Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 1731147

Dual/Quad

Decompensated Low Noise, High Speed Precision Op Amps

FEATURES

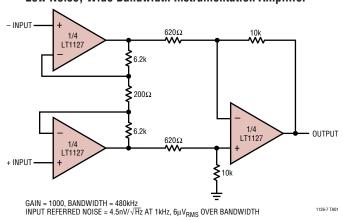
- 100% Tested Low Voltage Noise: 2.7nV/√Hz Typ, 4.2nV/√Hz Max
- Slew Rate: 11V/µs Typ
- Gain-Bandwidth Product: 65MHz Typ
- Offset Voltage, Prime Grade: 70μV Max Low Grade: 100μV Max
- High Voltage Gain: 5 Million Min
- Supply Current Per Amplifier: 3.1mA Max
- Common Mode Rejection: 112dB Min
- Power Supply Rejection: 116dB Min
- Available in 8-Lead SOIC, 8-Lead DIP, 16-Lead SO and 14-Lead DIP Packages

APPLICATIONS

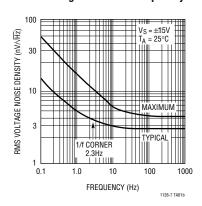
- Two and Three Op Amp Instrumentation Amplifiers
- Low Noise Signal Processing
- Active Filters
- Microvolt Accuracy Threshold Detection
- Strain Gauge Amplifiers
- Direct Coupled Audio Gain Stages
- Tape Head Preamplifiers
- Microphone Preamplifiers
- Accelerometer Amplifiers
- Infrared Detectors

DESCRIPTION

The LT®1126 dual and LT1127 quad are high performance, decompensated op amps that offer higher slew rate and bandwidth than the LT1124 dual and the LT1125 quad operational amplifiers. The enhanced AC performance is available without degrading DC specs of the LT1124/LT1125. Both LT1126/LT1127 are stable in a gain of 10 or more.


In the design, processing and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters. Slew rate, gain-bandwidth and 1kHz noise are 100% tested for each individual amplifier. Consequently, the specifications of even the lowest cost grades (the LT1126C and the LT1127C) have been enhanced.

Power consumption of the dual LT1126 is less than one half of two OP-37s. Low power and high performance in an 8-pin SO package makes the LT1126 a first choice for surface mounted systems and where board space is restricted.

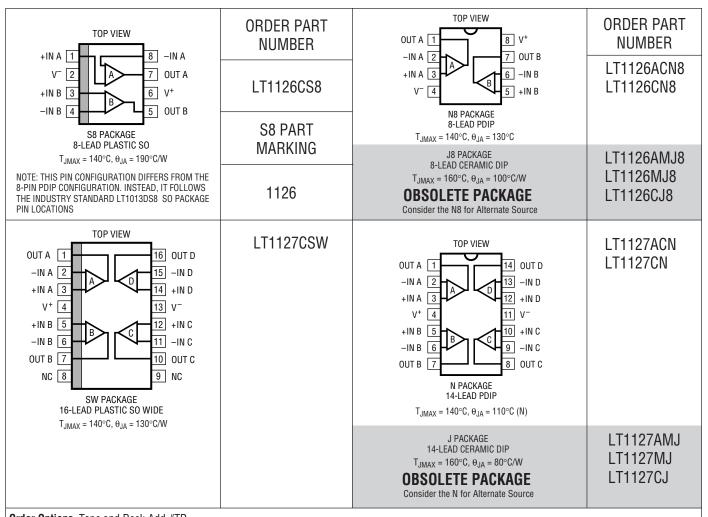

(T), LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 4775844, 4837496.

TYPICAL APPLICATION

Low Noise, Wide Bandwidth Instrumentation Amplifier

Voltage Noise vs Frequency

11267fa



ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	±22V
Input Voltage	Equal to Supply Voltage
Output Short Circuit Duration	Indefinite
Differential Input Current (Note	5)±25mA
Lead Temperature (Soldering, 1	

Operating Temperature Range
LT1126AM/LT1126M
LT1127AM/LT1127M (OBSOLETE) .. -55°C to 125°C
LT1126AC/LT1126C
LT1127AC/LT1127C-40°C to 85°C
Storage Temperature Range
All Grades-65°C to 150°C

PACKAGE/ORDER INFORMATION

Order Options Tape and Reel: Add #TR

Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF Lead Free Part Marking: http://www.linear.com/leadfree/

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $v_{S}=\pm 15V,\, T_{A}=25^{\circ}C,\, unless$ otherwise noted.

				T1126AN		Ļ			
SYMBOL	PARAMETER	CONDITIONS (Note 2)	MIN	T1127AN TYP	MAX	MIN	.T1127M, TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1126 LT1127		20 25	70 90		25 30	100 140	μV μV
$\Delta V_{OS} \over \Delta Time$	Long Term Input Offset Voltage Stability			0.3			0.3		μV/Mo
I _{OS}	Input Offset Current	LT1126 LT1127		5 6	15 20		6 7	20 30	nA nA
$\overline{I_B}$	Input Bias Current			± 7	± 20		± 8	± 30	nA
en	Input Noise Voltage	0.1Hz to 10Hz (Notes 8, 9)		70	200		70		nVp-p
	Input Noise Voltage Density	f ₀ = 10Hz (Note 5)		3.0	5.5		3.0	5.5	nV/√Hz
		f ₀ = 1000Hz (Note 3)		2.7	4.2		2.7	4.2	nV/√Hz
i _n	Input Noise Current Density	f ₀ = 10Hz f ₀ = 1000Hz		1.3 0.3			1.3 0.3		pA/√Hz pA/√Hz
V _{CM}	Input Voltage Range		± 12.0	± 12.8		± 12.0	± 12.8		V
CMRR	Common Mode Rejection Ratio	V _{CM} = ±12V	112	126		106	124		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4V \text{ to } \pm 18V$	116	126		110	124		dB
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 10k\Omega, V_0 = \pm 10V$ $R_L \ge 2k\Omega, V_0 = \pm 10V$	5.0 2.0	17.0 4.0		3.0 1.5	15.0 3.0		V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$	± 13.0	± 13.8		± 12.5	± 13.8		V
SR	Slew Rate	$R_L \ge 2k\Omega$ (Notes 3, 7)	8.0	11		8.0	11		V/µs
GBW	Gain-Bandwidth Product	f ₀ = 10kHz (Note 3)	45	65		45	65		MHz
$\overline{Z_0}$	Open Loop Output Resistance	$V_0 = 0, I_0 = 0$		75			75		Ω
Is	Supply Current Per Amplifier	-		2.6	3.1		2.6	3.1	mA
	Channel Separation	$f \le 10$ Hz (Note 9) $V_0 = \pm 10$ V, $R_L = 2$ k Ω	134	150		130	150		dB

The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $V_S=\pm 15V$, $-55^{\circ}C \leq T_A \leq 125^{\circ}C$, unless otherwise noted.

				LT1126AM LT1127AM			LT1126 LT1127			
SYMBOL	PARAMETER	CONDITIONS (Note 1)		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1126	•		50	170		60	250	μV
		LT1127	•		55	190		70	290	μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Average Input Offset Voltage Drift	(Note 5)	•		0.3	1.0		0.4	1.5	μV/°C
los	Input Offset Current	LT1126	•		18	45		20	60	nA
		LT1127	•		18	55		20	70	nA
I _B	Input Bias Current		•		± 18	±55		±20	± 70	nA
V _{CM}	Input Voltage Range		•	± 11.3	± 12		± 11.3	± 12		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 11.3V$	•	106	122		100	120		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4V \text{ to } \pm 18V$	•	110	122		104	120		dB
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 10k\Omega, V_0 = \pm 10V$	•	3.0	10.0		2.0	10.0		V/µV
		$R_L \ge 2k\Omega, V_0 = \pm 10V$	•	1.0	3.0		0.7	2.0		V/µV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$	•	± 12.5	± 13.6		± 12.0	± 13.6		V
SR	Slew Rate	$R_L \ge 2k\Omega$ (Notes 3, 7)	•	7.2	10		7.0	10		V/µs
Is	Supply Current Per Amplifier		•		2.8	3.5		2.8	3.5	mA

11267fa

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $V_S = \pm 15V$, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS (Note 2)		MIN	LT1126 LT1127 TYP		MIN	LT1126 LT1127 TYP		UNITS
V _{OS}	Input Offset Voltage	LT1126 LT1127	•		35 40	120 140		45 50	170 210	μV μV
ΔVos/ΔΤ	Average Input Offset Voltage Drift	(Note 5)	•		0.3	1.0		0.4	1.5	μV/°C
I _{OS}	Input Offset Current	LT1126 LT1127	•		6 7	25 35		7 8	35 45	nA nA
I _B	Input Bias Current		•		±8	±35		±9	± 45	nA
V_{CM}	Input Voltage Range		•	± 11.5	±12.4		±11.5	±12.4		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 11.5V$	•	109	125		102	122		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4V \text{ to } \pm 18V$	•	112	125		107	122		dB
A _{VOL}	Large Signal Voltage Gain	$\begin{aligned} R_L &\geq 10 k \Omega, V_0 = \pm 10 V \\ R_L &\geq 2 k \Omega, V_0 = \pm 10 V \end{aligned}$	•	4.0 1.5	15.0 3.5		2.5 1.0	14.0 2.5		V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$	•	± 12.5	±13.7		±12.0	± 13.7		V
SR	Slew Rate	$R_L \ge 2k\Omega$ (Notes 3, 7)	•	7.5	10.5		7.3	10.5		V/µs
Is	Supply Current Per Amplifier		•		2.7	3.3		2.7	3.3	mA

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $V_S = \pm 15V$, $-40^{\circ}C \le T_A \le 85^{\circ}C$, unless otherwise noted. (Note 10)

SYMBOL	DADAMETED	CONDITIONS (Note 2)		LT1126AC LT1127AC			BAIN	LT1126	7C	UNITS
	PARAMETER	CONDITIONS (Note 2)		MIN	TYP		MIN	TYP	MAX	
V_{OS}	Input Offset Voltage	LT1126	•		40	140		50	200	μV
		LT1127	•		45	160		55	240	μV
$\Delta V_{OS}/\Delta T$	Average Input Offset Voltage Drift	(Note 5)	•		0.3	1.0		0.4	1.5	μV/°C
I _{OS}	Input Offset Current	LT1126	•		15	40		17	55	nA
	·	LT1127	•		15	50		17	65	nA
IΒ	Input Bias Current		•		± 15	±50		± 17	± 65	nA
V_{CM}	Input Voltage Range		•	±11.4	± 12.2		±11.4	± 12.2		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 11.4V$	•	107	124		101	121		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4V$ to $\pm 18V$	•	111	124		106	121		dB
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 10k\Omega, V_0 = \pm 10V$	•	3.5	12.0		2.2	12.0		V/µV
		$R_L \ge 2k\Omega, V_0 = \pm 10V$	•	1.2	3.2		0.8	2.3		V/µV
$\overline{V_{OUT}}$	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$	•	± 12.5	± 13.6		±12.0	± 13.6		V
SR	Slew Rate	$R_L \ge 2k\Omega$ (Note 7)	•	7.3	10.2		7.1	10.2		V/µs
Is	Supply Current Per Amplifier		•		2.8	3.4		2.8	3.4	mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1127s (or 100 LT1126s) typically 240 op amps (or 120) will be better than the indicated specification.

Note 3: This parameter is 100% tested for each individual amplifier.

Note 4: This parameter is sample tested only.

Note 5: This parameter is not 100% tested.

Note 6: The inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds $\pm 1.4V$, the input current should be limited to 25mA.

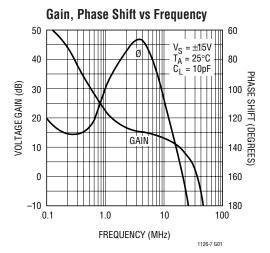
Note 7: Slew rate is measured in $A_V = -10$; input signal is $\pm 1V$, output measured at $\pm 5V$.

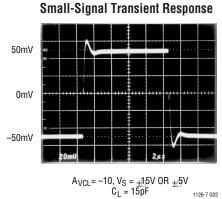
Note 8: 0.1Hz to 10Hz noise can be inferred from the 10Hz noise voltage density test. See the test circuit and frequency response curve for 0.1Hz to 10Hz tester in the Applications Information section of the LT1007 or LT1028 datasheets.

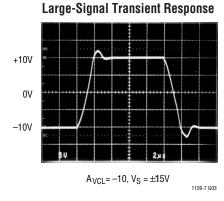
Note 9: This parameter is guaranteed but not tested.

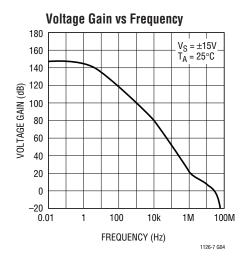
Note 10: The LT1126/LT1127 are designed, characterized and expected to meet these extended temperature limits, but are not tested at -40° C and at 85°C. Guaranteed I grade parts are available. Consult factory.

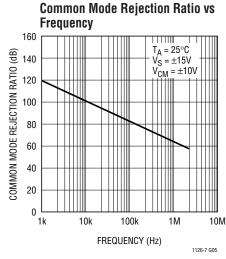
LINEAR TECHNOLOGY

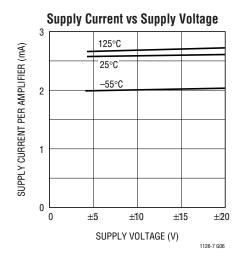

TYPICAL PERFORMANCE CHARACTERISTICS

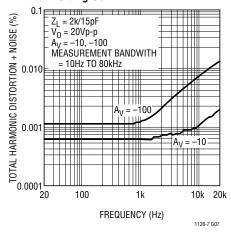

The typical behavior of many LT1126/LT1127 parameters is identical to the LT1124/LT1125. Please refer to the LT1124/LT1125 data sheet for the following performance characteristics:

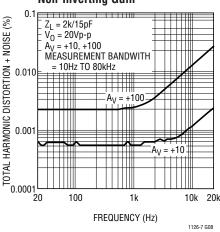

0.1Hz to 10Hz Voltage Noise 0.01Hz to 1Hz Voltage Noise **Current Noise vs Frequency** Input Bias or Offset Current vs Temperature **Output Short Circuit Current vs Time**


Input Bias Current Over the Common Mode Range **Voltage Gain vs Temperature Input Offset Voltage Drift Distribution** Offset Voltage Drift with Temperature of Representative Units

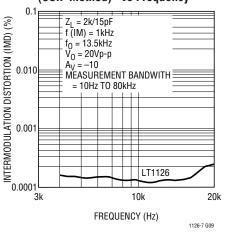

Output Voltage Swing vs Load Current Common Mode Limit vs Temperature Channel Separation vs Frequency Warm-Up Drift **Power Supply Rejection Ratio vs Frequency**






*See LT1115 data sheet for definition of CCIF testing

TYPICAL PERFORMANCE CHARACTERISTICS


Total Harmonic Distortion and Noise vs Frequency for Inverting Gain

Intermodulation Distortion (CCIF Method)* vs Frequency

*See LT1115 data sheet for definition of CCIF testing

APPLICATIONS INFORMATION

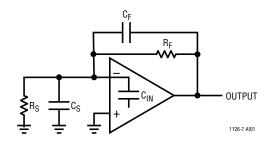
Matching Specifications

In many applications the performance of a system depends on the matching between two op amps, rather than the individual characteristics of the two devices. The three op amp instrumentation amplifier configuration shown in this data sheet is an example. Matching characteristics are not 100% tested on the LT1126/LT1127.

Some specifications are guaranteed by definition. For example, $70\mu V$ maximum offset voltage implies that mismatch cannot be more than $140\mu V$. 112dB (= $2.5\mu V/V$) CMRR means that worst case CMRR match is 106dB ($5\mu V/V$). However, the following table can be used to estimate the expected matching performance between the two sides of the LT1126, and between amplifiers A and D, and between amplifiers B and C of the LT1127.

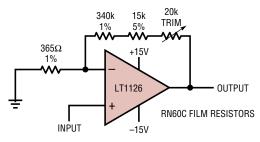
Expected Match

		LT1126AM/AC LT1126M/C LT1127AM/AC LT1127M/C				
PARAMETER		50% YIELD	98% YIELD	50% YIELD	98% YIELD	UNITS
V _{OS} Match, ΔV _{OS}	LT1126 LT1127	20 30	110 150	30 50	130 180	μV μV
Temperature Coeffic	cient Match	0.35	1.0	0.5	1.5	μV/°C
Average Non-Invert	ing I _B	6	18	7	25	nA
Match of Non-Inver	ting I _B	7	22	8	30	nA
CMRR Match		126	115	123	112	dB
PSRR Match		127	118	127	114	dB

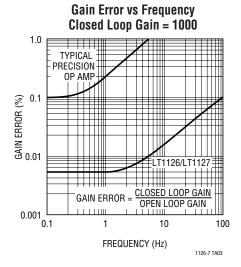

LINEAR

APPLICATIONS INFORMATION

High Speed Operation

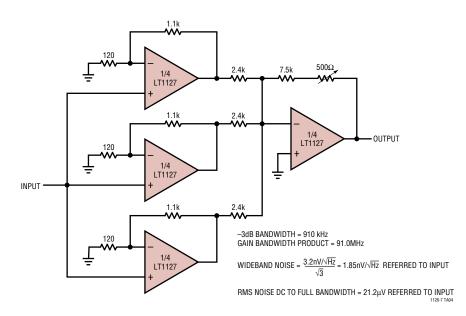

When the feedback around the op amp is resistive (R_F), a pole will be created with R_F , the source resistance and capacitance (R_S , C_S), and the amplifier input capacitance ($C_{IN} \approx 2pF$). In low closed loop gain configurations and

with R_S and R_F in the kilohm range, this pole can create excess phase shift and even oscillation. A small capacitor (C_F) in parallel with R_F eliminates this problem. With R_S $(C_S + C_{IN}) = R_F C_F$, the effect of the feedback pole is completely removed.

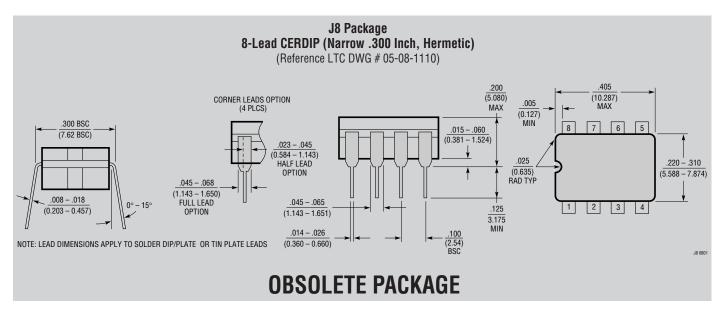


TYPICAL APPLICATIONS

Gain 1000 Amplifier with 0.01% Accuracy, DC to 5Hz

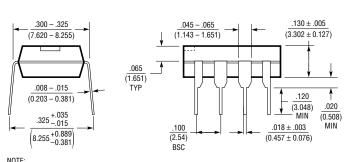


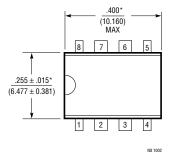
THE HIGH GAIN AND WIDE BANDWIDTH OF THE LT1126/LT1127 IS USEFUL IN LOW FREQUENCY HIGH CLOSED LOOP GAIN AMPLIFIER APPLICATIONS. A TYPICAL PRECISION OP AMP MAY HAVE AN OPEN LOOP GAIN OF ONE MILLION WITH 500kHz BANDWIDTH. AS THE GAIN ERROR PLOT SHOWS, THIS DEVICE IS CAPABLE OF 0.1% AMPLIFYING ACCURACY UP TO 0.3Hz ONLY. EVEN INSTRUMENTATION RANGE SIGNALS CAN VARY AT A FASTER RATE. THE LT1126/LT1127 "GAIN PRECISION — BANDWIDTH PRODUCT" IS 330 TIMES HIGHER, AS SHOWN.



TYPICAL APPLICATIONS

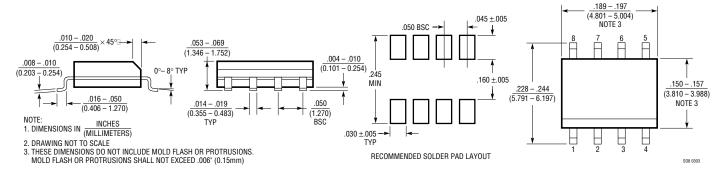
Low Noise, Wideband, Gain = 100 Amplifier with High Input Impedance

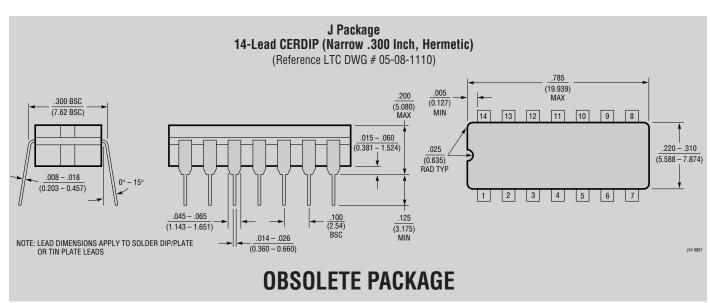

PACKAGE DESCRIPTION



PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch)


(Reference LTC DWG # 05-08-1510)



S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

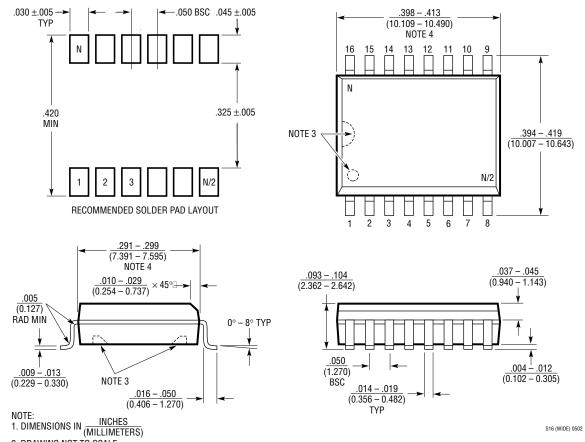
(Reference LTC DWG # 05-08-1610)


11267fa

NOTE:
1. DIMENSIONS ARE INCHES
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

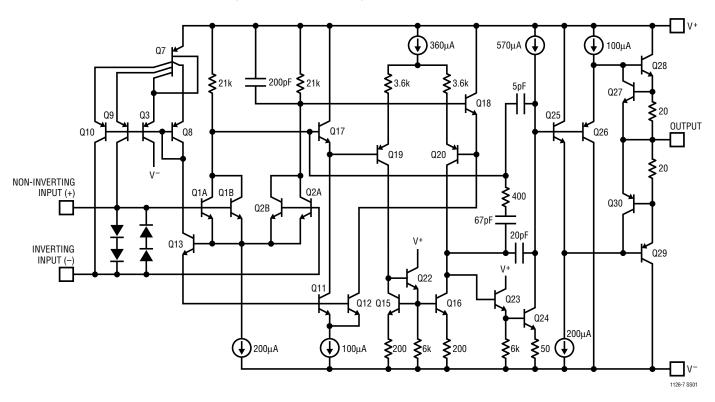
N Package **14-Lead PDIP (Narrow .300 Inch)** (Reference LTC DWG # 05-08-1510)



*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

SW Package 16-Lead Plastic Small Outline (Wide .300 Inch)


(Reference LTC DWG # 05-08-1620)

- 2. DRAWING NOT TO SCALE
- 2. DRAWING NOT TO SCALE
 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
 THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
 MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

SCHEMATIC DIAGRAM (1/2 LT1126, 1/4 LT1127)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1124/LT1125	Dual/Quad Low Noise High Speed Precision Op Amps	Unity Gain Stable
LT1037	Low Noise, High Speed Precision Op Amps	60MHz GBW, 11V/μs Slew Rate
LT1678/LT1679	Dual/Quad Low Noise Rail-to-Rail Precision Op Amps	20MHz GBW, 100μV V _{OS}
LT1028	Ultralow Noise Precision High Speed Op Amps	1.1nV/√Hz Max, 0.85 μV/Hz Typ
LT6230	215MHz, Rail-to-Rail Output Low Noise Op Amps	1.1nV/√Hz, 3.5mA Supply Current