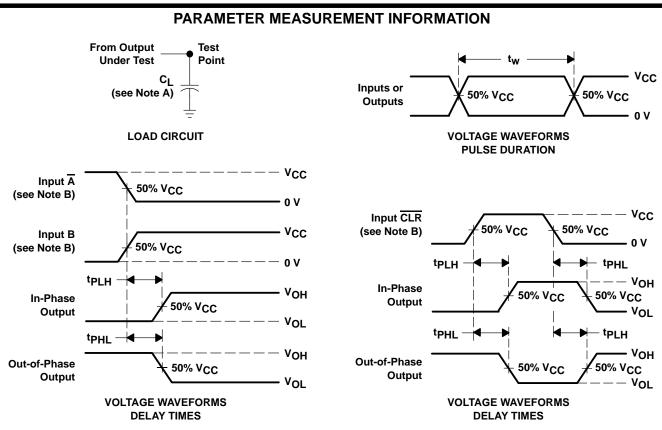
switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	TEST	T,	ղ = 25°C	;	SN54L\	/123A	SN74L	V123A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	A or B	Q or Q			7.1*	12*	1*	14*	1	14	
t _{pd}	CLR	Q or Q	C _L = 15 pF		6.5*	9.4*	1*	11*	1	11	ns
	CLR trigger	Q or $\overline{\mathbb{Q}}$			7.4*	12.9*	1*	15*	1	15	
	A or B	Q or Q			8.3	14	1	16	1	16	
t _{pd}	CLR	Q or Q	C _L = 50 pF		7.4	11.4	1	13	1	13	ns
	CLR trigger	Q or Q			8.7	14.9	1	17	1	17	
			$C_L = 50 \text{ pF},$ $C_{ext} = 28 \text{ pF},$ $R_{ext} = 2 \text{ k}\Omega$		167	200	Jong	240		240	ns
t _W †		Q or \overline{Q}	$C_L = 50 \text{ pF},$ $C_{ext} = 0.01 \mu\text{F},$ $R_{ext} = 10 k\Omega$	90	100	110	90	110	90	110	μs
			C_L = 50 pF, C_{ext} = 0.1 μ F, R_{ext} = 10 k Ω	0.9	1	1.1	0.9	1.1	0.9	1.1	ms
∆t _W ‡					±1						%

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] t_w = Duration of pulse at Q and \overline{Q} outputs

 $^{^{\}ddagger}\Delta t_W$ = Output pulse-duration variation (Q and \overline{Q}) between circuits in same package

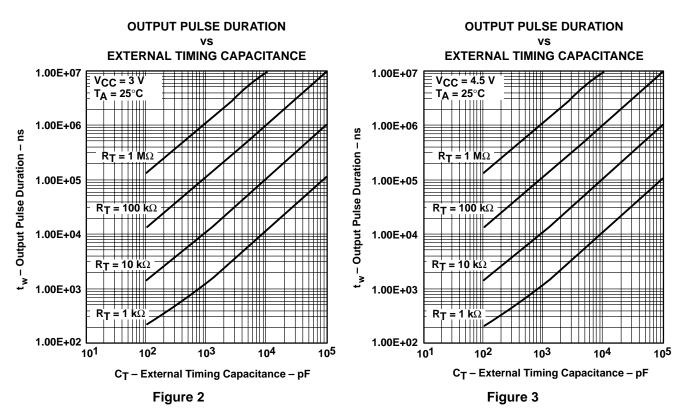

 $[\]dagger t_W = Duration of pulse at Q and <math>\overline{Q}$ outputs

 $^{^{\}ddagger}\Delta t_W$ = Output pulse-duration variation (Q and \overline{Q}) between circuits in same package

SCLS393J - APRIL 1998 - REVISED APRIL 2003

operating characteristics, T_A = 25°C

PARAMETER			TEST CO	VCC	TYP	UNIT	
		Power dissipation capacitance	$C_1 = 50 pF$	f = 10 MHz	3.3 V	44	pF
	pd	rowei dissipation capacitance	CL = 50 pr,	I = IU IVIMZ	5 V	49	þr



NOTES: A. C_L includes probe and jig capacitance.

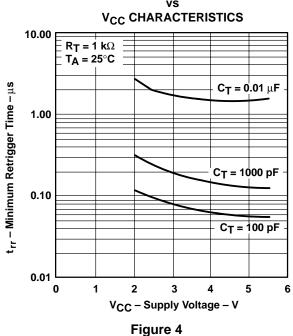
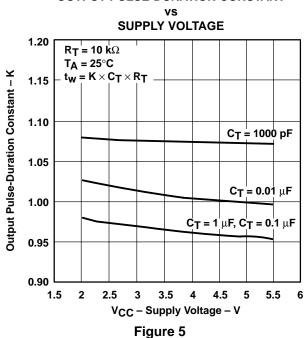
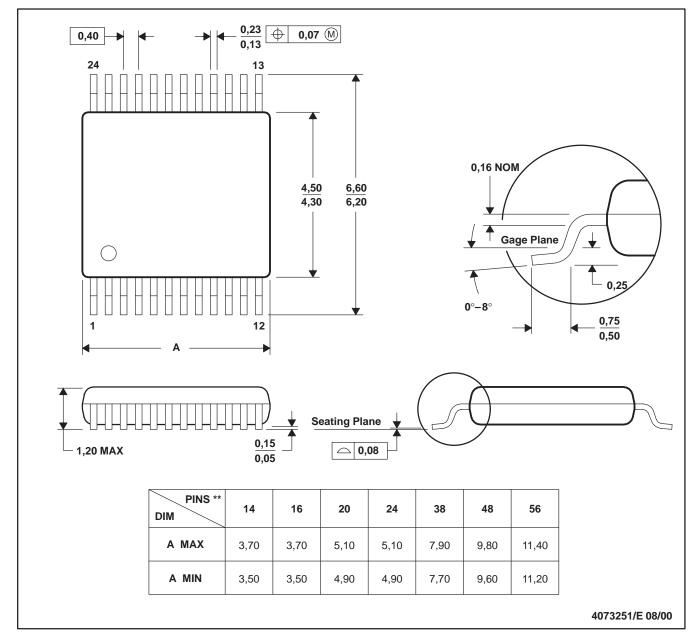

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms


APPLICATION INFORMATION[†]

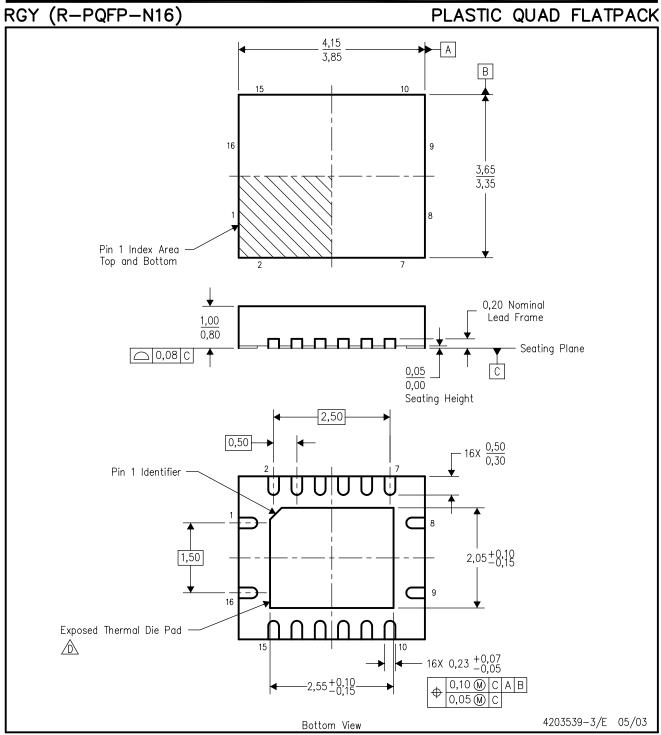
OUTPUT PULSE-DURATION CONSTANT


[†]Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE



NOTES: A. All linear dimensions are in millimeters.

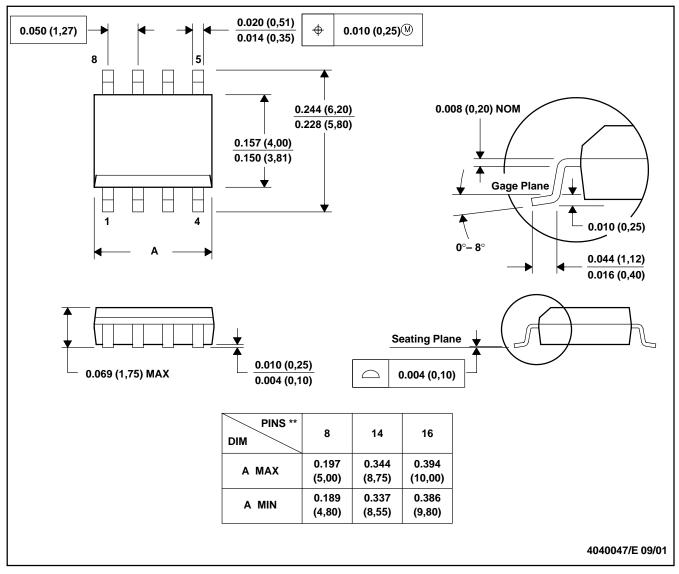
B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane.


 This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads.
- E. Package complies to JEDEC MO-241 variation BB.

D (R-PDSO-G**)

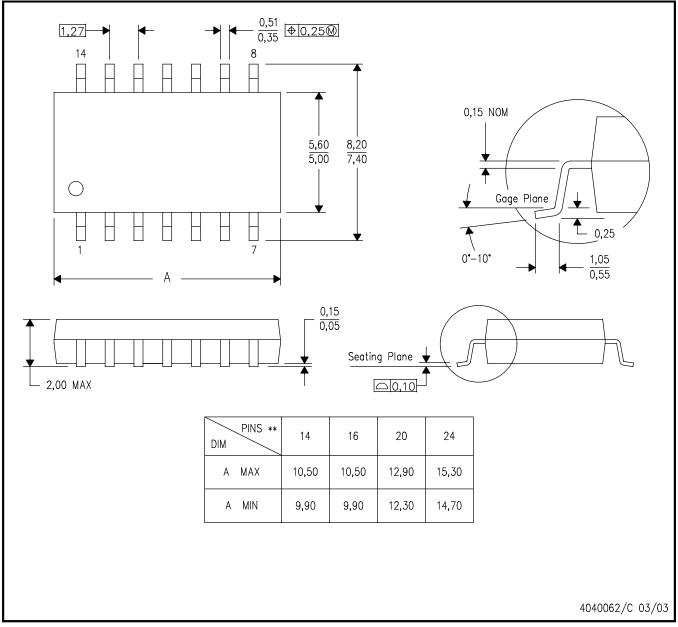
PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-012

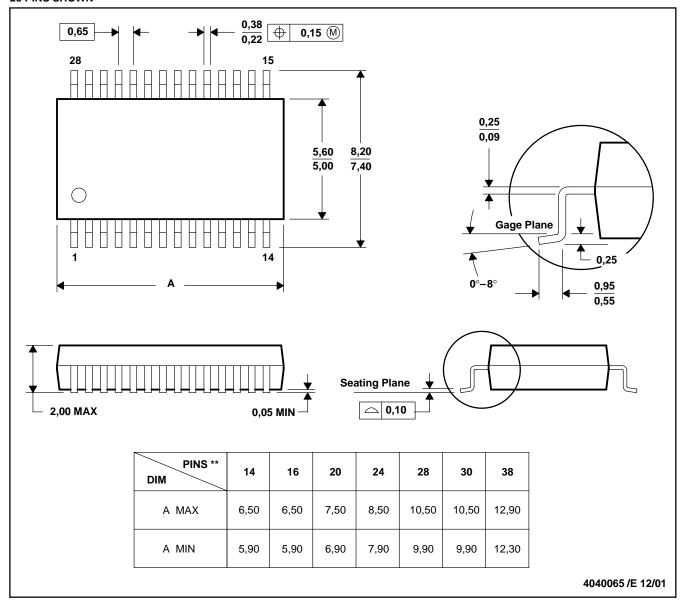
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

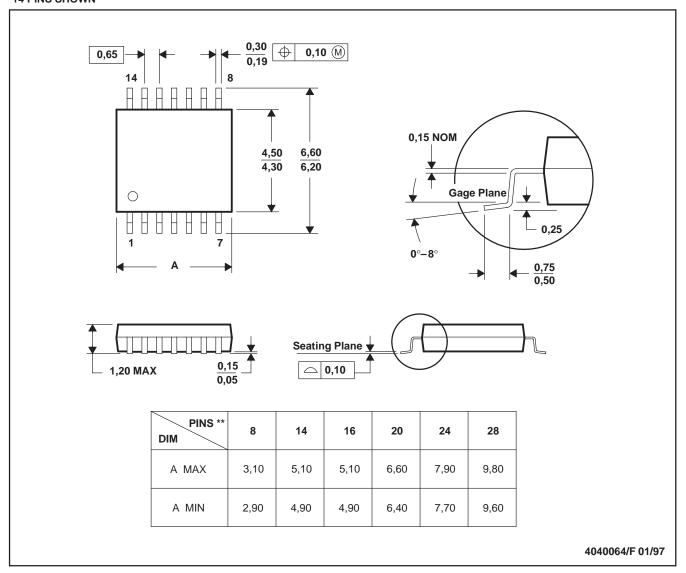
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated