

MOS INTEGRATED CIRCUIT μ PD16772A

480-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

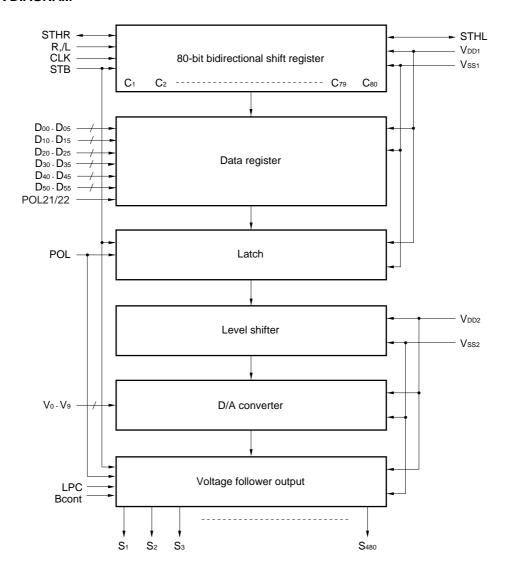
DESCRIPTION

The μ PD16772A is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as Vss₂ + 0.1 V to VDD2 - 0.1 V, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a clock frequency of 45 MHz when driving at 2.3 V, this driver is applicable to UXGA-standard TFT-LCD panels.

FEATURES

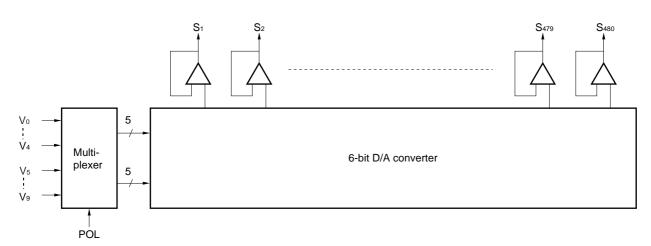
- CMOS level input (2.3 to 3.6 V)
- 480 outputs
- Input of 6 bits (gradation data) by 6 dots
- Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter (R-DAC)
- Output dynamic range: Vss2 + 0.1 V to VDD2 0.1 V
- High-speed data transfer : fclk = 45 MHz (internal data transfer speed when operating at VDD1 = 2.3 V)
- Apply for dot-line inversion, n-line inversion and column line inversion
- Output voltage polarity inversion function (POL)
- Display data inversion function (POL21/22)
- Current consumption reduction function (LPC, Bcont)
- Logic power supply voltage (VDD1): 2.3 to 3.6 V
- Driver power supply voltage (V_{DD2}): 8.5 V \pm 0.5 V

ORDERING INFORMATION

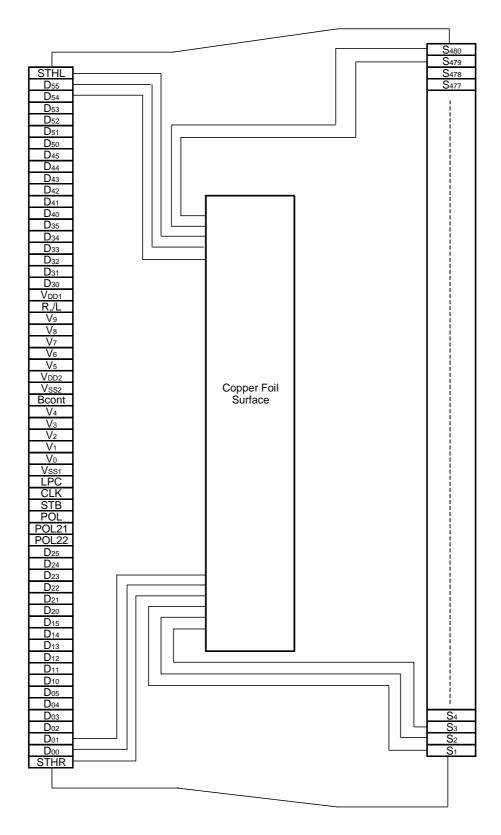

Part Number	Package
μ PD16772AN-xxx	TCP (TAB package)

Remark The TCP's external shape is customized. To order the required shape, so please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

1. BLOCK DIAGRAM



Remark /xxx indicates active low signal.

2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

3. PIN CONFIGURATION (μPD16772AN-xxx: TCP (TAB package))

Remark This figure does not specify the TCP package.

4. PIN FUNCTIONS

Pin Symbol	Pin Name	Description
S ₁ to S ₄₈₀	Driver output	The D/A converted 64-gray-scale analog voltage is output.
D ₀₀ to D ₀₅	Display data input	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2
D ₁₀ to D ₁₅		pixels).
D ₂₀ to D ₂₅		Dxo: LSB, Dxs: MSB
D ₃₀ to D ₃₅		
D ₄₀ to D ₄₅		
D50 to D55		
R,/L		These refer to the start pulse I/O pins when driver ICs are connected in cascade. The shift
	input	directions of the shift registers are as follows.
		R,/L = H: STHR input, $S_1 \rightarrow S_{480}$, STHL output
STHR	Dight chift start pulsa	R,/L = L: STHL input, S480 \rightarrow S1, STHR output
SIRK	Right shift start pulse	·
CTUI	input/output	Fetching of display data starts when H is read at the rising edge of CLK. R,/L = H (right shift): STHR input, STHL output
STHL	Left shift start pulse input/output	R,/L = L (left shift): STHL input, STHR output
	Inputoutput	The start pulse width (H level) for next-level drivers is 1CLK.
CLK	Shift clock input	Refers to the shift register's shift clock input. The display data is incorporated into the data
OLIX	Still Clock Input	register at the rising edge. At the rising edge of the 80 th clock after the start pulse input, the
		start pulse output reaches the high level, thus becoming the start pulse of the next-level
		driver. If 82 clock pulses are input after input of the start pulse, input of display data is halted
		automatically. The contents of the shift register are cleared at the STB's rising edge.
STB	Latch input	The contents of the data register are transferred to the latch circuit at the rising edge. And,
OID	Laterrinput	at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure
		input of one pulse per horizontal period.
POL	Polarity input	POL = L: The S_{2n-1} output uses V_0 to V_4 as the reference supply. The S_{2n} output uses V_5 to
. 02	Tolarity input	V₂ as the reference supply.
		POL = H: The S_{2n-1} output uses V_5 to V_9 as the reference supply. The S_{2n} output uses V_0 to
		V4 as the reference supply.
		S _{2n-1} indicates the odd output: and S _{2n} indicates the even output. Input of the POL signal is
		allowed the setup time(tpol-stb) with respect to STB's rising edge.
POL21,	Data inversion input	Data inversion can invert when display data is loaded.
POL22	•	POL21/22 = H : Data inversion loads display data after inverting it.
		POL21/22 = L : Data inversion does not invert input data.
		POL21: D ₀₀ to D ₀₅ , D ₁₀ to D ₁₅ , D ₂₀ to D ₂₅
		POL22: D ₃₀ to D ₃₅ , D ₄₀ to D ₄₅ , D ₅₀ to D ₅₅
LPC	Low power control	The current consumption of V _{DD2} is lowered by controlling the constant current source of the
	input	output amplifier. This pin is pulled up to the VDD1 power supply inside the IC. For details,
		see 9. CURRENT CONSUMPTION REDUCTION FUNCTION.
Bcont	Bias control	This pin can be used to finely control the bias current inside the output amplifier.
		When this fine-control function is not required, leave this pin open. For details, see
		9. CURRENT CONSUMPTION REDUCTION FUNCTION.
V ₀ to V ₉	γ -corrected power	Input the γ -corrected power supplies from outside by using operational amplifier. Make sure
	supplies	to maintain the following relationships. During the gray scale voltage output, be sure to keep
		the gray scale level power supply at a constant level.
		$V_{DD2} - 0.1 \text{ V} > V_0 > V_1 > V_2 > V_3 > V_4 > 0.5 \text{ V}_{DD2} > V_5 > V_6 > V_7 > V_8 > V_9 > V_{SS2} + 0.1 \text{ V}_{SS2} + 0.1 V$
V _{DD1}	Logic power supply	2.3 to 3.6 V
V _{DD2}	Driver power supply	8.5 V ± 0.5 V
Vss1	Logic ground	Grounding
Vss2	Driver ground	Grounding
	ground	

- Cautions 1. The power start sequence must be V_{DD1}, logic input, and V_{DD2} & V₀ to V₉ in that order.

 Reverse this sequence to shut down (Simultaneous power application to V_{DD2} and V₀ to V₉ is possible.).
 - 2. To stabilize the supply voltage, please be sure to insert a 0.1 μ F bypass capacitor between V_{DD1}-V_{SS1} and V_{DD2}-V_{SS2}. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 μ F is also advised between the γ -corrected power supply terminals (V₀, V₁, V₂,...., V₉) and V_{SS2}.

5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

The μ PD16772A incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches.

The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to Vo' to V63' and Vo" to V63' is almost equivalent. For the 2 sets of five γ -compensated power supplies, Vo to V4 and V5 to V9, respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine gray scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ -compensated power supplies V1 to V3 and V6 to V8.

Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and VSS2, common electrode potential VCOM, and γ -corrected voltages V0 to V9 and the input data. Be sure to maintain the voltage relationships of VDD2 – 0.1 V > V0 > V1 > V2 > V3 > V4 > 0.5 VDD2 > V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V

Figures 5–2 and 5–3 show the relationship between the input data and the output voltage and the resistance values of the resistor strings.

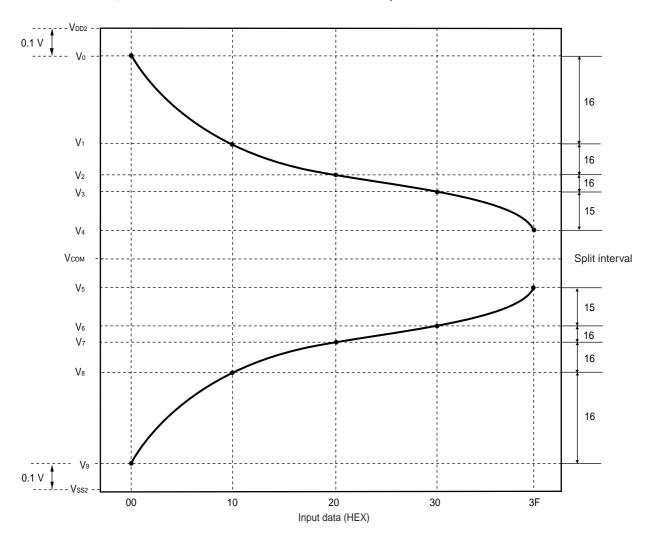


Figure 5–1. Relationship between Input Data and γ -corrected Power Supplies

Figure 5–2. Relationship between Input Data and Output Voltage

 $V_{DD2} - 0.2 \text{ V} > V_0 > V_1 > V_2 > V_3 > V_4 > 0.5 \text{ V}_{DD2}, POL21/22 = L$

			Data	DX5	DX4	DX3	DX2	DX1	DX0		Output votage	rn	(Ω)
V ₀ —	-	- V ₀ '	00H	0	0	0	0	0	0	V0'	VO	r0	1150
r0	П		01H	0	0	0	0	0	1	V1'	V1+(V0-V1)× 6500 / 7650	r1	700
	Τ	- V ₁ '	02H	0	0	0	0	1	0	V2'	V1+(V0-V1)× 5800 / 7650	r2	700
r1			03H	0	0	0	0	1	1	V3'	V1+(V0-V1)× 5100 / 7650	r3	700
	\equiv	- V ₂ '	04H	0	0	0	1	0	0	V4'	V1+(V0-V1)× 4400 / 7650	r4	700
r2			05H	0	0	0	1	0	1	V5'	V1+(V0-V1)× 3700 / 7650	r5	350
		- V3'	06H 07H	0	0	0	1	1	0	V6' V7'	V1+(V0-V1)× 3350 / 7650 V1+(V0-V1)× 3000 / 7650	r6 r7	350
r3	Ц		07H 08H	0	0	1	0	0	0	V7'	V1+(V0-V1)× 3000 / 7650 V1+(V0-V1)× 2650 / 7650	r8	350 350
	į		09H	0	0	1	0	0	1	V9'	V1+(V0-V1)x 2000 / 7650	r9	350
	!		0AH	0	0	1	0	1	0	V10'	V1+(V0-V1)× 1950 / 7650	r10	350
	!		0BH	0	0	1	0	1	1	V11'	V1+(V0-V1)× 1600 / 7650	r11	350
	į		0CH	0	0	1	1	0	0	V12'	V1+(V0-V1)× 1250 / 7650	r12	350
	Ä		0DH	0	0	1	1	0	1	V13'	V1+(V0-V1)× 900 / 7650	r13	300
r14	Ų		0EH	0	0	1	1	1	0	V14'	V1+(V0-V1)× 600 / 7650	r14	300
-15	<u> </u>	- V ₁₅ '	0FH	0	0	1	1	1	1	V15'	V1+(V0-V1)× 300 / 7650	r15	300
r15 V₁ —	Ψ.	V	10H	0	1	0	0	0	0	V16'	V1	r16	200
		- V ₁₆ '	11H 12H	0	1	0	0	0 1	0	V17 V18'	V2+(V1-V2)× 2100 / 2300 V2+(V1-V2)× 1900 / 2300	r17 r18	200 200
r16	Ų		13H	0	1	0	0	1	1	V19'	V2+(V1-V2)× 1900 / 2300 V2+(V1-V2)× 1700 / 2300	r19	200
-17	Ь.	- V ₁₇ '	14H	0	1	0	1	0	0	V20'	V2+(V1-V2)× 1500 / 2300	r20	200
r17	H		15H	0	1	0	1	0	1	V21'	V2+(V1-V2)× 1300 / 2300	r21	150
	1		16H	0	1	0	1	1	0	V22'	V2+(V1-V2)× 1150 / 2300	r22	150
			17H	0	1	0	1	1	1	V23'	V2+(V1-V2)× 1000 / 2300	r23	150
	i		18H	0	1	1	0	0	0	V24'	V2+(V1-V2)× 850 / 2300	r24	150
			19H	0	1	1	0	0	1	V25'	V2+(V1-V2)× 700 / 2300	r25	100
			1AH	0	1	1	0	1	0	V26'	V2+(V1-V2)× 600 / 2300	r26	100
			1BH 1CH	0	1	1	0 1	0	0	V27' V28'	V2+(V1-V2)× 500 / 2300 V2+(V1-V2)× 400 / 2300	r27 r28	100 100
			1DH	0	1	1	1	0	1	V29'	V2+(V1-V2)× 300 / 2300	r29	100
			1EH	0	1	1	1	1	0	V30'	V2+(V1-V2)× 200 / 2300	r30	100
	į		1FH	0	1	1	1	1	1	V31'	V2+(V1-V2)× 100 / 2300	r31	100
			20H	1	0	0	0	0	0	V32'	V2	r32	100
			21H	1	0	0	0	0	1	V33'	V3+(V2-V3)× 1550 / 1650	r33	100
			22H 23H	1	0	0	0	1	0	V34' V35'	V3+(V2-V3)× 1450 / 1650 V3+(V2-V3)× 1350 / 1650	r34 r35	100 100
	i		23H	1	0	0	1	0	0	V36'	V3+(V2-V3)× 1350 / 1650 V3+(V2-V3)× 1250 / 1650	r36	100
			25H	1	0	0	1	0	1	V37'	V3+(V2-V3)× 1150 / 1650	r37	100
			26H	1	0	0	1	1	0	V38'	V3+(V2-V3)× 1050 / 1650	r38	100
			27H	1	0	0	1	1	1	V39'	V3+(V2-V3)× 950 / 1650	r39	100
			28H	1	0	1	0	0	0	V40'	V3+(V2-V3)× 850 / 1650	r40	100
			29H	1	0	1	0	0	1	V41'	V3+(V2-V3)× 750 / 1650	r41	100
			2AH	1	0	1	0	1	0	V42'	V3+(V2-V3)× 650 / 1650	r42	100
	į		2BH 2CH	1	0	1	1	0	0	V43' V44'	V3+(V2-V3)× 550 / 1650 V3+(V2-V3)× 450 / 1650	r43 r44	100 100
r46			2DH	1	0	1	1	0	1	V45'	V3+(V2-V3)× 350 / 1650	r45	100
	<u> </u>	- V ₄₇ '	2EH	1	0	1	1	1	0	V46'	V3+(V2-V3)× 250 / 1650	r46	100
r47	Ц		2FH	1	0	1	1	1	1	V47'	V3+(V2-V3)× 150 / 1650	r47	150
V ₃		► V ₄₈ '	30H	1	1	0	0	0	0	V48'	V3	r48	150
r48	Ц		31H	1	1	0	0	0	1	V49'	V4+(V3-V4)× 4100 / 4250	r49	150
	<u> </u>	- V ₄₉ '	32H	1	1	0	0	1	0	V50'	V4+(V3-V4)× 3950 / 4250	r50	150
r49	Ų		33H	1	1	0	0	1	1	V51'	V4+(V3-V4)× 3800 / 4250	r51	150
	!		34H 35H	1	1	0	1	0	1	V52' V53'	V4+(V3-V4)× 3650 / 4250 V4+(V3-V4)× 3500 / 4250	r52 r53	150 150
	į		36H	1	1	0	1	1	0	V54'	V4+(V3-V4)× 3350 / 4250	r54	150
	-		37H	1	1	0	1	1	1	V55'	V4+(V3-V4)× 3200 / 4250	r55	250
			38H	1	1	1	0	0	0	V56'	V4+(V3-V4)× 2950 / 4250	r56	250
			39H	1	1	1	0	0	1	V57'	V4+(V3-V4)× 2700 / 4250	r57	250
r60	Ц		3AH	1	1	1	0	1	0	V58'	V4+(V3-V4)× 2450 / 4250	r58	300
r61	<u></u>	- V ₆₁ '	3BH	1	1	1	0	1	1	V59'	V4+(V3-V4)× 2150 / 4250	r59	300
101	Ų	\/ ·	3CH 3DH	1	1	1	1	0	0 1	V60' V61'	V4+(V3-V4)× 1850 / 4250 V4+(V3-V4)× 1550 / 4250	r60 r61	300 450
r62	\vdash	- V ₆₂ '	3EH	1	1	1	1	1	0	V62'	V4+(V3-V4)× 1100 / 4250	r62	1100
	무		3FH	1	1	1	1	1	1	V63'	V4	r total	15850
V4 —	-	- V ₆₃ '			_					-		-	

Caution There is no connection between V_4 and V_5 terminal in the chip.

Figure 5-3. Relationship between Input Data and Output Voltage $0.5 \text{ V}_{DD2} > V_5 > V_6 > V_7 > V_8 > V_9 > V_{SS2} + 0.1 \text{ V}, POL21/22 = L$

				Data	DX5	DX4	DX3	DX2	DX1	DX0	Output voltage		rn	(Ω)
V_5	\neg		V63"	00H	0	0	0	0	0	0	V0"	V9	r0	1150
r62	2 L			01H	0	0	0	0	0	1	V1"	V9+(V8-V9)× 1150 / 7650	r1	700
			V62"	02H	0	0	0	0	1	0	V2"	V9+(V8-V9)× 1850 / 7650	r2	700
r6	1 Ґ	7		03H	0	0	0	0	1	1	V3"	V9+(V8-V9)× 2550 / 7650	r3	700
	ד		V ₆₁ "	04H	0	0	0	1	0	0	V4"	V9+(V8-V9)× 3250 / 7650	r4	700
r60	$^{\prime\prime}$	7	V 61	05H	0	0	0	1	0	1	V5"	V9+(V8-V9)× 3950 / 7650	r5	350
100	~ ५		V60"	06H	0	0	0	1	1	0	V6"	V9+(V8-V9)× 4300 / 7650	r6	350
r59	9 Ľ	٦ .	V 60	07H	0	0	0	1	1	1	V7"	V9+(V8-V9)× 4650 / 7650	r7	350
	ĭ	_		08H	0	0	1	0	0	0	V8"	V9+(V8-V9)× 5000 / 7650	r8	350
	- 1			09H	0	0	1	0	0	1	V9"	V9+(V8-V9)× 5350 / 7650	r9	350
	į			0AH	0	0	1	0	1	0	V10"	V9+(V8-V9)× 5700 / 7650	r10	350
				0BH 0CH	0	0	1	0 1	0	0	V11" V12"	V9+(V8-V9)× 6050 / 7650 V9+(V8-V9)× 6400 / 7650	r11 r12	350 350
				0DH	0	0	1	1	0	1	V12"	V9+(V8-V9)× 6750 / 7650	r13	300
r49	9 Ľ	1		0EH	0	0	1	1	1	0	V13"	V9+(V8-V9)× 7050 / 7650	r14	300
	٦		V49"	0FH	0	0	1	1	1	1	V15"	V9+(V8-V9)× 7350 7650	r15	300
r48	8 Ґ	7		10H	0	1	0	0	0	0	V16"	V8	r16	200
V ₆	-		V48"	11H	0	1	0	0	0	1	V17"	V8+(V7-V8)× 200 / 2300	r17	200
r4	7			12H	0	1	0	0	1	0	V18"	V8+(V7-V8)× 400 / 2300	r18	200
]		V47"	13H	0	1	0	0	1	1	V19"	V8+(V7-V8)× 600 / 2300	r19	200
r40	6 L			14H	0	1	0	1	0	0	V20"	V8+(V7-V8)× 800 / 2300	r20	200
	1			15H	0	1	0	1	0	1	V21"	V8+(V7-V8)× 1000 / 2300	r21	150
				16H	0	1	0	1	1	0	V22"	V8+(V7-V8)× 1150 / 2300	r22	150
				17H	0	1	0	1	1	1	V23"	V8+(V7-V8)× 1300 / 2300	r23	150
	i			18H	0	1	1	0	0	0	V24"	V8+(V7-V8)× 1450 / 2300	r24	150
				19H	0	1	1	0	0	1	V25"	V8+(V7-V8)× 1600 / 2300	r25	100
				1AH	0	1	1	0	1	0	V26"	V8+(V7-V8)× 1700 / 2300	r26	100
	į			1BH	0	1	1	0	1	1	V27"	V8+(V7-V8)× 1800 / 2300	r27	100
				1CH 1DH	0	1	1	1	0	0 1	V28" V29"	V8+(V7-V8)× 1900 / 2300 V8+(V7-V8)× 2000 / 2300	r28 r29	100
				1EH	0	1	1	1	1	0	V29 V30"	V8+(V7-V8)× 2000 / 2300 V8+(V7-V8)× 2100 / 2300	r30	100 100
				1FH	0	1	1	1	1	1	V30"	V8+(V7-V8)× 2100 / 2300	r31	100
				20H	1	0	0	0	0	0	V32"	V7	r32	100
				21H	1	0	0	0	0	1	V33"	V7+(V6-V7)× 100 / 1650	r33	100
	į			22H	1	0	0	0	1	0	V34"	V7+(V6-V7)× 200 / 1650	r34	100
				23H	1	0	0	0	1	1	V35"	V7+(V6-V7)× 300 / 1650	r35	100
	į			24H	1	0	0	1	0	0	V36"	V7+(V6-V7)× 400 / 1650	r36	100
				25H	1	0	0	1	0	1	V37"	V7+(V6-V7)× 500 / 1650	r37	100
	نے ۔	-		26H	1	0	0	1	1	0	V38"	V7+(V6-V7)× 600 / 1650	r38	100
r17	′ Լ	J,		27H	1	0	0	1	1	1	V39"	V7+(V6-V7)× 700 / 1650	r39	100
r16	ہے ۔	7	V17"	28H	1	0	1	0	0	0	V40"	V7+(V6-V7)× 800 / 1650	r40	100
	Ÿ		V16"	29H	1	0	1	0	0	1	V41"	V7+(V6-V7)× 900 / 1650	r41	100
V ₈ r15	·	7	V 10	2AH	1	0	1	0	1	0	V42"	V7+(V6-V7)× 1000 / 1650	r42	100
110	, H	J	V ₁₅ "	2BH	1	0	1	0	1	1	V43"	V7+(V6-V7)× 1100 / 1650	r43	100
r14	₄ Ґ	7		2CH 2DH	1	0	1	1	0	0 1	V44" V45"	V7+(V6-V7)× 1200 / 1650 V7+(V6-V7)× 1300 / 1650	r44	100
	٠ -	_		2EH	1	0	1	1	1	0	V45 V46"	V7+(V6-V7)× 1300 / 1650 V7+(V6-V7)× 1400 / 1650	r45 r46	100 100
				2FH	1	0	1	1	1	1	V46 V47"	V7+(V6-V7)× 1400 / 1650 V7+(V6-V7)× 1500 / 1650	r47	150
				30H	1	1	0	0	0	0	V47 V48"	V6	r48	150
				31H	1	1	0	0	0	1	V49"	V6+(V5-V6)× 150 / 4250	r49	150
				32H	1	1	0	0	1	0	V50"	V6+(V5-V6)× 300 / 4250	r50	150
				33H	1	1	0	0	1	1	V51"	V6+(V5-V6)× 450 / 4250	r51	150
	- !			34H	1	1	0	1	0	0	V52"	V6+(V5-V6)× 600 / 4250	r52	150
r2	Ľ			35H	1	1	0	1	0	1	V53"	V6+(V5-V6)× 750 / 4250	r53	150
	٦		V2"	36H	1	1	0	1	1	0	V54"	V6+(V5-V6)× 900 / 4250	r54	150
r1	Ľ	7	• •	37H	1	1	0	1	1	1	V55"	V6+(V5-V6)× 1050 / 4250	r55	250
	٦	-	V ₁ "	38H	1	1	1	0	0	0	V56"	V6+(V5-V6)× 1300 / 4250	r56	250
r0	Ľ	1		39H	1	1	1	0	0	1	V57"	V6+(V5-V6)× 1550 / 4250	r57	250
V ₉			Vo"	3AH	1	1	1	0	1	0	V58"	V6+(V5-V6)× 1800 / 4250	r58	300
-				3BH	1	1	1	0	1	1	V59"	V6+(V5-V6)× 2100 / 4250	r59	300
				3CH	1	1	1	1	0	0	V60"	V6+(V5-V6)× 2400 / 4250	r60	300
				3DH 3EH	1	1	1	1	0 1	0	V61" V62"	V6+(V5-V6)× 2700 / 4250 V6+(V5-V6)× 3150 / 4250	r61 r62	450 1100
				3FH	1	1	1	1	1	1	V62"	V5+(V5-V6)X 3150 / 4250	r total	15850
				Ç. 11							1.00	,·	· total	. 5000

Caution There is no connection between V₄ and V₅ terminal in the chip.

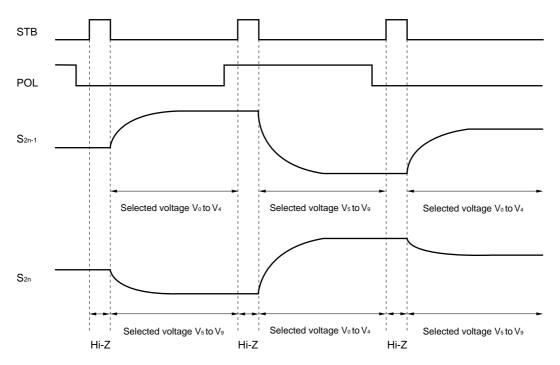
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format : 6 bits x 2 RGBs (6 dots) Input width : 36 bits (2-pixel data)

(1) $R_{,}/L = H$ (Right shift)

Output	S ₁	S ₂	S ₃	S ₄	 S ₄₇₉	S ₄₈₀
Data	D ₀₀ to D ₀₅	D10 to D15	D ₂₀ to D ₂₅	D ₃₀ to D ₃₅	 D ₄₀ to D ₄₅	D ₅₀ to D ₅₅

(2) R,/L = L (Left shift)


	, ,						
l	Output	S ₁	S ₂	S ₃	S ₄	 S ₄₇₉	S ₄₈₀
ĺ	Data	Doo to Do5	D10 to D15	D ₂₀ to D ₂₅	D ₃₀ to D ₃₅	 D40 to D45	D ₅₀ to D ₅₅

POL	S _{2n-1} Note	S _{2n} Note		
L	V ₀ to V ₄	V ₅ to V ₉		
Н	V ₅ to V ₉	Vo to V4		

Note S_{2n-1} (Odd output), S_{2n} (Even output)

7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

8. RELATIONSHIP BETWEEN STB, CLK AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

Figure 8-1. Output Circuit Block Diagram

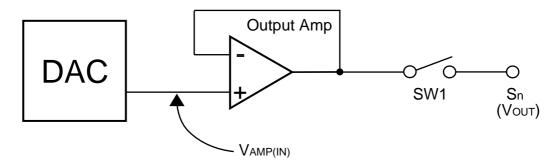
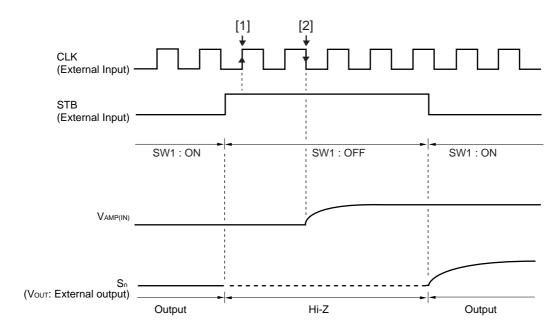



Figure 8–2. Output Circuit Timing Waveform

Remarks 1. STB = L : SW1 = ON

STB = H: SW1 = OFF

- 2. STB = "H" is acknowledged at timing [1].
- **3.** The display data latch is compensated at timing [2] and the input voltage (VAMP(IN): gray-scale level voltage) of the output amplifier changes.

9. CURRENT CONSUMPTION REDUCTION FUNCTION

The μ PD16772A has a low power control function (LPC) which can switch the bias current of the output amplifier between two levels and a bias control function (Bcont) which can be used to finely control the bias current.

• Low Power Control Function (LPC)

The bias current of the output amplifier can be switched between two levels using this pin (Bcont: Open).

LPC = H or Open: Low power mode

LPC = L: Normal power mode

The VDD2 of static current consumption can be reduced to two thirds of that in normal mode. Input a stable DC current (VDD1/VSS1) to this pin.

• Bias Current Control Function (Bcont)

It is possible to fine-control the current consumption by using the bias current control function (Bcont pin). When using this function, connect this pin to the stabilized ground potential (Vss2) via an external resistor (Rext). When not using this function, leave this pin open.

μPD16772A

Bcont LPC

REXT

0 H/L

Figure 9-1. Bias Current Control Function (Bcont)

Refer to the table below for the percentage of current regulation when using the bias current control function.

Table 9–1. Current Consumption Regulation Percentage Compared to Normal Mode

Rехт	Current Consumption I		
	LPC = L	LPC = H/Open	
∞ (Open)	100%	65%	V _{DD1} = 3.3 V
50 kΩ	120%	80%	VDD2 = 8.7 V
20 kΩ	140%	100%	
0 Ω	240%	210%	

Remark The above current consumption regulation percentages are not product-characteristic guaranteed as they re based on the results of simulation.

Caution Because the low-power and bias-current control functions control the bias current in the output amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the characteristics of the output amplifier will simultaneously change. Therefore, when using these functions, be sure to sufficiently evaluate the picture quality.

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25°C, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	V _{DD1}	-0.5 to +4.0	V
Driver Part Supply Voltage	V _{DD2}	-0.5 to +10.0	V
Logic Part Input Voltage	V _{I1}	-0.5 to V _{DD1} + 0.5	V
Driver Part Input Voltage	V _{I2}	-0.5 to V _{DD2} + 0.5	V
Logic Part Output Voltage	Vo ₁	-0.5 to V _{DD1} + 0.5	V
Driver Part Output Voltage	V _{O2}	-0.5 to V _{DD2} + 0.5	V
Operating Ambient Temperature	TA	−10 to +75	°C
Storage Temperature	Tstg	-55 to +125	°C

★ Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ($T_A = -10 \text{ to } +75^{\circ}\text{C}$, $V_{SS1} = V_{SS2} = 0 \text{ V}$)

recommended operating traings (in the text of the text												
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit						
Logic Part Supply Voltage	V _{DD1}		2.3		3.6	V						
Driver Part Supply Voltage	V _{DD2}		8.0	8.5	9.0	V						
High-Level Input Voltage	ViH		0.7 V _{DD1}		V _{DD1}	V						
Low-Level Input Voltage	VIL		0		0.3 V _{DD1}	V						
γ -Corrected Voltage	V ₀ to V ₉		Vss2 + 0.1		V _{DD2} - 0.1	V						
Driver Part Output Voltage	Vo		Vss2 + 0.1		VDD2 - 0.1	V						
Clock Frequency	fclk	V _{DD2} = 2.3 V			45	MHz						

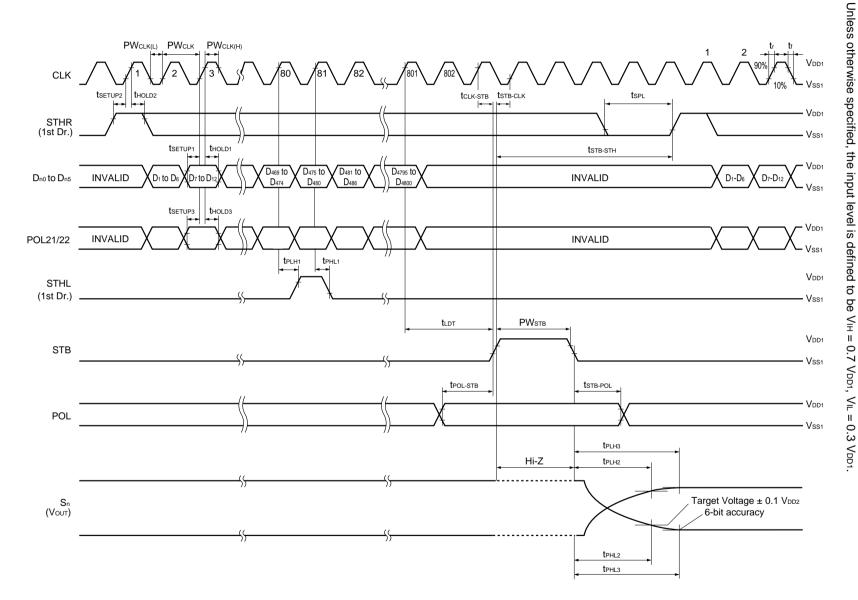
Electrical Characteristics (TA = -10 to $+75^{\circ}$ C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.5 V \pm 0.5 V, Vss1 = Vss2 = 0 V, unless otherwise specified, the input level is defined to be LPC = L, Bcont = Open)

Parameter	Symbol	Conditio	n	MIN.	TYP.	MAX.	Unit
Input Leak Current	liL					±1.0	μΑ
High-Level Output Voltage	Vон	STHR (STHL), Ion = 0	mA	V _{DD1} - 0.1			V
Low-Level Output Voltage	Vol	STHR (STHL), IoL = 0	mA			0.1	V
γ -Corrected Supply Current	lγ	V _{DD2} = 8.5 V	V₀ pin, V₅ pin	126	252	504	μΑ
		Vo to V4 = V5 to V9 =	V4 pin, V9 pin	-504	-252	-126	μΑ
		4.0 V					
Driver Output Current	Ілон	Vx = 7.0 V, Vout = 6.5	V Note			-30	μΑ
	Ivol	VX = 1.0 V, Vout = 1.5		30			μΑ
Output Voltage Deviation	ΔVο	T _A = 25°C			<u>±</u> 7	<u>+</u> 20	mV
Output Swing Difference	ΔV_{P-P}	VDD1 = 3.3 V, VDD2 = 8.	5 V		±2	±15	mV
Deviation		Vout = 2.0 V, 4.25 V, 6	6.5 V				
Logic Part Dynamic Current	I _{DD1}	V _{DD1}			1.0	7.5	mA
Consumption							
Driver Part Dynamic Current	I _{DD2}	V _{DD2} , with no load		3.5	7.5	mA	
Consumption							

Note Vx refers to the output voltage of analog output pins S1 to S480.

Vout refers to the voltage applied to analog output pins S1 to S480.

- ★ Cautions 1. fstb = 50 kHz, fclk = 40 MHz.
 - 2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
 - 3. Refers to the current consumption per driver when cascades are connected under the assumption of UXGA single-sided mounting (10 units).


Switching Characteristics (TA = -10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.5 V \pm 0.5 V, Vss1 = Vss2 = 0 V, unless otherwise specified, the input level is defined to be LPC = L, Bcont = Open)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	t _{PLH1}	C _L = 10 pF		10	20	ns
	tPHL1			10	20	ns
Driver Output Delay Time	t PLH2	$C_L = 75 \text{ pF}, R_L = 5 \text{ k}\Omega$		2.5	5	μs
	t _{PLH3}			5	8	μs
	tPHL2			2.5	5	μs
	t _{PHL3}			5	8	μs
Input Capacitance	Cıı	STHR (STHL) excluded, T _A = 25°C		5	10	pF
	C ₁₂	STHR (STHL),TA = 25°C		8	10	pF

\star Timing Requirements (TA = -10 to +75°C, VDD1 = 2.3 to 3.6 V, Vss1 = 0 V, tr = tr = 5.0 ns)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk	V _{DD1} = 2.3 to 3.6 V	22			ns
Clock Pulse High Period	PW _{CLK(H)}		4			ns
Clock Pulse Low Period	PW _{CLK(L)}	V _{DD1} = 2.3 to 3.0 V	7			ns
		V _{DD1} = 3.0 to 3.6 V	4			ns
Data Setup Time	tsetup1		3			ns
Data Hold Time	tHOLD1		0			ns
Start Pulse Setup Time	tsetup2		3			ns
Start Pulse Hold Time	tHOLD2		0			ns
POL21/22 Setup Time	tsetup3		3			ns
POL21/22 Hold Time	thold3	V _{DD1} = 2.3 to 3.0 V	1			ns
		V _{DD1} = 3.0 to 3.6 V	0			ns
Start Pulse Low Period	t SPL		1			CLK
STB Pulse Width	РWsтв		2			CLK
Last Data Timing	t ldt		2			CLK
CLK-STB Time	tclk-stb	$CLK \uparrow \rightarrow STB \uparrow$	6			ns
STB-CLK Time	tstb-clk	$STB \uparrow \rightarrow CLK \uparrow$	14			ns
		V _{DD1} = 2.3 to 3.0 V				
		$STB \uparrow \to CLK \uparrow$	6			ns
		V _{DD1} = 3.0 to 3.6 V				
Time Between STB and Start Pulse	t sтв-sтн	$STB \uparrow \rightarrow STHR(STHL) \uparrow$	2			CLK
POL-STB Time	tPOL-STB	$POL \uparrow or \downarrow \rightarrow STB \uparrow$	-5			ns
STB-POL Time	tstb-pol	$STB \downarrow \rightarrow POL \downarrow or \uparrow$	6			ns

Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.

12. RECOMMENDED MOUNTING CONDITIONS

The following conditions must be met for mounting conditions of the μ PD16772A.

For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions.

μ PD16772AN-xxx: TCP (TAB Package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to 350°C, heating for 2 to 3 seconds : pressure 100 g
		(per solder)
	ACF	Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm ² : time 3 to 5
	(Adhesive	sec. Real bonding 165 to 180°C: pressure 25 to 45 kg/cm ² : time 30 to
	Conductive Film)	40 sec. (When using the anisotropy conductive film SUMIZAC1003 of
		Sumitomo Bakelite,Ltd).

Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time.

NEC μ PD16772A

[MEMO]

NEC μ PD16772A

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System(C10983E)
Quality Grades to NEC's Semiconductor Devices(C11531E)

- The information in this document is current as of August, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4