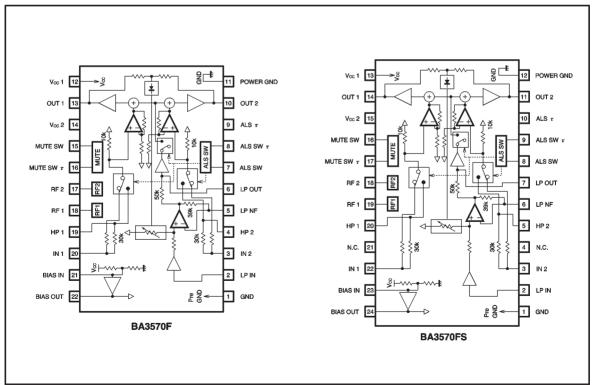
ALS headphone driver BA3570F / BA3570FS

The BA3570F and BA3570FS are stereo headphone amplifiers with ALS (Auto Loudness System) which have been designed for use as headphone drivers in audio equipment.


Applications

Stereo headphones

Features

- The use of ALS (Auto Loudness System) makes it possible to obtain a dynamic sound regardless of the volume level.
- 2) Built-in power mute circuit.
- 3) Built-in bypass circuit.

Block diagram

●Pin descriptions (pin numbers are for 22-pin BA3570F)

Pin No.	Pin name	Function
1	GND	Pre-ground
2	LP IN	Positive input of bass amp
3	IN2	Input 2
4	HP2	Treble input 2
5	LP NF	Negative input of bass amp
6	LP OUT	Bass amp output
7	ALS SW	ALS ON/OFF switch pin
8	ALS SW τ	Pin for setting value for ALS ON/OFF
9	ALS τ	Pin for setting value for ALS
10	OUT2	Output 2
11	POWER GND	Substrate ground
12	Vcc1	Power supply 1
13	OUT1	Output 1
14	Vcc2	Power supply 2
15	MUTE SW	Mute ON/OFF switch pin
16	MUTE SW τ	Pin for setting value for mute ON/OFF
17	RF2	Ripple filter 2
18	RF1	Ripple filter 1
19	HP1	Treble input 1
20	IN1	Input 1
21	BIAS IN	Bias amp input
22	BIAS OUT	Bias amp output

●Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	
Applied voltage		Vcc	9.0	٧	
Power dissipation	BA3570F	Pd	550*	mW	
	BA3570FS	Pu	800*	IIIV	
Operating temperature		Topr	−25 ~ +75	ဗ	
Storage temperature		Tstg	−55∼ +125	°	

^{*} Reduced by 5.5mW(BA3570F) and 8.0mW (BA3570FS) for each increase in Ta of 1°C over 25°C. When mounted on a $70\times70\times1.6$ mm glass epoxy board.

●Recommended operating conditions (Ta = 25°C)

Parmeter	Symbol	Range	Unit
Power supply voltage	Vcc	2.0~7.2	٧

•Electrical characteristics (unless otherwise noted, Ta = 25 °C, Vcc = 3.0V, RL = 16 Ω , f = 1kHz, and the measurement circuit is as shown in Fig. 1)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	lo	_	9	18	mA	V _{IN} =0V _{rms}
Voltage gain	Gv	13.5	15	16.5	dB	
Rated output power	Роит	20	30	_	mW	THD=10%
Total harmonic distortion	THD	_	0.15	1.0	%	V _O =-16dBm
Channel balance	СВ	-1.5	0	1.5	dB	V _O =-16dBm
Output noise voltage ratio 1	V _{NO} 1	_	-92	-88	dBm	IHF-A, ALS=OFF
Output noise voltage ratio 2	V _{NO} 2	_	-88	-84	dBm	IHF-A, ALS=ON
Input resistance	Rin	10.8	13.5	16.2	kΩ	3, 22pin
Ripple rejection ratio 1	RR1	29.5	41	_	dB	fRR=100Hz, VRR=-30dBm, ALS=ON
Ripple rejection ratio 2	RR2	32	44	_	dB	fan=100Hz, Van=-30dBm, ALS=OFF
Boost 1	BB1	11	14	17	dB	f=100Hz, V _{IN} =-42dBm
Boost 2	BB2	6.5	9.5	12.5	dB	f=100Hz, V _{IN} =-32dBm
Boost 3	BB3	-3	0	3	dB	f=100Hz, V _{IN} =-22dBm
Channel separation	CS	52	62	_	dB	ALS=OFF, f=1kHz
Signal leak	SL	_	-67	-62	dBm	R _g =0, V _{IN} =0dBm 3, 22pin
Mute level	ML	_	-85	-79	dBm	16pin=Vcc, ViN=-20dBm 3, 22pin

Measurement circuit

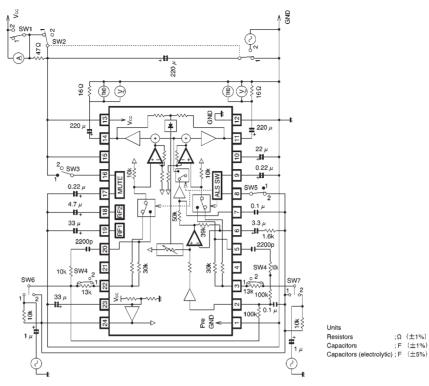
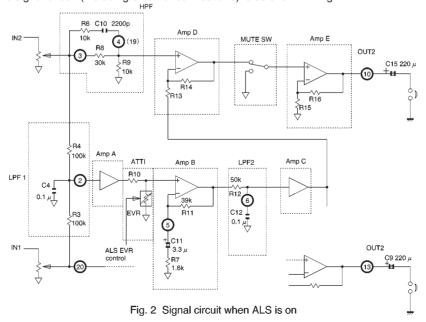



Fig.1

●Explanation of ALS operation and attached components (pin numbers are for 22-pin BA3570F)

(1) ALS ON

When ALS is on, the signal circuit (including external connections) is as shown in Fig. 2.

1) Bass signal transmission and gain vs. frequency

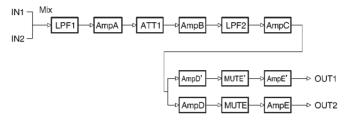


Fig.3

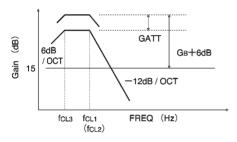


Fig. 4 Total frequency characteristics of bass signals

The gain and cutoff frequency of each block is as follows:

LPF1 cutoff frequency :
$$f_{CL1} = \frac{1}{2\pi \cdot (R3//R4) \cdot C4}$$
 (Hz)

$$Amp\ A\ gain \qquad \qquad :\ G_{V(A)}=0 \qquad \qquad (dB)$$

ATT attenuation :
$$G_{V(ATT)} = 20log \frac{EVR}{R_{10} + EVR}$$
 (dB)

Amp B gain :
$$G_{V(B)} = 20log \frac{R_7 + R_{11}}{R_7}$$
 (dB)

Amp B cutoff frequency :
$$f_{CL3} = \frac{1}{2\pi \cdot R_7 \cdot C_{11}}$$
 (Hz)

LPF2 cutoff frequency :
$$f_{CL2} = \frac{1}{2\pi \cdot R_{12} \cdot C_{12}}$$
 (Hz)

Amp C gain :
$$G_{V(C)} = 0$$
 (dB)

Amp D gain :
$$G_{V(D)} = 20log \frac{R_{14}}{R_{42}}$$
 (dB)

Mute switch gain :
$$G_{V(MUTE)} = 0$$
 (dB)

Treble signal transmission and gain vs. frequency

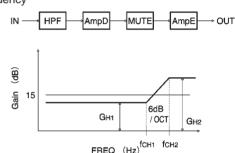


Fig. 5 Total frequency characteristics of treble signals

Amp E gain :
$$G_{V(E)} = 20log \cdot \frac{R_{15} + R_{16}}{R_{15}} (dB) \leftarrow 15dB$$

In this case, $R_3=R_4=2 \cdot R_{12}$ (= $100 k \Omega$) and $C_4=C_{12}$ (= $0.1 \mu F$), therefore $f_{CL1}=f_{CL2}$ (= 32 Hz), and the frequency characteristic is bass boost ($-12 \ dB/OCT$) as shown in Fig. 4. Also, $R_{14}=2 \cdot R_{13}$, therefore $G_{V(D)}=6$ (dB) and the EVR MAX total gain G_{LMAX} when signals are input from both channels is

$$\begin{split} GLMAX &= G_{V(A)} + G_{V(B)} + G_{V(C)} + G_{V(D)} \\ &+ G_{V(MUTE)} + G_{V(E)} \\ &= G_{V(B)} + 6 + 15 \text{ (dB)} \end{split}$$

The gain and cutoff frequency of each block is as follows:

HPF cutoff :
$$f_{CH1} = \frac{1}{2\pi \cdot (R_6 + R_8) \cdot C_{10}}$$
 (Hz)

HPF cutoff frequency 2:
$$f_{CH2} = \frac{R_8 + R_9}{2\pi \cdot (R_6 R_8 + R_8 R_{10} + R_6 R_{10}) \cdot C_{10}}$$
 (Hz)

Amp D gain :
$$G_{V(D)} = 20log - \frac{R_{13}}{R_{13} + R_{14}}$$
 (dB)

Furthermore, as $R_{14} = 2R_{13}$.

 $G_{V(D)} = +9.5 \text{ (dB)}$

The total gain GH1 for the frequency band f < fcH1 is

$$G_{H1} = 20log - \frac{R_9}{R_8 + R_9} + 9.5 + 15$$
 (dB)

and the total gain GH2 for the frequency band fcH2 < f is

$$G_{H2} = 20log - \frac{R_9}{R_6 / / R_8 + R_9} + 9.5 + 15$$
 (dB)

3) Combined frequency characteristics

As shown in Fig. 6, the ALS characteristics can be obtained from the bass characteristics (Fig. 4) and the treble characteristics (Fig. 6).

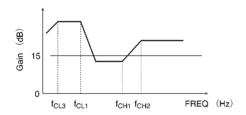


Fig. 6 ALS frequency characteristics

(2) ALS OFF

The signal circuit when ALS is off is shown in Fig. 7.

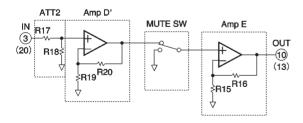


Fig. 7 Signal circuit when ALS is off

The gain and cutoff frequency of each block is as follows:

ATT2 attenuation:
$$G_{V(ATT2)} = 20log \frac{R_{18}}{R_{12}+R_{19}}$$
 (dB)

Amp D' gain:
$$G_{V(D)} = 20log \frac{R_{19} + R_{20}}{R_{19}}$$
 (dB)

As $R_{17}=R_{18}$ and $R_{19}=R_{20},$ the total gain $G_{V(\text{OFF})}$ when ALS is off is

$$G_{V (OFF)} = G_{V (ATT2)} + G_{V (D)} + G_{V (MUTE)} + G_{V (E)} = 15$$
 (dB)

and it is flat as shown in Fig. 8.

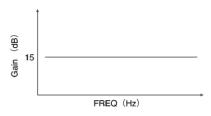


Fig. 8 Total frequency characteristics when ALS is off

- Explanation of ALS operation and attached components
- (1) ALS system control circuit
 The ALS system control circuit is shown in Fig. 9.

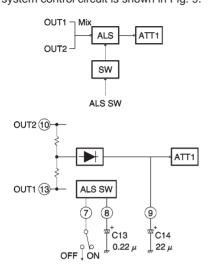


Fig. 9 ALS system control circuits

· ALS mode switching table

ALS mode	Pin ⑦ voltage		
ALS ON	OPEN		
ALS OFF	BIAS OUT		

• ALS SW τ external connection value: C13

By increasing the capacitance of C13, the switching sound made when ALS is turned on or off can be reduced, however, the switching time will increase. Set the value appropriately for the application.

ALSτ external connection value: C14

The ALC attack and recovery time for ALS is determined by C14 connected to the τ pin (Pin 9).

●Mute amplifier (pin numbers are for 22-pin BA3570F) The output muting can be switched on or off.

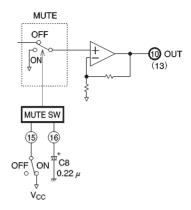


Fig. 10 Mute circuit

•Mute switching table

MUTE	Pin (5) voltage
ON	Vcc
OFF	OPEN

•MUTE SW τ external connection value: C8 By increasing the capacitance of C8, the switching sound made when the mute is turned on or off can be reduced, however, the switching time will increase. Set the value appropriately for the application.

Application example

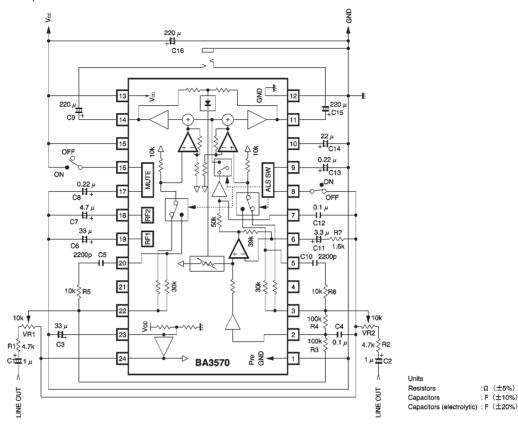


Fig. 11

Electrical characteristic curves

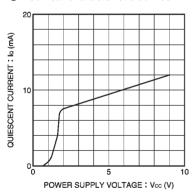


Fig.12 Quiescent current vs. power supply voltage

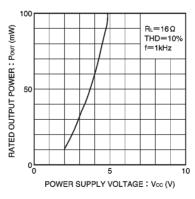


Fig.13 Rated output vs. power supply voltage

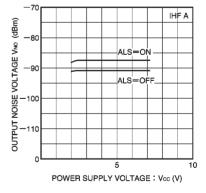


Fig.14 Output noise voltage vs. power supply voltage

:Ω (±5%)

:F (±10%)

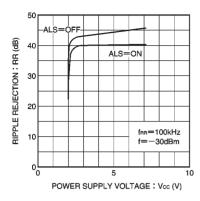


Fig.15 Ripple rejection vs. power supply voltage

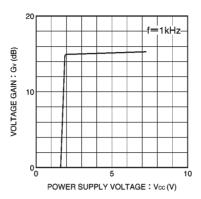


Fig.16 Supply voltage gain vs. power supply voltage

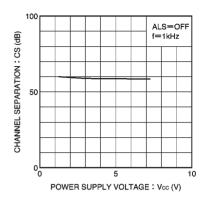


Fig.17 Channel separation vs. power supply voltage

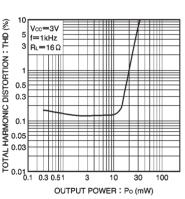


Fig.18 Total harmonic distortion vs. output power

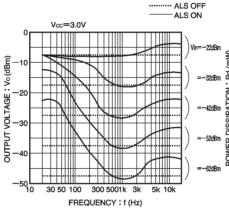


Fig.19 Output voltage vs. frequency

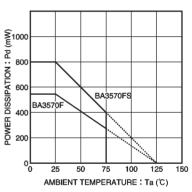


Fig.20 Thermal derating curve

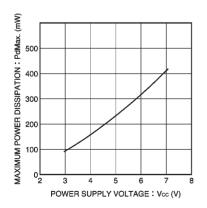
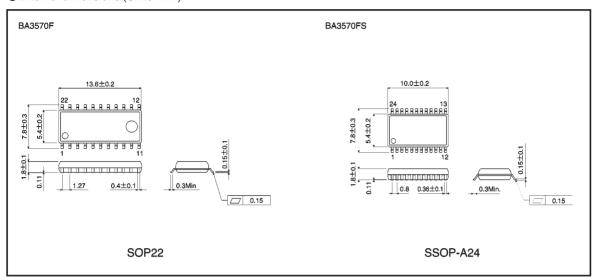



Fig.21 Maximum power dissipation

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

