

## 74F113

### Dual JK Negative Edge-Triggered Flip-Flop

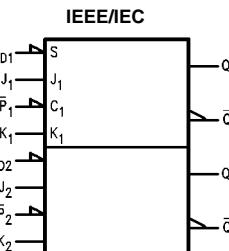
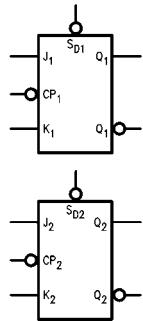
#### General Description

The 74F113 offers individual J, K, Set and Clock inputs. When the clock goes HIGH the inputs are enabled and data may be entered. The logic level of the J and K inputs may be changed when the clock pulse is HIGH and the flip-flop will perform according to the Truth Table as long as minimum setup and hold times are observed. Input data is

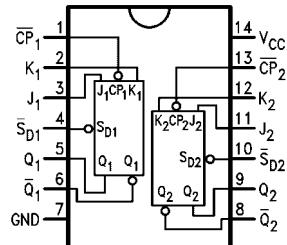
transferred to the outputs on the falling edge of the clock pulse.

#### Asynchronous input:

LOW input to  $\bar{S}_D$  sets Q to HIGH level



Set is independent of clock

#### Ordering Code:


| Order Number | Package Number | Package Description                                                         |
|--------------|----------------|-----------------------------------------------------------------------------|
| 74F113SC     | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow |
| 74F113SJ     | M14D           | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| 74F113PC     | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide       |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

#### Logic Symbols



#### Connection Diagram



## Unit Loading/Fan Out

| Pin Names                                  | Description                              | U.L.<br>HIGH/LOW | Input $I_{IH}/I_{IL}$<br>Output $I_{OH}/I_{OL}$ |
|--------------------------------------------|------------------------------------------|------------------|-------------------------------------------------|
| $J_1, J_2, K_1, K_2$                       | Data Inputs                              | 1.0/1.0          | 20 $\mu$ A/-0.6 mA                              |
| $\overline{CP}_1, \overline{CP}_2$         | Clock Pulse Inputs (Active Falling Edge) | 1.0/4.0          | 20 $\mu$ A/-2.4 mA                              |
| $\overline{S}_{D1}, \overline{S}_{D2}$     | Direct Set Inputs (Active LOW)           | 1.0/5.0          | 20 $\mu$ A/-3.0 mA                              |
| $Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$ | Outputs                                  | 50/33.3          | -1 mA/20 mA                                     |

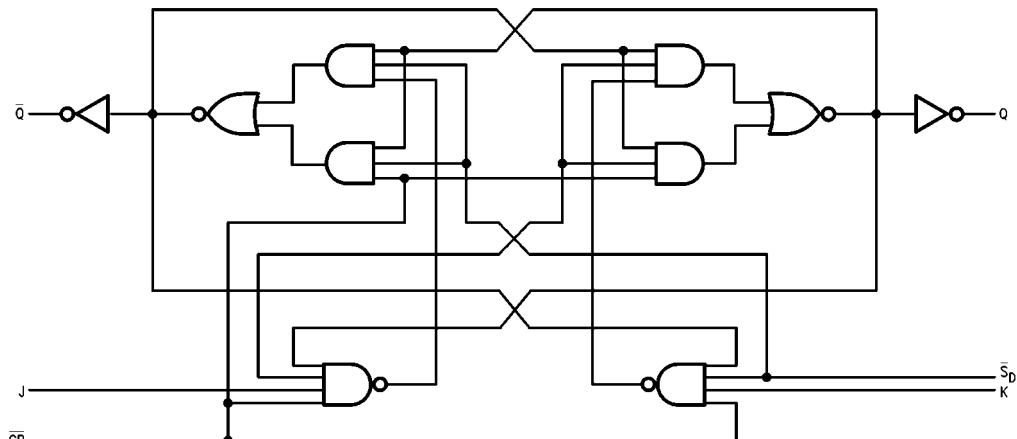
## Truth Table

| Inputs           |                 |   |   | Outputs          |                  |
|------------------|-----------------|---|---|------------------|------------------|
| $\overline{S}_D$ | $\overline{CP}$ | J | K | Q                | $\overline{Q}$   |
| L                | X               | X | X | H                | L                |
| H                | $\sim$          | h | h | $\overline{Q}_0$ | $Q_0$            |
| H                | $\sim$          | l | h | L                | H                |
| H                | $\sim$          | h | l | H                | L                |
| H                | $\sim$          | l | l | $Q_0$            | $\overline{Q}_0$ |

H (h) = HIGH Voltage Level

L (l) = LOW Voltage level

$\sim$  = HIGH-to-LOW Clock Transition


X = Immaterial

$Q_0$  ( $\overline{Q}_0$ ) = Before HIGH-to-LOW Transition of Clock

Lower case letters indicate the state of the referenced input or output prior to the HIGH-to-LOW clock transition.

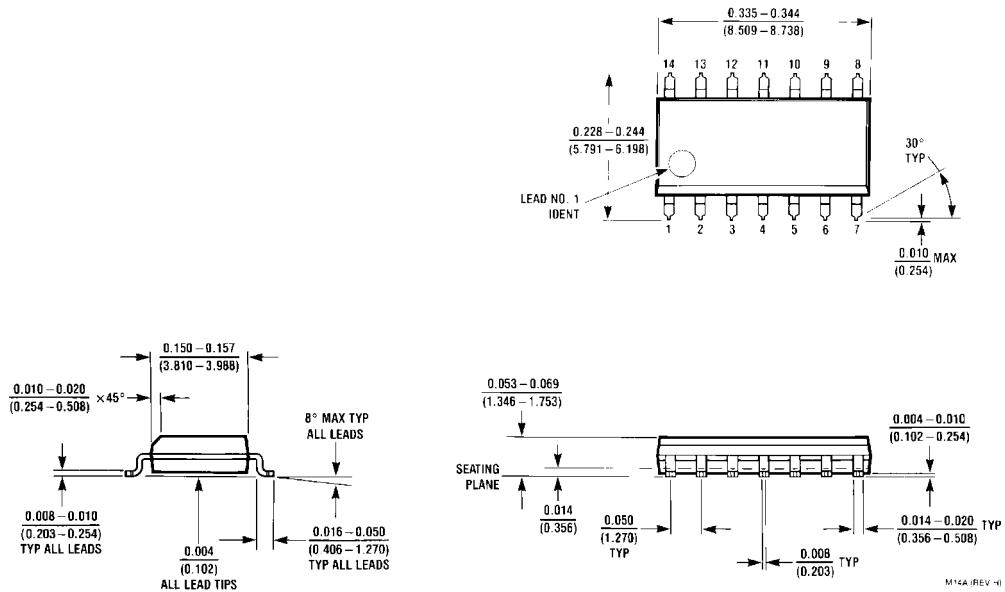
## Logic Diagram

(One Half Shown)



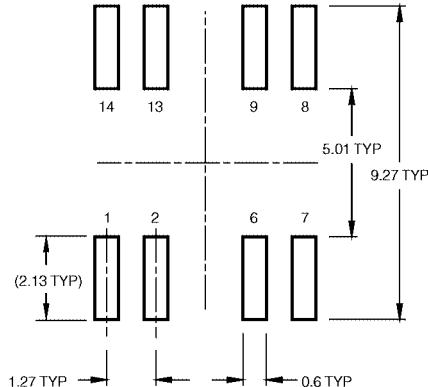
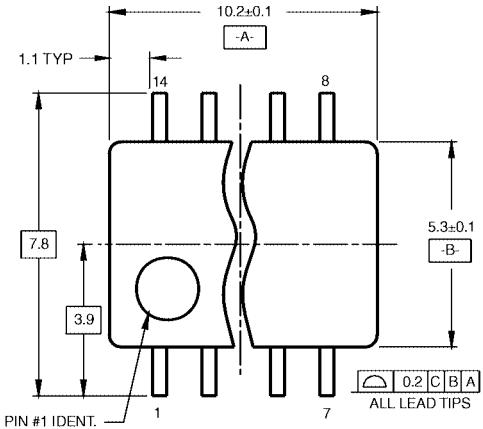
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

| <b>Absolute Maximum Ratings</b> <sup>(Note 1)</sup> |                                                    | <b>Recommended Operating Conditions</b> |                      |     |         |          |
|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------|-----|---------|----------|
| Storage Temperature                                 | -65°C to +150°C                                    |                                         |                      |     |         |          |
| Ambient Temperature under Bias                      | -55°C to +125°C                                    |                                         |                      |     |         |          |
| Junction Temperature under Bias                     | -55°C to +150°C                                    |                                         |                      |     |         |          |
| $V_{CC}$ Pin Potential to Ground Pin                | -0.5V to +7.0V                                     |                                         |                      |     |         |          |
| Input Voltage (Note 2)                              | -0.5V to +7.0V                                     |                                         |                      |     |         |          |
| Input Current (Note 2)                              | -30 mA to +5.0 mA                                  |                                         |                      |     |         |          |
| Voltage Applied to Output                           |                                                    |                                         |                      |     |         |          |
| in HIGH State (with $V_{CC} = 0V$ )                 |                                                    |                                         |                      |     |         |          |
| Standard Output                                     | -0.5V to $V_{CC}$                                  |                                         |                      |     |         |          |
| 3-STATE Output                                      | -0.5V to +5.5V                                     |                                         |                      |     |         |          |
| Current Applied to Output                           |                                                    |                                         |                      |     |         |          |
| in LOW State (Max)                                  | twice the rated $I_{OL}$ (mA)                      |                                         |                      |     |         |          |
| <b>DC Electrical Characteristics</b>                |                                                    |                                         |                      |     |         |          |
| Symbol                                              | Parameter                                          | Min                                     | Typ                  | Max | Units   | $V_{CC}$ |
| $V_{IH}$                                            | Input HIGH Voltage                                 | 2.0                                     |                      |     | V       |          |
| $V_{IL}$                                            | Input LOW Voltage                                  |                                         | 0.8                  |     | V       |          |
| $V_{CD}$                                            | Input Clamp Diode Voltage                          |                                         | -1.2                 |     | V       | Min      |
| $V_{OH}$                                            | Output HIGH Voltage<br>10% $V_{CC}$<br>5% $V_{CC}$ | 2.5<br>2.7                              |                      |     | V       | Min      |
| $V_{OL}$                                            | Output LOW Voltage<br>10% $V_{CC}$                 |                                         | 0.5                  |     | V       | Min      |
| $I_{IH}$                                            | Input HIGH Current                                 |                                         | 5.0                  |     | $\mu A$ | Max      |
| $I_{BVI}$                                           | Input HIGH Current<br>Breakdown Test               |                                         | 7.0                  |     | $\mu A$ | Max      |
| $I_{CEX}$                                           | Output HIGH Leakage Current                        |                                         | 50                   |     | $\mu A$ | Max      |
| $V_{ID}$                                            | Input Leakage Test                                 | 4.75                                    |                      |     | V       | 0.0      |
| $I_{OD}$                                            | Output Leakage Circuit Current                     |                                         | 3.75                 |     | $\mu A$ | 0.0      |
| $I_{IL}$                                            | Input LOW Current                                  |                                         | -0.6<br>-2.4<br>-3.0 |     | mA      | Max      |
| $I_{OZH}$                                           | Output Leakage Current                             |                                         | 50                   |     | $\mu A$ | Max      |
| $I_{OZL}$                                           | Output Leakage Current                             |                                         | -50                  |     | $\mu A$ | Max      |
| $I_{OS}$                                            | Output Short-Circuit Current                       | -60                                     | -150                 |     | mA      | Max      |
| $I_{CC}$                                            | Power Supply Current                               | 12                                      | 19                   |     | mA      | Max      |

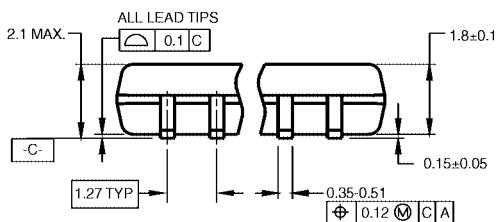

## AC Electrical Characteristics

| Symbol    | Parameter                                                             | $T_A = +25^\circ C$<br>$V_{CC} = +5.0V$<br>$C_L = 50 pF$ |     |     | $T_A = 0^\circ C$ to $+70^\circ C$<br>$V_{CC} = +5.0V$<br>$C_L = 50 pF$ |     | Units |
|-----------|-----------------------------------------------------------------------|----------------------------------------------------------|-----|-----|-------------------------------------------------------------------------|-----|-------|
|           |                                                                       | Min                                                      | Typ | Max | Min                                                                     | Max |       |
| $f_{MAX}$ | Maximum Clock Frequency                                               | 85                                                       | 105 |     | 80                                                                      |     | MHz   |
| $t_{PLH}$ | Propagation Delay<br>$\overline{CP}_n$ to $Q_n$ or $\overline{Q}_n$   | 2.0                                                      | 4.0 | 6.0 | 2.0                                                                     | 7.0 | ns    |
| $t_{PLH}$ | Propagation Delay<br>$\overline{S}_{Dn}$ to $Q_n$ or $\overline{Q}_n$ | 2.0                                                      | 4.5 | 6.5 | 2.0                                                                     | 7.5 | ns    |
| $t_{PHL}$ |                                                                       | 2.0                                                      | 4.5 | 6.5 | 2.0                                                                     | 7.5 | ns    |

## AC Operating Requirements



| Symbol    | Parameter                                                 | $T_A = +25^\circ C$<br>$V_{CC} = +5.0V$ |     | $T_A = 0^\circ C$ to $+70^\circ C$<br>$V_{CC} = +5.0V$ |     | Units |
|-----------|-----------------------------------------------------------|-----------------------------------------|-----|--------------------------------------------------------|-----|-------|
|           |                                                           | Min                                     | Max | Min                                                    | Max |       |
| $t_S(H)$  | Setup Time, HIGH or LOW                                   | 4.0                                     |     | 5.0                                                    |     |       |
| $t_S(L)$  | $J_n$ or $K_n$ to $\overline{CP}_n$                       | 3.0                                     |     | 3.5                                                    |     |       |
| $t_H(H)$  | Hold Time, HIGH or LOW                                    | 0                                       |     | 0                                                      |     |       |
| $t_H(L)$  | $J_n$ or $K_n$ to $\overline{CP}_n$                       | 0                                       |     | 0                                                      |     |       |
| $t_W(H)$  | $\overline{CP}_n$ Pulse Width<br>HIGH or LOW              | 4.5                                     |     | 5.0                                                    |     |       |
| $t_W(L)$  | $\overline{S}_{Dn}$ Pulse Width, LOW                      | 4.5                                     |     | 5.0                                                    |     |       |
| $t_{REC}$ | $\overline{S}_{Dn}$ to $\overline{CP}_n$<br>Recovery Time | 4.0                                     |     | 5.0                                                    |     |       |

**Physical Dimensions** inches (millimeters) unless otherwise noted

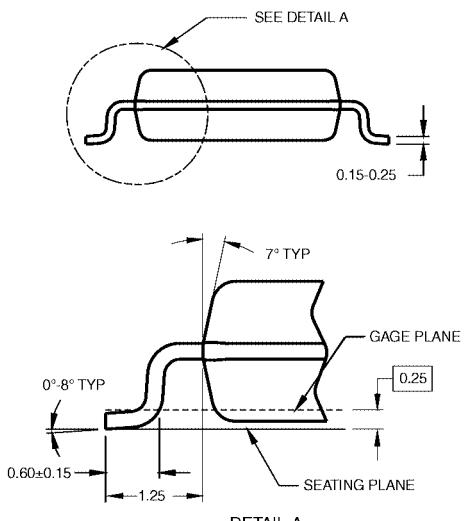



14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow  
Package Number M14A

## **Physical Dimensions** inches (millimeters) unless otherwise noted (Continued)

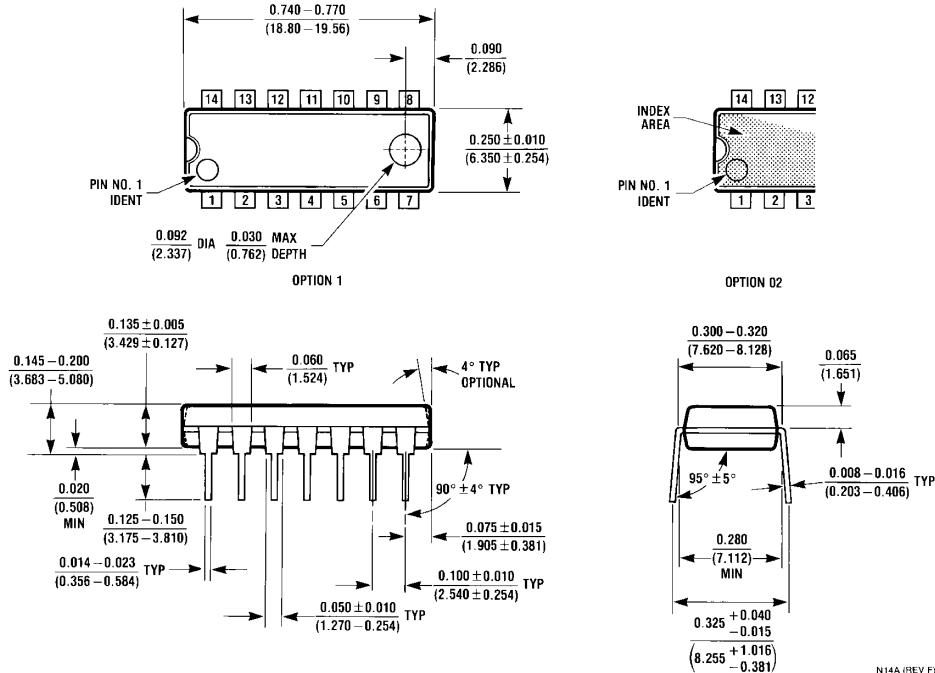


#### LAND PATTERN RECOMMENDATION




DIMENSIONS ARE IN MILLIMETERS

## NOTES:


- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION,  
ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD  
FLASH, AND TIE BAR EXTRUSIONS.

M14DRevB1



**14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide  
Package Number M14D**

**Physical Dimensions** inches (millimeters) unless otherwise noted (Continued)



14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide  
Package Number N14A

N14A (REV F)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

**LIFE SUPPORT POLICY**

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[www.fairchildsemi.com](http://www.fairchildsemi.com)