

# PLL frequency synthesizer for tuners

## BU2618FV

The BU2618FV is a low current dissipation PLL frequency synthesizer designed for use in FM multiplex radio receiver and FM pager receiver. Featuring very small package and built-in prescaler that can operate at up to 130MHz.

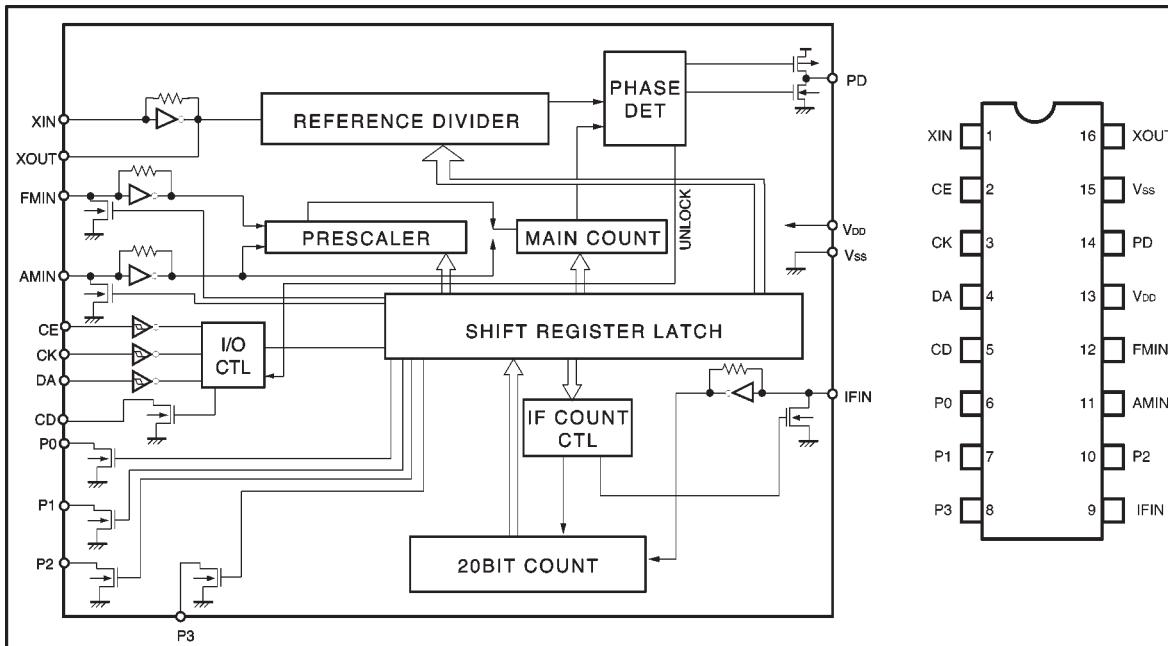
### ● Applications

FM multiplex radio receivers, pagers, radios, and other signal generators

### ● Features

- 1) Built-in high-speed prescaler can divide 130 MHzVCO.
- 2) Low current dissipation (during operation: 1.5mA, PLL OFF: 200 $\mu$ A Typ.)
- 3) Seven standard frequencies: 25kHz, 12.5kHz, 6.25kHz, 10kHz, 9kHz, 5kHz, and 1kHz.
- 4) Counter for intermediate frequency detection.
- 5) Unlock detection circuit.
- 6) Four output ports.
- 7) Serial data input (CE, CK, DA)

### ● Absolute maximum ratings (Ta = 25°C)


| Parameter                | Symbol            | Limits                    | Unit | Conditions                                                             |
|--------------------------|-------------------|---------------------------|------|------------------------------------------------------------------------|
| Power supply voltage     | V <sub>DD</sub>   | −0.3~+7.0                 | V    | V <sub>DD</sub>                                                        |
| Maximum input voltage 1  | V <sub>IN1</sub>  | −0.3~+7.0                 | V    | CE, CK, DA                                                             |
| Maximum input voltage 2  | V <sub>IN2</sub>  | −0.3~V <sub>DD</sub> +0.3 | V    | XIN, FMIN, AMIN, IFIN                                                  |
| Maximum output voltage 1 | V <sub>OUT1</sub> | −0.3~+10.0                | V    | P <sub>0</sub> , P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , CD |
| Maximum output voltage 2 | V <sub>OUT2</sub> | −0.3~V <sub>DD</sub> +0.3 | V    | PD, XOUT                                                               |
| Maximum output current   | I <sub>OUT</sub>  | 0~4.0                     | mA   | P <sub>0</sub> , P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , CD |
| Power dissipation        | P <sub>d</sub>    | 350*                      | mW   | —                                                                      |
| Operating temperature    | T <sub>opr</sub>  | −25~+75                   | °C   | —                                                                      |
| Storage temperature      | T <sub>stg</sub>  | −55~+125                  | °C   | —                                                                      |

\* Reduced by 3.5mW for each increase in Ta of 1 °C over 25°C.

### ● Recommended operating conditions (Ta = 25°C)

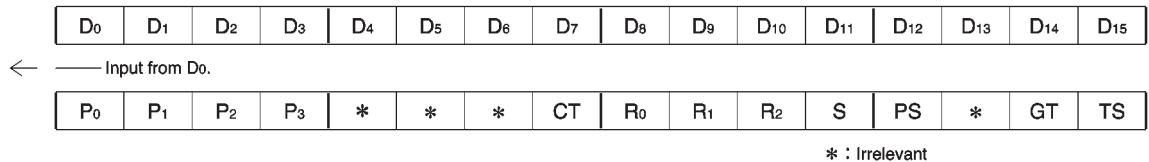
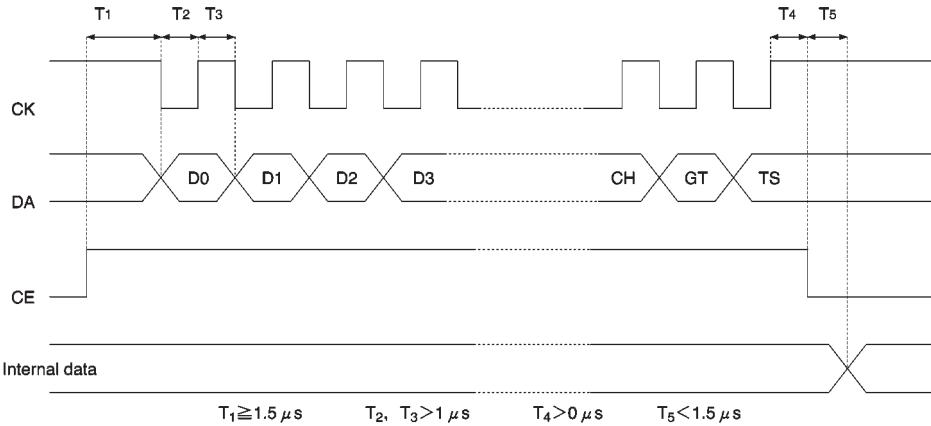
| Parameter            | Symbol          | Min. | Typ. | Max. | Unit |
|----------------------|-----------------|------|------|------|------|
| Power supply voltage | V <sub>DD</sub> | 2.7  | —    | 6.0  | V    |

## ● Block diagram

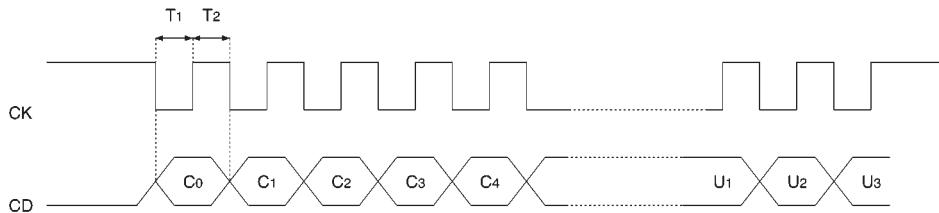


## ● Pin descriptions

| Pin No. | Pin name | Pin description                            | Function                                                                                                                                                                                                                         | I/O            |
|---------|----------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 16      | XOUT     | Crystal oscillation terminal               | For generation of standard frequency and internal clock.<br>Connected to 7.2 MHz crystal resonator.                                                                                                                              | OUT            |
| 1       | XIN      |                                            |                                                                                                                                                                                                                                  | IN             |
| 2       | CE       | Chip enable<br>Clock signal<br>Serial data | When CE is H, DA is synchronous with the rise of CK and read to the internal shift register. DA is then latched at the timing of the fall of CE. Also, output data is output from the CD terminal synchronous to the rise of CK. | IN             |
| 3       | CK       |                                            |                                                                                                                                                                                                                                  |                |
| 4       | DA       |                                            |                                                                                                                                                                                                                                  |                |
| 5       | CD       |                                            |                                                                                                                                                                                                                                  |                |
| 6       | P0       | Output port                                | Controlled on the basis of input data.                                                                                                                                                                                           | Nch open drain |
| 7       | P1       |                                            |                                                                                                                                                                                                                                  |                |
| 8       | P3       |                                            |                                                                                                                                                                                                                                  |                |
| 9       | IFIN     | IF input                                   | Input for frequency measurement                                                                                                                                                                                                  | IN             |
| 10      | P2       | Output port                                | Controlled on the basis of input data.                                                                                                                                                                                           | Nch open drain |
| 11      | AMIN     | AM input                                   | Local input for AM                                                                                                                                                                                                               | IN             |
| 12      | FMIN     | FM input                                   | Local input for FM                                                                                                                                                                                                               | IN             |
| 13      | VDD      | Power supply                               | Power supply, with 2.7V to 6.0V applied voltage.                                                                                                                                                                                 | —              |
| 14      | PD       | Phase comparison output                    | High level when value obtained by dividing local output is higher than standard frequency. Low level when value is lower. High impedance when value is same.                                                                     | 3-state        |
| 15      | VSS      | GROUND                                     |                                                                                                                                                                                                                                  | —              |

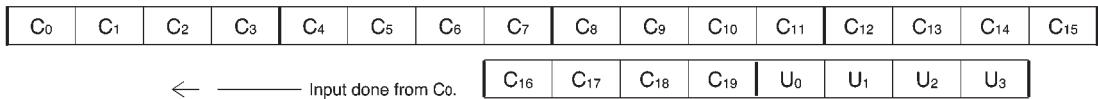


\* : When power is ON, pins 5 through 12 and pin 14 are not set until data is input.

● Electrical characteristics (unless otherwise noted,  $T_a = 25^\circ\text{C}$ ,  $V_{DD} = 3.0\text{V}$ )


| Parameter                    | Symbol      | Min.         | Typ.          | Max.        | Unit             | Conditions                                                 |
|------------------------------|-------------|--------------|---------------|-------------|------------------|------------------------------------------------------------|
| Power supply current         | $I_{DD1}$   | —            | 1.5           | 2.5         | mA               | $FMIN=130\text{MHz}$ , $100\text{mV}_{rms}$                |
| Quiescent current            | $I_{DD2}$   | —            | 0.2           | 0.3         | mA               | No input, PLL=OFF                                          |
| Input high level voltage     | $V_{IH}$    | $0.8V_{DD}$  | —             | —           | V                | CE, CK, DA terminals                                       |
| Input low level voltage      | $V_{IL}$    | —            | —             | $0.2V_{DD}$ | V                | CE, CK, DA terminals                                       |
| Input high level current 1   | $I_{IH1}$   | —            | —             | 1.0         | $\mu\text{A}$    | CE, CK, DA terminals $V_{IN}=V_{DD}$                       |
| Input high level current 2   | $I_{IH2}$   | —            | 0.3           | 0.7         | $\mu\text{A}$    | XIN terminals $V_{IN}=V_{DD}$                              |
| Input high level current 3   | $I_{IH3}$   | 5            | 10            | 15          | $\mu\text{A}$    | $FMIN$ , $AMIN$ , $IFIN$ terminals $V_{IN}=V_{DD}$         |
| Input low level current 1    | $I_{IL1}$   | -1.0         | —             | —           | $\mu\text{A}$    | CE, CK, DA terminals $V_{IN}=V_{SS}$                       |
| Input low level current 2    | $I_{IL2}$   | -0.7         | -0.3          | —           | $\mu\text{A}$    | XIN terminals $V_{IN}=V_{SS}$                              |
| Input low level current 3    | $I_{IL3}$   | 5            | 10            | -15         | $\mu\text{A}$    | $FMIN$ , $AMIN$ , $IFIN$ terminals $V_{IN}=V_{SS}$         |
| Output low level voltage 1   | $V_{OL1}$   | —            | 0.2           | 0.5         | V                | $P_0 P_1 P_2 P_3 CD$ $I_o=1.0\text{mA}$                    |
| Off level leakage current 1  | $I_{OFF1}$  | —            | —             | 1.0         | $\mu\text{A}$    | $P_0 P_1 P_2 P_3 CD$ $V_o=10\text{V}$                      |
| Output low level voltage 2   | $V_{OL2}$   | —            | —             | 0.5         | V                | $FMIN$ $AMIN$ $IFIN$ $I_{OUT}=0.1\text{mA}$                |
| Output high level voltage    | $V_{OH}$    | $V_{DD}-1.0$ | $V_{DD}-0.25$ | —           | V                | PD $I_{OUT}=-1.0\text{mA}$                                 |
| Output low level voltage     | $V_{OL4}$   | —            | 0.15          | 1.0         | V                | PD $I_{OUT}=1.0\text{mA}$                                  |
| Off level leakage current 2  | $I_{OFF2}$  | —            | —             | 100         | nA               | PD $V_{OUT}=V_{DD}$                                        |
| Off level leakage current 3  | $I_{OFF3}$  | -100         | —             | —           | nA               | PD $V_{OUT}=V_{SS}$                                        |
| Internal feedback resistor 1 | $R_{F1}$    | 3.8          | 10            | 16          | $\text{M}\Omega$ | XIN                                                        |
| Internal feedback resistor 2 | $R_{F2}$    | 300          | 500           | 1000        | $\text{k}\Omega$ | $FMIN$ , $AMIN$ , $IFIN$                                   |
| Input frequency 1            | $F_{IN1}$   | 1            | 7.2           | 10          | MHz              | XIN, sine wave, C coupling                                 |
| Input frequency 2            | $F_{IN2}$   | 10           | —             | 130         | MHz              | $FMIN$ , sine wave, C coupling $V_{IN}=100\text{mV}_{rms}$ |
| Input frequency 3            | $F_{IN3}$   | 0.5          | —             | 30          | MHz              | $AMIN$ , sine wave, C coupling $V_{IN}=100\text{mV}_{rms}$ |
| Input frequency 4            | $F_{IN4}$   | 0.4          | —             | 12          | MHz              | $IFIN$ , sine wave, C coupling $V_{IN}=100\text{mV}_{rms}$ |
| Maximum input amplitude      | $F_{INMAX}$ | —            | —             | 1.0         | $\text{V}_{rms}$ | XIN, $FMIN$ , $AMIN$ , $IFIN$ , sine wave, C coupling      |
| Minimum pulse width          | $TW$        | —            | 1.0           | —           | $\mu\text{s}$    | CK, DA                                                     |
| Input rise time              | $TR$        | —            | —             | 500         | ns               | CE, CK, DA                                                 |
| Input fall time              | $TF$        | —            | —             | 500         | ns               | CE, CK, DA                                                 |

◎ Not designed for radiation resistance.

- Circuit operation
  - Input data format




- Output data format      CE output is set to LO.



Figures for output assume the presence of pullup resistance.       $T_1, T_2 > 1 \mu s$

Output data format



\* Data is output only when CT = 1 or GT = 1.

- Explanation of the data

(1) Division data: For D<sub>0</sub> through D<sub>15</sub> (When S = 0, use D<sub>4</sub> through D<sub>15</sub>.)

| D <sub>0</sub> | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | D <sub>4</sub> | D <sub>5</sub> | D <sub>6</sub> | D <sub>7</sub> | D <sub>8</sub> | D <sub>9</sub> | D <sub>10</sub> | D <sub>11</sub> | D <sub>12</sub> | D <sub>13</sub> | D <sub>14</sub> | D <sub>15</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|

Examples:

Divide ratio=1106(D) 1106(D)÷2=553(D)=229(H) S=0, PS=0

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Divide ratio=1107(D)=453(H) S=1, PS=1

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Divide ratio=926(D)=39E(H) S=1, PS=0

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| X | X | X | X | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

(2) CT: Frequency measurement beginning data

1: Begins measurement.

0: Resets internal counter, IFIN goes to pulldown.

(3) Output port control data:

1: Open drain output ON

2: Open drain output OFF

(4) R<sub>0</sub>, R<sub>1</sub>, R<sub>2</sub>, standard frequency data

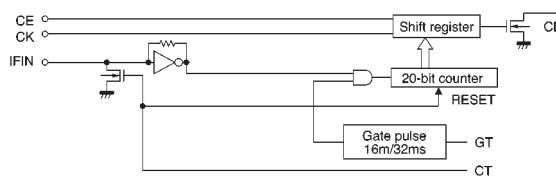
| Data           |                |                |                    |
|----------------|----------------|----------------|--------------------|
| R <sub>0</sub> | R <sub>1</sub> | R <sub>2</sub> | Standard frequency |
| 0              | 0              | 0              | 25kHz              |
| 0              | 0              | 1              | 12.5kHz            |
| 0              | 1              | 0              | 6.25kHz            |
| 0              | 1              | 1              | 10kHz              |
| 1              | 0              | 0              | 5kHz               |
| 1              | 0              | 1              | 9kHz               |
| 1              | 1              | 0              | 1kHz               |
| 1              | 1              | 1              | * PLL OFF          |

\* FMIN = pulldown, AMIN = pulldown, PD = high impedance

(5) S: switch between FMIN and AMIN

0: FMIN 1: AMIN

(6) PS: If this bit is set to ON while AMIN is selected, swallow counter division is possible.


(7) GT: Frequency measurement time and unlock detection ON/OFF

| CT | GT | Frequency measurement | Unlock detection | Data output |
|----|----|-----------------------|------------------|-------------|
| 0  | 0  | OFF                   | OFF              | NG          |
| 0  | 1  | OFF                   | ON               | OK          |
| 1  | 0  | ON Gate time = 16 ms  | ON               |             |
| 1  | 1  | ON Gate time = 32 ms  | ON               |             |

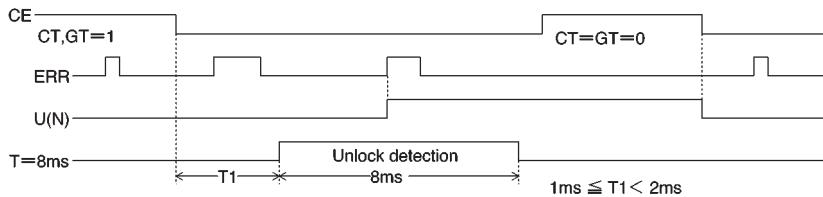
(8) TS: Test data (0) is input

- Frequency counter

(1) Structure



(2) How the frequency counter operates

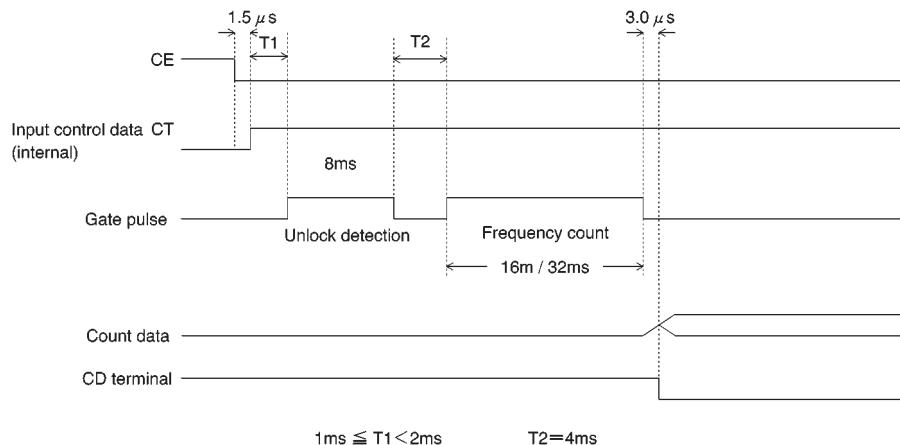

When control data CT equals 1, the 20-bit counter and the amp go into operation. When CT equals 0, amp input goes to pulldown and the counter is reset. Measuring time (gate pulse) is selected (16ms/32ms) on the basis of control data GT. When control data CT equals 0, the counter is reset.

(3) Explanation of output data

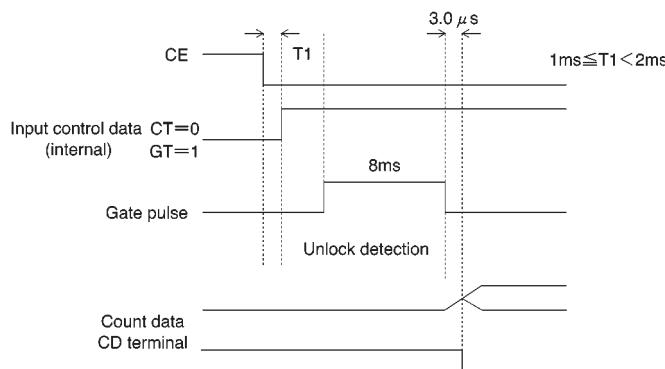
Do: LSB  $D_{19}$ : MSB

Unlock detection

When control data GT equals 1, or CT equals 1, the unlock detection circuit goes into operation for 8 ms. When CT equals 1, the unlock detection circuits stops operating before the frequency counter gate pulse is emitted. When CT equals 0, or GT equals 0, the unlock detection circuit is reset.

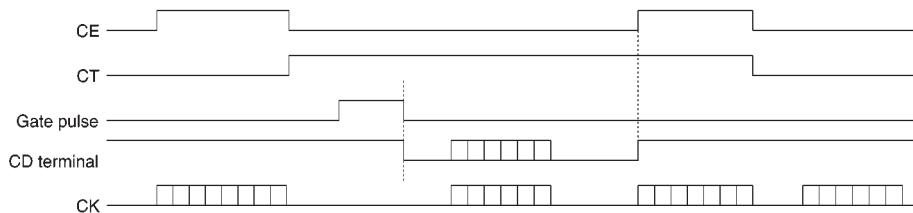



Explanation of the output data


| U0 | U1 | U2 | U3 | ERR         |     | $<$ | $1.1\ \mu s$     |
|----|----|----|----|-------------|-----|-----|------------------|
| 0  | 0  | 0  | 0  | 1.1 $\mu s$ | $<$ | ERR | $<$ $2.2\ \mu s$ |
| 1  | 0  | 0  | 0  | 2.2 $\mu s$ | $<$ | ERR | $<$ $3.3\ \mu s$ |
| 1  | 1  | 0  | 0  | 3.3 $\mu s$ | $<$ | ERR | $<$ $4.4\ \mu s$ |
| 1  | 1  | 1  | 1  | 4.4 $\mu s$ | $<$ | ERR |                  |

- Frequency counter and unlock detection

(1) When CT = 1: Frequency count and unlock detection are carried out.




(2) When CT = 0 and GT = 1: Only unlock detection is carried out.



- Explanation of CD

When frequency measurement or unlock detection is finished, the CD terminal goes to LO to indicate that the count and unlock detection have finished. It also synchronizes with CK to output counter data. When the next data is input, it goes to HI.



● Electrical characteristics curves

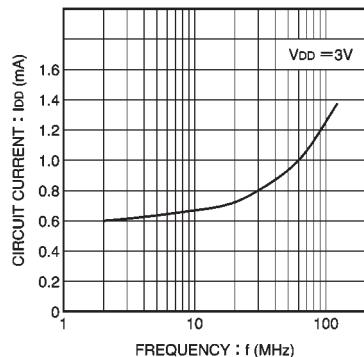



Fig. 1 Operating frequency vs.supply current characteristics

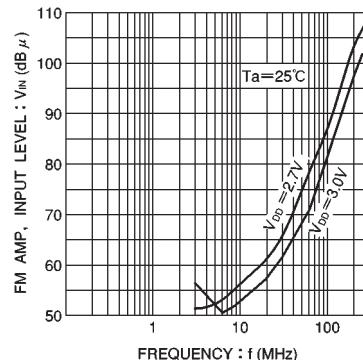
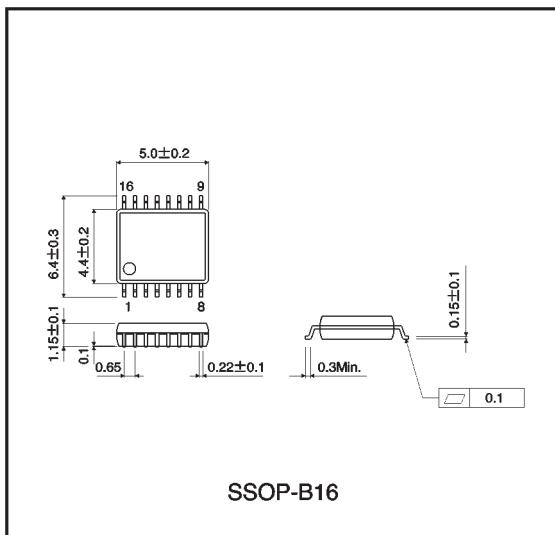




Fig. 2 FM amp input leve vs. frequency characteristics

● External dimensions (Units: mm)

