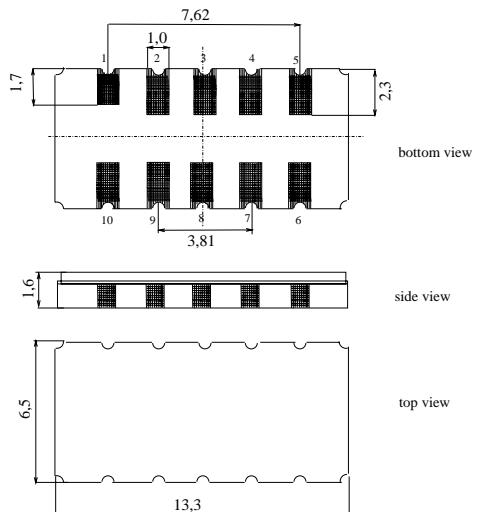


SAW Components

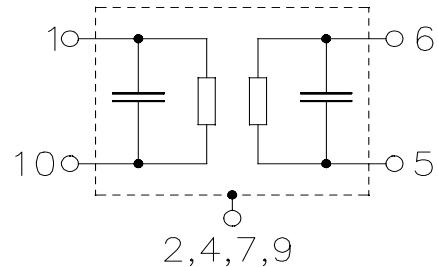
Data Sheet B3850


Data Sheet

SAW Components
B3850
Low-Loss Filter
125,00 MHz
Data Sheet
Features

- Low-loss IF filter for GSM EDGE base station
- Usable bandwidth 400 kHz
- Very low group delay ripple
- Temperature stable
- Ceramic SMD package

Terminals


- Gold plated

Ceramic package DCC12A

Dimensions in mm, approx. weight 0,4 g

Pin configuration

10	Input
1	Input ground
5	Output
6	Output ground
3, 8	Ground
2, 4, 7, 9	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B3850	B39121-B3850-H510	C61157-A7-A94	F61074-V8131-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	-40 / +85	°C	
Storage temperature range	T_{stg}	-40 / +85	°C	
DC voltage	V_{DC}	1,2	V	
Source power	P_s	10	dBm	

SAW Components**B3850****Low-Loss Filter****125,00 MHz****Data Sheet****Characteristics**

Operating temperature range:

 $T = -10 \dots 85^\circ C$

Terminating source impedance:

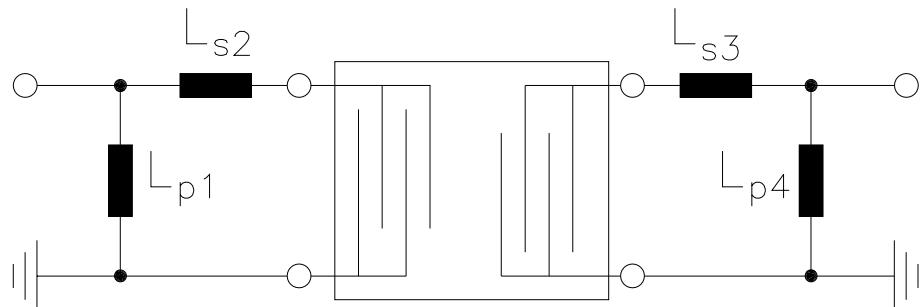
 $Z_S = 50 \Omega$ and matching network

Terminating load impedance:

 $Z_L = 50 \Omega$ and matching network

			min.	typ.	max.	
Nominal frequency	f_N	—	125,0	—	—	MHz
Minimum insertion attenuation	α_{min}	—	6,2	7,0	—	dB
Pass bandwidth						
	$\alpha_{rel} \leq 1,0 \text{ dB}$	B_{1dB}	400	560	—	kHz
	$\alpha_{rel} \leq 3,0 \text{ dB}$	B_{3dB}	—	840	—	kHz
Amplitude ripple (peak to adjacent valley)	$f_N \pm 200 \text{ kHz}$	—	0,1	—	—	dB
Amplitude variation (p-p)	$f_N \pm 200 \text{ kHz}$	$\Delta\alpha$	—	0,6	1,0	dB
Absolute group delay	$\text{@ } f_N$	τ	0,7	1,1	1,7	μs
Group delay ripple (p-p)	$f_N \pm 200 \text{ kHz}$	$\Delta\tau$	—	70	120	ns
Relative attenuation (relative to α_{min})		α_{rel}				
$f_N \pm 0,4 \text{ MHz}$...	$f_N \pm 0,6 \text{ MHz}$	0	2	—	dB
$f_N \pm 0,6 \text{ MHz}$...	$f_N \pm 1,2 \text{ MHz}$	8	10	—	dB
$f_N \pm 1,2 \text{ MHz}$...	$f_N \pm 1,8 \text{ MHz}$	20	30	—	dB
$f_N \pm 1,8 \text{ MHz}$...	$f_N \pm 3,4 \text{ MHz}$	25	40	—	dB
$f_N \pm 3,4 \text{ MHz}$...	$f_N \pm 6,5 \text{ MHz}$	34	50	—	dB
$f_N \pm 6,5 \text{ MHz}$...	$f_N \pm 9,5 \text{ MHz}$	40	50	—	dB
$f_N \pm 9,5 \text{ MHz}$...	$f_N \pm 17,0 \text{ MHz}$	43	60	—	dB
10,0 MHz	...	$f_N - 17,0 \text{ MHz}$	55	60	—	dB
$f_N + 17,0 \text{ MHz}$...	450,0 MHz ¹⁾	55	60	—	dB
VSWR (Input and output in pass band)		—	2,0	2,3	—	

Data Sheet

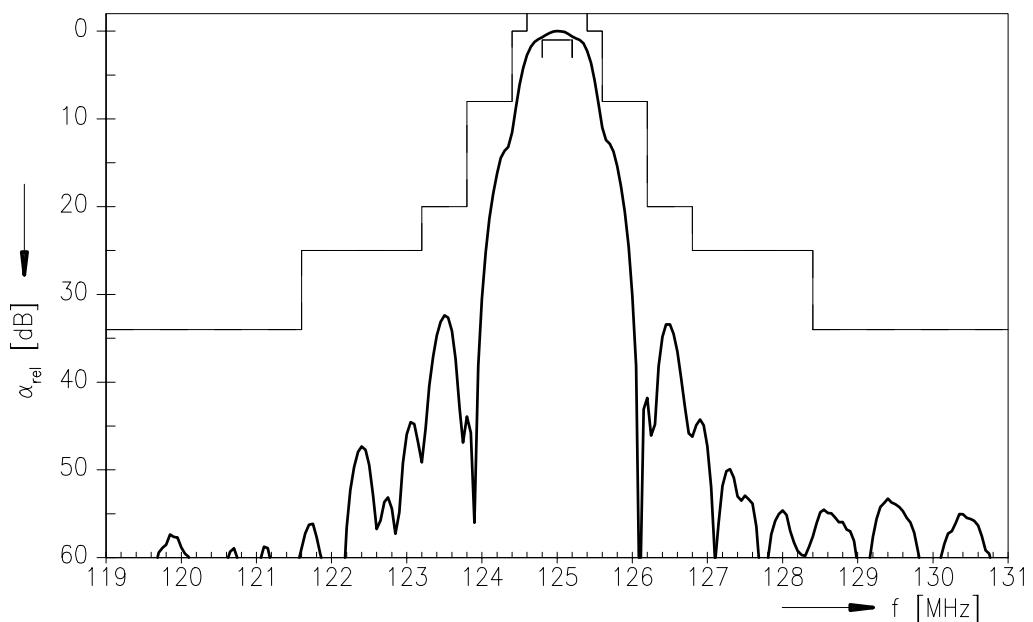
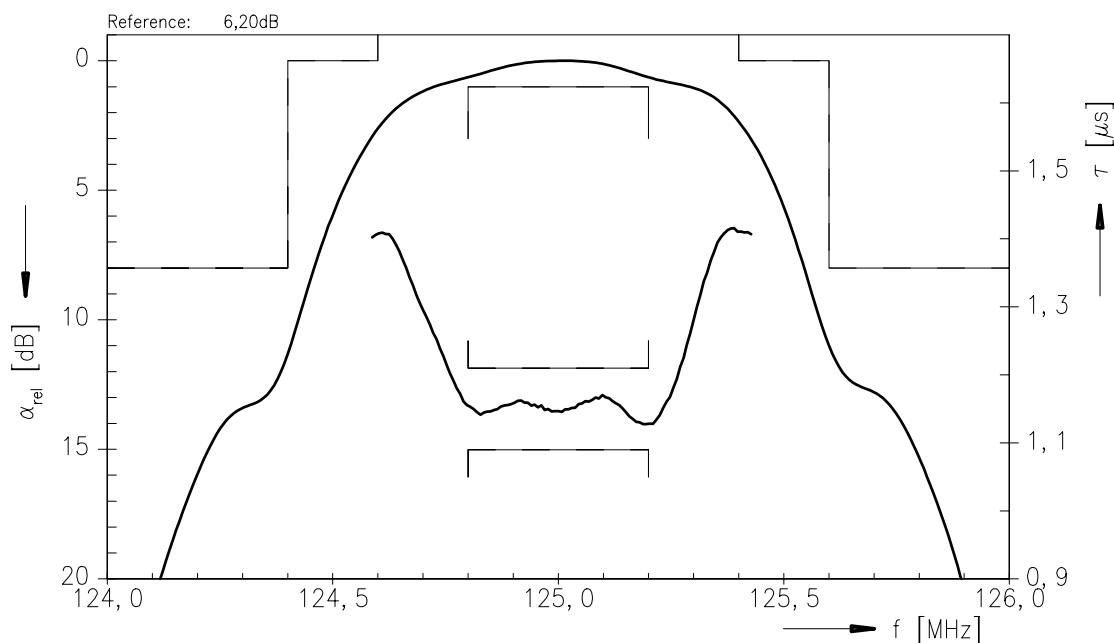

		min.	typ.	max.	
Temperature coefficient of frequency ²⁾	TC_f	—	- 0,036	—	ppm/K ²
Turnover temperature	T_0	—	50	—	°C

¹⁾ Narrowband responses (typ. 40 dB) at 202 MHz, 228 MHz, 250 MHz, and at 375 MHz

²⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

Matching network to 50 Ω

(Element values depend upon PCB layout)

$$L_{p1} = 33 \text{ nH}$$

$$L_{s2} = 68 \text{ nH}$$

$$L_{s3} = 56 \text{ nH}$$

$$L_{p4} = 27 \text{ nH}$$

Data Sheet
Normalized frequency response

Normalized frequency response (pass band)

SAW Components

B3850

Low-Loss Filter

125,00 MHz

Data Sheet

Published by EPCOS AG

Surface Acoustic Wave Components Division, SAW MC IS

P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.