PRODUCT MANUAL

Coyote (BL2500)

C-Programmable Single-Board Computer with Ethernet

User’s Manual
019-0120 M

BL2500 User’s Manual

Part Number 019-0120 < Printed in U.S.A.
©2002-2010 Digi International Inc. < All rights reserved.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit and Dynamic C are registered trademarks of Digi International Inc.
Rabbit 3000, RabbitCore, and RabbitNet are trademarks of Digi International Inc.

The latest revision of this manual is available on the Rabbit Web site, www.rabbit.com.

Digi International Inc.

www.rabbit.com

Coyote (BL2500)

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

TABLE OF CONTENTS

Chapter 1. Introduction 1
O T LT ST 1
L.1.1 OEM VEISIONS. ...vectveteetieiteetteite ettt eteaeestestesteebesbeeabesbeenbeabeeabesbeesaesbeesbesbaesbesbsenbesbeenbesbeenbesaeesreatees 2
1.2 Development and EVAIUELION TOOIS........ccuiiiiiiiiiiiieee e 3
1.2.1 DeVEIOPMENT K. ..ot bbbttt b et b et b et eb et ebe et ene e 3
12,2 SOTEWAIE ...ttt ettt ettt e e e bt e s e eba e e e s a bt e e sab e e e sab e e s e sbeeesebbeeesbbassssbeessbassssbassabanessrbaeeas 4
1.2.3 CONNECLIVILY TOOIS .. ccuiciiieiectisie sttt ettt e bestese et e ae e e neeresreneennens 4
1.2.4 DIN RAI MOUNTINGcvtiiiiieeiiieiieeeee bbbt sb e e eb et sb e nnene 5
1.3 RabbitNet Peripheral Cards ...ttt bbb et be b b 6
1.4 CE COMPIIBNCEeiiieiiiietiet ettt h e et e bbbt b e e bt bt bt sb et et e et e bt et e e beebesbe b ee 7
1.4.1 DESIGN GUIEIINESc.eeeiiiiiie ittt bbb bbbt ne et ebesbe st b 8
1.4.2 Interfacing the BL2500 t0 Other DEVICEScceiveierieieieisestestese e seeeeese e sresee e seessessesessensens 8
Chapter 2. Getting Started 9
2.1 Preparing the BL2500 fOr DeVEIOPMENL.......cc.cciiiiieiice ettt nre e 9
2.2 BL2500 CONNECLIONSvviiiviiitieciie ettt sttt e ste e s be e sbeesare e sbeesbeesbe e stsesbeesbbesabeesbeesbeesteesareesbeessnesnrenes 10
2.2.1 HAIOWAIE RESEL.....eiiiiiiee ettt ettt sbe e s e et e e s beesabe e s beesaaeebeesteeeabeesrbeenbeesanesseas 12
P2 I 115 =L T g To)Y -V o S 13
2.4 Starting DYNAMIC € ...oovieeiice ettt ettt e e s eeaeste s b e saesbe st se e s eneereareanenrenrenes 14
2.5 PONGL.C ...ttt ettt et b et b e et s b e s st e s be et e s b e e bt e s be e st e ebeeabeebeeateebeeabesbeeteebe e beateebeareens 15
2.6 Where DO | GO FrOM HEIE? ...ooveiiiiie ettt ettt ettt sttt be st sbeearesbesneesbeeneesbesbeesbesbeens 15
2.7 Using the Coyote In High-Vibration ENVIFONMENTSc.coveieiiiiinesie e 16
Chapter 3. Subsystems 17
3.1 COYOLE PINMOULS ...ttt ettt bbb bbb ettt b e b e e bt sb e eb e s b e st e seenseb e e b e e beebenbenbenaens 18
L O A T o [T OSSR OUROPRRRUPOOt 19
K 1110 [oz L (o] £ PSPPSR 20
32,1 LEDS ottt ittt ettt et bt e e b b e et e be et e abeebesheeeteabe e rentaenreereen 20
3.3 DHGILAI IO . bbbttt 21
331 DIHGILAL INPULS. ...ttt 21
3.3.2 DiIGITAI OULPULS ...ttt ettt bbb et s e e bt e bt st et eseeneebesbenbennea 22
KR N g L [oo = L= S PSPRUR 23
K R Y B 00 01V 4 (=] PSSP 23
B B N 0400\] £SO 24
3.5 Serial COMMUINICALIONiiviiiieeiie ettt ettt ettt re et e e s br e e beesbe e s abeesbaesabeesbbesnbeesbeesnbeebeesarens 27
R R = T 17U 28
35,2 RS485 ..ttt e b e e bt et e abe et abe et abe e be et eeabe e beateetenreens 29
3.5.3 Programming POIt.........c.oiiiiiiiiiiisiee ettt se st st see bt e eneeteaneenesseneennens 31
3.5.4 RADDIINEL POIES ...ttt ettt sttt et e e sae e s ab e e sbeesabe e sbeesaeesbeesbaesreeenreens 31
o T =1 1 4 [=T 4 g T=1 B o o OO RS PR 32
3.6 Serial Programming Cable...........coooiiiiieieieee ettt sttt eneene et nnen 33
3.6.1 Changing Between Program Mode and RUN MOGEcocoviviiniinniiieeeeceese e 33
3.7 OhEr HAIOWATE.ve vttt ettt et sttt be e be e st e e beeeae e e be e sbeesabeesbeesnteesbeesabeebeesarean 34
3.7.1 CIOCK DOUDBIET ...ttt ettt ettt et ettt e sbe e et e e beesabeeabessrbeenbeesbeesbaesneeereens 34
3.7.2 SPECIIUM SPIEAUEve e iveitie st eee sttt ettt e s e e s te e e e s e s e e s te et e e teeseesbeensesseaneesteeneesresseeseenrenns 35
3.8 IMIBIMIONY ..t s Rt R et nre 36
3.8.1 SRAM ..ottt ettt rtebe e beebeebesteete b et ereereereetesreateas 36
3.8.2 FIASN IMBIMOIY ...ttt bbbttt et b bbb e b et e st e b e e st ebesbenbe b 36

User’'s Manual

Chapter 4. Software

4.1 RUunning DYNamIiC C.....oooviiiieieieece st
4.1.1 Upgrading DyNamicC C........cccccoeveiviiiene e

4.1.2 Accessing and Downloading Dynamic C Libraries

4.2 SAMPIE PrOGramS.......cveeeuieieiienientesiesiesiesieseeseeseesese e sre st e see e e e

4.2.1 General Coyote OPeration..........ccooeeeieeeeinienie e
4.2.2 DIgital /O .ot
4.2.3 Serial CommUNICALIONccovveireirieie e
4.2.4 A/D CONVErter INPULSccveiviiiie et
4.2.5 D/A Converter QUIPULS......ccvvvervirierie e see e
4.2.6 Using System Information from the RabbitCore Module
4.2.7 Real-Time ClOCKcc.coueiiiiiiinere e e
4.3 COyote LiDraries......ccooiveieieeiceee s

4.4 Coyote FUNCLION CallS........ccccoviieicrce e

4.4.1 Board INitialization..........cocvviiiiii i
4.4.2 Digital HO..cvii i
BA.3 LEDS. ...ttt ettt
4.4.4 Serial COMMUNICALIONcvveiiviiiiiiie et
4.4.5 ANAIOG INPULS ...oovveiecce e
4.4.6 ANAIOG OULPULS.....cviiiiiiiieiieisies ettt e
4.4.7 RADDITNEL POIt..cciiviiiieiic ettt

Chapter 5. Using the TCP/IP Features

5.1 TCP/IP CONNEBCLIONSc.vieiieiieieiteeie sttt
5.2 TCP/IP Sample Programs.........ccoeoereeieieneniniese e
5.2.1 How to Set IP Addresses in the Sample Programs...........ccccce..e...
5.2.2 How to Set Up your Computer’s IP Address for a Direct Connection
5.2.3 Run the PINGME.C DEMO......ccccoeiiereriiieieieeeeiee e,
5.2.4 Running More Demo Programs With a Direct Connection
5.3 Where DO | GO From HEre?........ccvinieiinneeeesseeesrene s

Appendix A. Specifications

A.1 Electrical and Mechanical Specifications............ccccooiviiiinenincinenn
ALLL EXCIUSION ZONE ...ttt ettt
A.1.2 Physical MOUNING......ccccveieiieicec e

A.2 Conformal CoatiNg........ccceriereeeieirese e

A.3 Jumper CoNfIQUrAtioNSc.covevereiresrsese e

A.4 Use of Rabbit 3000 Parallel POItS ..o

Appendix B. Power Supply

B.1 POWEE SUPPHES ...eeneeiieiiiieiieiere sttt s
B.2 Batteries and External Battery CONNeCtions...........ccocvveverenenenieninnnns

B.2.1 Power to0 VRAM SWItCHccoiiiieie e
B.2.2 RESEL GENEIALO.....ccuvviiii ittt
B.3 Chip Select CirCUIL.......ccooeirieirieiriiree e

B.4 Power to Peripheral Cards ..o

Appendix C.
Demonstration Board Connections

C.1 Assemble WIre Harness........ccvovevviieevesiese s e sesie e sve e s see s
C.2 Connecting Demonstration Boardcccccovvvieeievivenesnene e

... 64

Coyote (BL2500)

Appendix D. RabbitNet 85

D.1 General RabbhitNet DeSCIIPLION........cciiiiiciese et e et ere e e sre s 85
D.1.1 RabDItNEL CONNEBCLIONScuiiviitiiteieiiteieeee ettt ettt e sb e e bbb e 85
D.1.2 RabbitNet Peripheral Cards............ccuiiiviiriirereiieie st a et saeneese s e 86

D.2 Physical IMPIEMENTAIONciiiiiiiie ettt sbe s 87
D.2.1 Control aNd ROULINGcciiuiiirieie ittt ettt b e b e 87

D.3 FUNCLION ClIS ...ttt ettt b ekt b e bttt bbbt ettt be b b 88
D.3.1 SEALUS BYLE woiiiiiiiiiiite ettt sttt sttt st st b e bbb s 94

Index 95
Schematics 99

User’'s Manual

Coyote (BL2500)

1. INTRODUCTION

The Coyote single-board computer gives OEM designers
extremely low-cost embedded control for high-volume applica-
tions. Two standard models—one with Ethernet, one without—

feature the Rabbit® 3000 microprocessor running at 29.4 MHz,
with standard 256K flash and 128K SRAM. These compact
boards are rich with the 1/0 (including one A/D input and two
D/A outputs) designers need for embedded control and monitor-
ing applications, and the Coyote's compact board size of 3.95" x
3.95" (100 x 100 mm) is easily mountable in standard 100 mm
DIN rail trays.

Customized BL2500 models can be manufactured in volume in
OEM versions to user-specified configurations. Pin-compatible
RabbitCore modules allow multiple configurations of the Coyote
with Ethernet and memory options.

1.1 Features

< Rabbit 3000® microprocessor operating at 29.4 MHz (option for 44.2 MHz with
10/100Base-T Ethernet interface)

= 128K SRAM and 256K flash memory standard, optional 512K SRAM/512K flash

= 24 digital 1/0: 9 protected and filtered digital inputs, 7 high-speed protected but unfil-
tered digital inputs, and 8 digital outputs sinking up to 200 mA at up to 36 V DC

= one 8-bit analog input channel
= two 9-bit PWM analog output channels
= six serial ports, including RabbitNet™ expansion ports

= one 10/100-compatible RJ-45 Ethernet port with standard 10Base-T interface (optional
10/100Base-T interface)

= 4 user-programmable LEDs.

= Dbattery-backed real-time clock.

= watchdog supervisor.

= onboard backup battery for real-time clock and SRAM

User’s Manual 1

Two BL2500 models are available. Their standard features are summarized in Table 1.

Table 1. BL2500 Models

Feature

BL2500

BL2510

Microprocessor

Rabbit 3000® running at 29.4 MHz

Flash Memory 256K”

Static RAM 128K”

Ethernet Connections Yes No
RabbitCore Module Used RCM3010 RCM3110
A/D Converter Input Yes Yes

* 512K options available

The BL2500 consists of a main board with a RabbitCore module. Refer to the RabbitCore
module manuals, available on Rabbit’s \Web site, for more information on the RabbitCore

modules, including their schematics.

Appendix A provides detailed specifications.

Visit our \Web site for up-to-date information about additional add-ons and features as
they become available. The Web site also has the latest revision of this user’s manual.

1.1.1 OEM Versions

The BL2500 and BL2510 models are also available in OEM versions as the OEM2500
and the OEM2510 (minimum quantity 500) where certain features have been removed or

eliminated:

= fewer digital inputs—only 16 digital 1/0, with 8 protected and filtered digital inputs
and 8 digital outputs sinking up to 200 mA at up to 36 VV DC (no header J12)

= no backup battery

< no RabbitNet™ hardware—no RS-422/multiplexer chips, no RabbitNet RJ-45 jacks,
no RabbitNet™ power connectors (headers J7 and J8)

Coyote (BL2500)

http://www.rabbit.com/
http://www.rabbit.com/

1.2 Development and Evaluation Tools
1.2.1 Development Kit

A Development Kit contains the hardware essentials you will need to use your
BL2500/0EM2500. The items in the Development Kit and their use are as follows.
e BL2500 single-board computer.

= (Getting Started instructions.

= Dynamic C CD-ROM, with complete product documentation on disk.

= Programming cable, used to connect your PC serial port to the BL2500.

e 12V AC adapter, used to power the BL2500. An AC adapter is supplied with develop-
ment Kits sold in the North American market. If you are using your own power supply,
it must provide 8 to 40 V DC.

= Demonstration Board with pushbutton switches and LEDs. The Demonstration Board
can be hooked up to the BL2500 to demonstrate the 1/0.

= Parts to build your own wire assemblies: wire, twenty-five 0.1" crimp terminals; ten
0.156" crimp terminals; 1 x 2, 1 x 4, and 1 x 10 friction-lock connectors.

= Nylon machine screws to serve as legs for the BL2500 board during development.
= Rabbit 3000 Processor Easy Reference poster.
= Registration card.

AC Adapter
{Morth American
kitz only)

Programming

] Cable

Nylon Machine Screws
& Nuts

P GBEP S
= a‘@&*“@

Demo Board
Wire

Friction-Lock nacfors
& Crimp Terminals

BL2500 Demo Board
Getting Started
Instructions

Figure 1. BL2500/0EM2500 Development Kit

User’s Manual 3

1.2.2 Software

The Coyote is programmed using version 7.33 or later of Rabbit’s Dynamic C. A compatible
version is included on the Development Kit CD-ROM. Web-based technical support is
included at no extra charge. Dynamic C v. 9.60 includes the popular uC/OS-I11 real-time
operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and other
select libraries that were previously sold as individual Dynamic C modules.

Rabbit also offers for purchase the Rabbit Embedded Security Pack featuring the Secure
Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library. In addi-
tion to the Web-based technical support included at no extra charge, a one-year telephone-
based technical support subscription is also available for purchase. Visit our Web site at
www.rabbit.com for further information and complete documentation, or contact your
Rabbit sales representative or authorized distributor.

1.2.3 Connectivity Tools

Rabbit also has available additional tools and parts to allow you to make your own wiring
assemblies in quantity to interface with the friction-lock connectors on the Coyote.

= Connectivity Kit (Part No. 101-0581)—Six 1 x 10 friction-lock connectors (0.1" pitch)
with sixty 0.1" crimp terminals; and two 1 x 4 friction-lock connectors (0.156" pitch)
and two 1 x 2 friction-lock connectors (0.156" pitch) with fifteen 0.156" crimp termi-
nals. Each kit contains sufficient parts to interface with one Coyote board (some parts
may be left over).

= Crimp tool (Part No. 998-0013) to secure wire in crimp terminals.

Table 3 in Chapter 3 provides information on specific friction-lock connectors and crimp
terminals to be used with the various headers on the BL2500. Contact your authorized
Rabbit distributor or your sales representative for more information.

4 Coyote (BL2500)

http://www.rabbit.com/products/dc/

1.2.4 DIN Rail Mounting

The Coyote may be mounted in 100 mm DIN rail trays as shown in Figure 2.

BL2500

Modular PC
Board Trays

Figure 2. Mounting Coyote in DIN Rail Trays

DIN rail trays are typically mounted on DIN rails with “feet.” Table 2 lists Phoenix Contact
part numbers for the DIN rail trays, rails, and feet. The tray side elements are used to keep
the Coyote in place once it is inserted in a DIN rail tray, and the feet are used to mount the
plastic tray on a DIN rail.

Table 2. Phoenix Contact DIN Rail Mounting Components

DIN Rail Mounting Phoenix Contact Phoenix Contact
Component Part Description Part Number
Trays UM 100-PROFIL cm” 195987 4
Tray Side Elements UM 108-SE 2959476
Foot Elements UM 108-FE 2959463

* Length of DIN rail tray in cm

NOTE: Other major suppliers besides Phoenix Contact also offer DIN rail mounting
hardware. Note that the width of the plastic tray should be 100 mm (3.95") since that is
the width of the Coyote. 108 mm plastic trays may be used with spacers.

User’s Manual 5

1.3 RabbitNet Peripheral Cards

RabbitNet™ is an SPI serial protocol that uses a robust RS-422 differential signalling
interface (twisted-pair differential signaling) to run at a fast 1 Megabit per second serial
rate. The Coyote has two RabbitNet ports, each of which can support one peripheral card.
Distances between a master processor unit and peripheral cards can be up to 10 m or 33 ft.

The following low-cost peripheral cards are currently available.
= Digital I/0

= A/D converter

D/A converter

Relay card

Display/Keypad interface

Appendix D provides additional information on RabbitNet peripheral cards and the Rab-
bitNet protocol. Visit our \Web site for up-to-date information about additional add-ons and
features as they become available.

6 Coyote (BL2500)

http://www.rabbit.com/

1.4 CE Compliance

Equipment is generally divided into two classes.

CLASS A CLASS B

Digital equipment meant for light industrial use Digital equipment meant for home use

Less restrictive emissions requirement:
less than 40 dB pV/m at 10 m
(40 dB relative to 1 pv/m) or 300 pV/m

More restrictive emissions requirement:
30 dB pV/mat 10 m or 100 pV/m

These limits apply over the range of 30-230 MHz. The limits are 7 dB higher for frequen-
cies above 230 MHz. Although the test range goes to 1 GHz, the emissions from Rabbit-
based systems at frequencies above 300 MHz are generally well below background noise
levels.

The BL2500 single-board computer has been tested and was found to
be in conformity with the following applicable immunity and emission
standards. The BL2510 and OEM single-board computers are also CE
qualified as they are sub-versions of the BL2500 single-board com-
puter. Boards that are CE-compliant have the CE mark.

NOTE: Earlier versions of the BL2500 that do not have the CE mark are not CE-compliant.
Immunity

The BL2500 series of single-board computers meets the following EN55024/1998 immu-
nity standards.

< EN61000-4-3 (Radiated Immunity)

- ENG61000-4-4 (EFT)

= EN61000-4-6 (Conducted Immunity)

Additional shielding or filtering may be required for a heavy industrial environment.
Emissions

The BL2500 series of single-board computers meets the following emission standards.
= EN55022:1998 Class B

= FCC Part 15 Class B

Your results may vary, depending on your application, so additional shielding or filtering
may be needed to maintain the Class B emission qualification.

User’s Manual 7

1.4.1 Design Guidelines

Note the following requirements for incorporating the BL2500 series of single-board
computers into your application to comply with CE requirements.

General

= The power supply provided with the Tool Kit is for development purposes only. It is the
customer’s responsibility to provide a CE-compliant power supply for the end-product
application.

= When connecting the BL2500 single-board computer to outdoor cables, the customer is
responsible for providing CE-approved surge/lightning protection.

= Rabbit recommends placing digital 1/O or analog cables that are 3 m or longer in a
metal conduit to assist in maintaining CE compliance and to conform to good cable
design practices.

= When installing or servicing the BL2500, it is the responsibility of the end-user to use
proper ESD precautions to prevent ESD damage to the BL2500.

Safety

= All inputs and outputs to and from the BL2500 series of single-board computers must
not be connected to voltages exceeding SELV levels (42.4 VV AC peak, or 60 VV DC).

= The lithium backup battery circuit on the BL2500 single-board computer has been
designed to protect the battery from hazardous conditions such as reverse charging and
excessive current flows. Do not disable the safety features of the design.

1.4.2 Interfacing the BL2500 to Other Devices

Since the BL2500 series of single-board computers is designed to be connected to other
devices, good EMC practices should be followed to ensure compliance. CE compliance is
ultimately the responsibility of the integrator. Additional information, tips, and technical
assistance are available from your authorized Rabbit distributor, and are also available on
our Web site at www.rabbit.com.

8 Coyote (BL2500)

http://www.rabbit.com/products/ce_certification/index.shtml

2. GETTING STARTED

Chapter 2 explains how to connect the programming cable and
power supply to the BL2500.

2.1 Preparing the BL2500 for Development

Position the BL2500 as shown below in Figure 3. Attach the four nylon 4-40 x % machine
screws and nuts supplied with the Development Kit in the holes at the corners as shown.

Ay | iy
iz) i

Module

é RabbitCore é

Figure 3. Attach Nylon Screws to BL2500 Board

NOTE: You will have to remove the RabbitCore module to install one screw under the
module. When replacing the RabbitCore module, it is important that you line up the pins
on the module exactly with the corresponding pins on the BL2500. The header pins may
become bent or damaged if the pin alignment is offset, and the module will not work.
Permanent electrical damage may also result if a misaligned module is powered up.

The nylon screws serve as standoffs to facilitate handling the BL2500 during develop-
ment, and protect the bottom of the printed circuit board against scratches or short circuits
while you are working with the BL2500.

User’s Manual 9

2.2 BL2500 Connections

1. Connect the programming cable to download programs from your PC and to program

and debug the BL2500.

NOTE: Use only the programming cable that has a red shrink wrap around the RS-232
level converter (Part No. 20-101-0513). If you are using a BL2500 with the optional
10/100Base-T Ethernet interface, you will need the programming cable that has a blue
shrink wrap around the RS-232 level converter (Part No. 20-101-0542). Other Rabbit
programming cables might not be voltage-compatible or their connector sizes may be

different.

Connect the 10-pin PROG connector of the programming cable to header J3 on the
BL2500’s RabbitCore module. Ensure that the colored edge lines up with pin 1 as shown.
There is a small dot on the circuit board next to pin 1 of header J3. (Do not use the DIAG
connector, which is used for monitoring only.) Connect the other end of the programming
cable to a COM port on your PC. Make a note of the port to which you connect the cable,
as Dynamic C will need to have this parameter configured. Note that COML1 on the PC is

the default COM port used by Dynamic C.

NOTE: Never disconnect the programming cable

by pulling on the ribbon cable. Carefully pull on
the connector to remove it from the header.

C [gm x
ZEE‘ ||l lejele] | ﬁ .

Colored edge \ |!

PC COM port« —

Programming Cable

\ Color

shrink wrap

O o oo00000m

Figure 4. Programming Cable Connections

10

Coyote (BL2500)

2. When all other connections have been made, you can connect power to the BL2500.

Connect the AC adapter to header J2 on the BL2500 as shown in Figure 5. Match the
friction lock tab on the friction-lock connector to the back of header J2 on the BL2500
as shown. The friction-lock connector will only fit one way.

Development Kits sold outside North America include a friction lock friction-lock con-
nector that may be connected to header J2 on the BL2500. Connect the leads from your
power supply to the friction-lock connector to preserve the polarity indicated in

Figure 5. The power supply should deliver 8 V-40 V DC at 500 mA.

aniigavy 3

<
=)

:”O 0000000 lu

0000000 l”

>

O ”gwgc‘)oc‘)o;o -”.

RS485 TERMINATION RESISTORS

Figure 5. Power Supply Connections

User’'s Manual 11

3. Apply power.
Plug in the AC adapter.

CAUTION: Unplug the power supply while you make or otherwise work with the connections
to the headers. This will protect your BL2500 from inadvertent shorts or power spikes.

2.2.1 Hardware Reset

A hardware reset is done by unplugging the AC adapter, then plugging it back in, or by
shorting out the reset pads on the back of the BL2500 (see Figure 6).

O
RESET
pads
O © 2004 Z-WORLD, INC. 175-0295 O

Figure 6. Location of RESET Pads

12 Coyote (BL2500)

2.3 Installing Dynamic C

If you have not yet installed Dynamic C version 7.33 (or a later version), do so now by
inserting the Dynamic C CD from the BL2500/OEM2500 Development Kit in your PC’s
CD-ROM drive. The CD will auto-install unless you have disabled auto-install on your PC.

If the CD does not auto-install, click Start > Run from the Windows Start button and
browse for the Dynamic C setup.exe file on your CD drive. Click OK to begin the
installation once you have selected the setup . exe file.

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, create a new desktop icon that points to default.htm in the
docs folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download
from our Web sites as well.

The Dynamic C User’s Manual provides detailed instructions for the installation of
Dynamic C and any future upgrades.

NOTE: If you have an earlier version of Dynamic C already installed, the default instal-
lation of the later version will be in a different folder, and a separate icon will appear on
your desktop.

User’'s Manual 13

2.4 Starting Dynamic C

Once the BL2500 is connected to your PC and to a power source, start Dynamic C by
double-clicking on the Dynamic C icon on your desktop or in your Start menu.

Dynamic C defaults to using the serial port on your PC that you specified during installa-
tion. If the port setting is correct, Dynamic C should detect the BL2500 and go through a
sequence of steps to cold-boot the BL2500 and to compile the BIOS. (Some versions of
Dynamic C will not do the initial BIOS compile and load until the first time you compile a
program.)

If you receive the message No Rabbit Processor Detected, the programming
cable may be connected to the wrong COM port, a connection may be faulty, or the target
system may not be powered up. First, check both ends of the programming cable to ensure
that it is firmly plugged into the PC and the programming port.

If there are no faults with the hardware, select a different COM port within Dynamic C.
From the Options menu, select Communications. Select another COM port from the list,
then click OK. Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C
still reports it is unable to locate the target system, repeat the above steps until you locate the
active COM port. You should receive aBios compiled successfully message
once this step is completed successfully.

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-
cation error message when you compile and load a sample program, it is possible that your
PC cannot handle the higher program-loading baud rate. Try changing the maximum
download rate to a slower baud rate as follows.

= Locate the Serial Options dialog in the Dynamic C Options > Communications
menu. Select a slower Max download baud rate.

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

= Locate the Serial Options dialog in the Dynamic C Options > Communications
menu. Choose a lower debug baud rate.

14 Coyote (BL2500)

2.5 PONG.C

You are now ready to test your set-up by running a sample program.

Find the file PONG. C, which is in the Dynamic C SAMPLES folder. To run the program,
open it with the File menu (if it is not still open), compile it using the Compile menu, and
then run it by selecting Run in the Run menu. The STDIO window will open on the PC
and will display a small square bouncing around in a box.

This program shows that the CPU is working. The sample program described in
Section 5.2.3, “Run the PINGME.C Demao,” tests the TCP/IP portion of the board.

2.6 Where Do | Go From Here?

NOTE: If you purchased your BL2500 through a distributor or Rabbit partner, contact
the distributor or partner first for technical support.

If there are any problems at this point:
= Use the Dynamic C Help menu to get further assistance with Dynamic C.

= Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

= Use the Technical Support e-mail form at www.rabbit.com/support/.

If the sample program ran fine, you are now ready to go on to explore other BL2500 fea-
tures and develop your own applications.

Chapter 3, “Subsystems,” provides a description of the BL2500’s features, Chapter 4,
“Software,” describes the Dynamic C software libraries and introduces some sample pro-
grams. Chapter 5, “Using the TCP/IP Features,” explains the TCP/IP features.

User’'s Manual 15

http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbit.com/support/bb/index.html
http://www.rabbitsemiconductor.com/forums/

2.7 Using the Coyote In High-Vibration Environments

If you plan to use your Coyote in a high-vibration environment, the RabbitCore module
may be secured more solidly to a swage on the Coyote main board using a 2-56 x %"
machine screw as shown in Figure 7.

S

Figure 7. Secure RabbitCore Module to Coyote for High-Vibration Environments

16

Coyote (BL2500)

3. SUBSYSTEMS

Chapter 3 describes the principal subsystems for the Coyote.

* Digital 1/0
 Analog Features
* Serial Communication
* Memory
Figure 8 shows these Rabbit-based subsystems designed into the Coyote.

Digital
Inputs
Digital
SRAM] Outputs
Flash
I
Converter
Ethernet
(BL2500/BL2550)
. Analog *
RabbitCore Module Outputs i}

Figure 8. Coyote Subsystems

The memory and microprocessor are located on the RabbitCore module. If you have more
than one Coyote or other Rabbit products built around RabbitCore modules, take care not
to swap the RabbitCore modules since they contain system ID block information and cali-
bration constants that are unique to the board they were originally installed on. It is a good
idea to save the calibration constants should you need to replace a RabbitCore module in
the future. See Section 4.2.6, “Using System Information from the RabbitCore Module,”
for more information.

User’'s Manual 17

3.1 Coyote Pinouts

The Coyote pinouts are shown in Figure 9.

RabbitNet

J4 J5

Power
Supply

Digital
Outputs

[INOO

INO2

|_|O OOOOOOOIl ”O OOOOOOOIl | OOOOOOOIMh

Digital INO3
Inputs INO4
INO5
INO6
L INO7
GND
™ INO8 J12
INO9
.. IN10 Jg
Digital N1 =l
Inputs IN12 o pass
P IN13 S [r%er] Rs-485
IN14 o GND
— IN15 O | ™= Clocked
O | RxC CMOS
GND [e) cth
O | +33v %B:g
O |onp I DS2
T [T DSt

00000
EREREREN

|

J

Figure 9. Coyote Pinouts

TXE

o

(=)

[Je)

OO RxF
RO O] TxF

OO
oND|O O

RS-232

Ethernet

18

Coyote (BL2500)

3.1.1 Headers

Standard Coyote models are equipped with five 1 x 10 friction-lock connector terminals
(J1,J3,J9, J11, and J12) where pin 9 is removed to polarize the connector terminals, a 2 x 5
RS-232 signal header, a 2 x 5 programming header, and an RJ-45 Ethernet jack on the
RabbitCore module.

The RJ-45 jacks at J4 and J5 labeled RabbitNet are serial 1/0 expansion ports for use with
digital 1/0 and analog 1/0O boards currently being developed. The RabbitNet jacks do not
support Ethernet connections. Be careful to connect your Ethernet cable to the jack labeled
Ethernet.

Two 4-pin 0.156" friction-lock connector terminals at J7 and J8 are installed to supply
power (DCIN and +5 V) to the peripheral cards currently being developed for use with the
RabbitNet. Two 2-pin 0.156" friction-lock connector terminals at J2 and J10 are for power
supply and +K connections.

Table 3 lists Molex connector part numbers for the crimp terminals, housings, and polarizing
keys needed to assemble female friction-lock connector assemblies for use with their male
counterparts on the BL2500.

Table 3. Female Friction-Lock Connector Parts

Friction-Lock | Used with BL2500 | Molex Housing Molex Molex
Connector Headers Part Number | Crimp Terminals | Polarizing Keys
0.1"1x10 J1,33,J9,J11, J12 22-01-2107 08-50-0113 15-04-9209
0.156"1x 4 J7, 38 09-50-3041

08-50-0108 15-04-0219
0.156"1x 2 J2,J10 09-50-3021

User’'s Manual 19

3.2 Indicators
3.2.1 LEDs

The Coyote’s RabbitCore module has two LEDs next to the RJ-45 Ethernet jack, one to
indicate an Ethernet link (LNK) and one to indicate Ethernet activity (ACT).

User-programmable LEDs driven by the Rabbit 3000
e DS1—PB6 (yellow),

= DS2—PB7 (red),

= DS3—PA7 (yellow), and

= DS4—PAG (yellow)

are also provided.

20 Coyote (BL2500)

3.3 Digital I/0
3.3.1 Digital Inputs

The Coyote has 16 digital inputs, INOO-IN15. INOO-IN13 and IN15 are each protected
over a range of —36 V to +36 V, and IN14 is protected over a range of -36 VV to +5 V. The
inputs are factory-configured to be pulled up to +3.3 V; INOO-INO7 can also be pulled up
to +K or they can be pulled down to 0 V by changing a surface-mounted 0 Q resistor.
Figure 10 shows a sample digital input circuit. INOO-INO7 and IN15 are protected against
noise spikes by a low-pass filter composed of a 22 kQ series resistor and a 10 nF capacitor.

+K
R55
R56 R58 Factory
+3.3V
L TS Default
100 kQ
4/3 AAVAY;
22 kQ ™
Rabbit 3000
Microprocessor
GND JT_

Figure 10. Coyote Digital Inputs [Pulled Up—Factory Default]

Coyote series boards can be made to order in
volume with the digital inputs pulled up to +K or Normal Switching
pulled down to 0 V. Contact your authorized Rab- A"

bit distributor or your sales representative at for +40 V1
more information. e V]

Spikes

Spikes

The actual switching threshold between a zero
and a one is between 0.9 V and 2.3 V for all 16
inputs.

INOO-IN13 and IN15 are each fully protected

over a range of -36 V to +36 V, and can handle
short spikes of +40 V. IN14 is protected over a
range of -36 V to +5 V. —40 V1

+3.3 V1

Digital Input Voltage

Spikes

Figure 11. Coyote Digital Input
Protected Range

User’'s Manual 21

3.3.2 Digital Outputs

The Coyote has eight digital outputs, OUT0-OUT?7, each of which can sink up to 200 mA.
Figure 12 shows a wiring diagram for using the digital outputs in a sinking configuration.

SINKING OUTPUTS
+K

- Current
A LOAD l Flow

ouT

+ External
Power

= Supply

GND

Figure 12. Coyote Digital Outputs

+K is an externally supplied voltage of 3.3—40 V DC, and should be capable of delivering
all the load currents. Although a connection to a +K supply is not absolutely required with
sinking outputs, it is highly recommended to protect against current spikes when driving
inductive loads such as relays and solenoids.

Connect the positive +K supply to pin 1 of friction-lock connector terminal J10 and the
negative side of the supply to pin 2 of friction-lock connector terminal J10. A friction-lock
connector is recommended to connect this supply because the +K inputs are not protected
against reverse polarity, and serious damage to the Coyote may result if you connect this
supply backwards.

22 Coyote (BL2500)

3.4 Analog Features
3.4.1 A/D Converter

The A/D converter, shown in Figure 13, compares the DAO voltage to ADO, the voltage
presented to the A/D converter. DAO therefore cannot be used for the D/A converter when
the A/D converter is being used.

DAO too low

ADO

PB2

DAO

PB3

DAO too high

Figure 13. Schematic Diagram of A/D Converter

The A/D converter programs DAQ using a successive-approximation binary search until
DAO equals the A/D converter input voltage. That programmed DAO voltage is then
reported as the A/D converter value.

The A/D converter transforms the voltage at DAO into a 13.2 mV window around DAO.
Because the A/D converter circuit uses a 13.2 mV window, the accuracy is £6.6 mV. DAO
can range from 0.1 V to 3.1 V, which represents 227 steps of 13.2 mV. This represents an
accuracy of approximately 8 bits. Since the D/A converter is able to change the DAO out-
put in 3.22 mV steps, there are 930 steps over the range from 0.1 V to 3.1 V. This repre-
sents a resolution of more than 9 bits.

For example, if DAO is 1.650 V, the window in the A/D converter would be 1.643 V to
1.657 V. If ADO > 1.657 V, PB2 would read high and PB3 would read low. If 1.643 V <
ADO < 1.657 V, PB2 would read low and PB3 would read low. This is the case when the
A/D input is exactly the same as DAQ. If ADO < 1.643 V, PB2 would read low and PB3
would read high. The A/D converter input, ADO, is the same as DAO only when both PB2
and PB3 are low.

PB3 can be imagined to be a “DAOQ voltage is too high” indicator. If DAO is larger than the
analog voltage presented at ADO, then PB3 will be true (high). If this happens, the pro-
gram will need to reduce the DAQ voltage.

User’'s Manual 23

PB2 can be imagined to be a “DAO voltage is too low” indicator. If DAO is smaller than
the analog voltage presented at ADO, then PB2 will be true (high). If this happens, the pro-
gram will need to raise the DAQ voltage.

The A/D converter has no reference voltage. There is a relative accuracy between mea-
surements, but no absolute accuracy without calibration. This is because the +3.3 V supply
can vary £5%, the pulse-width modulated outputs might not reach the full 0 V and 3.3 V
rails out of the Rabbit 3000 microprocessor, and the gain resistors used in the circuit have
a 1% tolerance. For these reasons, each Coyote needs to be calibrated individually, with
the constants held in software, to be able to rely on an absolute accuracy. The Coyote has
this calibration support.

An A/D conversion takes less than 100 ms with a 29.4 MHz Coyote.
3.4.2 DIA Converters

Two D/A converter outputs, DAO and DAL, are supplied on the Coyote. These are shown
in Figure 14.

Figure 14. Schematic Diagram of D/A Converters

The D/A converters have no reference voltage. Although they may be fairly accurate from
one programmed voltage to the next, they do not have absolute accuracy. This is because
the +3.3 V supply can change £5%, the PWM outputs might not achieve the full 0V and 3.3V
rail out of the processor, and the gain resistors in the circuit have a 1% tolerance. The D/A
converters therefore need individual calibration, with the calibration constants held in
software before absolute accuracy can be relied on. The Coyote has such calibration.

Note that DAO is used to provide a reference voltage for the A/D converter and is unavail-
able for D/A conversion when the A/D converter is being used.

24 Coyote (BL2500)

Pulse-width modulation (PWM) is used for the D/A conversion. The digital signal, which
is either 0 V or 3.3 V, will be a train of pulses. This means that if the signal is taken to be
usually at 0 V (or ground), the pulses will be some 3.3 V pulses of varying width. The
voltage will be 0 V for a given time, then jump to 3.3 V for a given time, then back to
ground for a given time, then back to 3.3 V, and so on. A hardware filter that consists of a
resistor and capacitor averages the 3.3 V signal and the 0 V signal over time. Therefore, if
the time that the signal is at 3.3 V is equal to the time the signal is 0 V, the duty cycle will
be 50%, and the average signal will be 1.65 V. If the time at 3.3 V is only 25% of the time,
then the average voltage will be 0.825 V. Thus, the software needs to only vary the time
the signal is at 3.3 V with respect to the time the signal is at 0 V to achieve any desired
voltage between 0 and 3.3 V. It is very easy to do pulse-width modulation with the Rabbit
3000 microprocessor because the chip’s architecture includes an advanced PWM feature.

3.4.2.1 DAO and DAl

The RC networks supporting DAO and DA1 converts pulse-width modulated signals to an
analog voltage between 0 V and 3.3 V. A digital signal that varies with time is fed from
PF6 or PF7. The resolution of the DAO or DA1 output depends on the smallest increment
of time to change the on/off time (the time between 3.3 VV and 0 V). The Coyote uses the
Rabbit 3000°s Port F control registers to clock out the signal at a timer timeout. The dedi-
cated PWM hardware has 10 bits of resolution, and so that the voltage can be varied in
1/1024 increments. The resolution is thus about 3 mV (3.3 VV/1024).

R6 and R13 are present solely to balance the op amp input current bias. R4 and R15 help
to achieve a voltage close to ground for a 0% duty cycle.

A design constraint dictates how fast the PWM hardware must run. The hardware filter

has a resistor-capacitor filter that averages the 0 V and 3.3 V values. Its effect is to smooth
out the digital pulse train. It cannot be perfect, and so there will be some ripple in the output
voltage. The maximum signal decay between pulses will occur when DAL is set to 1.65 V.
This means the pulse train will have a 50% duty cycle. The maximum signal decay will be

el

165Vx|l-e

where RC = 2.5 ms, and t is the pulse on or off time (not the length of the total cycle).

The PWM hardware is driven at the Rabbit 3000 frequency divided by 2. The frequency

achievable with a 29.4 MHz clock is (29.4 MHz/2)/1024 = 14.3 kHz. Since the Rabbit 3000
PWM spreader enhances the frequency fourfold, the effective frequency becomes 57.4 kHz.
This is a period of 1/f = 17.4 us. For a 50% duty cycle, half of the period will be high (8.7
ps at 3.3 V), and half will be low (8.7 ps at 0 V). Thus, a 29.4 MHz Coyote hast = 8.7 ps.

User’'s Manual 25

Based on the standard capacitor discharge formula, this means that the maximum voltage
change will be

—8.7 Us
2.5 ms
165V x|1l-e = 573 mV

This is a ripple of approximately 6 mV peak-to-peak.

Table 4 lists typical uncalibrated DAO or DAL voltages measured for various duty cycle
values with a load larger than 1 MQ.

Table 4. Typical Uncalibrated DAO or DAL Voltages for Various Duty Cycles

Dut)zo/COI)yCIE Vo(l;c/e;ge Programmed Count
0 0.086 1
50 1.628 512
100 3.244 1023

The full D/A converter voltage range of 0-3.3 V cannot be realized because of the voltage
tolerances associated with the voltage regulator, the Rabbit 3000 PWM output, and the op-
amp rail. The circuit can achieve an actual voltage range of 0.1-3.3 V.

It is important to remember that the DAO or DAL output voltage will not be realized instan-
taneously after programming in a value. There is a settling time because of the RC time
constant (24.9 kQ x 100 nF), which is 2.5 ms. For example, the voltage at any given time is

V = Vp - (Vp = Vpa)el VRO

where V is the voltage at time t, Vp is the programmed voltage, Vpa is the last DAO or

DA1 output voltage from the D/A converter, and RC is the time constant (2.5 ms). The
settling will be within 99.326% (or within about 22 mV for a 3.3 V change in voltage)
after five time constants, or 12.5 ms. Six time constants, 15 ms, will allow settling to
within 99.75% (or to within about 8 mV for a 3.3 V change in voltage). Seven time con-
stants, 17.5 ms, will allow settling to within 99.91% (or to within about 3 mV fora 3.3V
change in voltage).

An LM324 op amp, which can comfortably source 10 mA throughout the D/A converter
range, drives the D/A converter output. If the output voltage is above 1V, the D/A con-
verter can comfortably sink 10 mA. Below 1V, the D/A converter can only sink a maxi-
mum of 100 pA.

To summarize, DAO and DAL are factory-calibrated, with the calibration constants stored
in flash memory. DAO and DAL can be programmed with a resolution of 3 mV and a
peak-to-peak ripple of 6 mV over the range from 0.1 to 3.1 V. The settling time to within 3
mV is 17.5 ms.

26 Coyote (BL2500)

3.5 Serial Communication

The Coyote has two RS-232 serial ports, which can be configured as one RS-232 serial
channel (with RTS/CTS) or as two RS-232 (3-wire) channels. The Coyote also has one RS-
485 serial channel, one clocked CMOS serial channel, and two SPI serial ports with RS-
422. There is also a CMOS serial channel that serves as the programming/debug port.

Table 5. Coyote Serial Port Configuration

Serial Port Use Header
A Programming Port J3 (RabbitCore module)
B RabbitNet SPI (RS-422) NETALS
C Clocked CMOS J9
D RS-485 J9
E RS-232 J6
F RS-232 J6

The RS-232 and RS-485 serial ports operate in an asynchronous mode up to the baud rate
of the system clock divided by 8. An asynchronous port can handle 7 or 8 data bits. A 9th
bit address scheme, where an additional bit is sent to mark the first byte of a message, is
also supported. The CMOS serial channel and the two RS-422 SPI ports can also be oper-
ated in the clocked serial mode. In this mode, a clock line synchronously clocks the data in
or out. Either of the two communicating devices can supply the clock for the clocked
CMOS channel. As the master, the Coyote must supply the clock for the SPI ports.

The Coyote boards use all six serial ports. Serial Port A is used in the clocked serial mode
to provide cold-boot, download, and emulation functions. Serial Port B is multiplexed
between the two SPI RS-422 RabbitNet ports, SPI_1 and SPI_2. Clocked Serial Port C is
available as a basic CMOS voltage-level serial port. Serial Port D is used for RS-485 com-
munication, and Serial Ports E and F are used for RS-232 communication.

User’'s Manual 27

3.5.1 RS-232

The Coyote RS-232 serial communication is supported by an RS-232 transceiver. This
transceiver provides the voltage output, slew rate, and input voltage immunity required to
meet the RS-232 serial communication protocol. Basically, the chip translates the Rabbit
3000°’s CMOS/TTL signals to RS-232 signal levels. Note that the polarity is reversed in an
RS-232 circuit so that a +3.3 V output becomes approximately -6 V and 0 V is output as
+6 V. The RS-232 transceiver also provides the proper line loading for reliable communi-
cation.

RS-232 can be used effectively at the Coyote’s maximum baud rate for distances of up to
15 m.

RS-232 flow control on an RS-232 port is initiated in software using the
serXflowcontrolOn function call from RS232_L 1B, where X is the serial port (E or F).
The locations of the flow control lines are specified using a set of five macros.

SERX_RTS_ PORT—Data register for the parallel port that the RTS line is on (e.g., PGDR).
SERX_RTS_SHADOW—Shadow register for the RTS line's parallel port (e.g., PGDRShadow).
SERX_RTS_ BIT—The bit number for the RTS line.

SERX_CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).
SERX_ CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports E and F is illustrated in the fol-
lowing sample code.

#define EINBUFSIZE 15
#define EOUTBUFSIZE 15

#define FINBUFSIZE 15
#define FOUTBUFSIZE 15

#ifndef _232BAUD
#define _232BAUD 115200
#endi

main(Q{
serEopen(_232BAUD) ;

serFopen(_232BAUD) ;
serEwrFlush(Q);
serErdFlush(Q);
serFwrFlush(Q);
serFrdFlush(Q);

28 Coyote (BL2500)

3.5.2 RS-485

The Coyote has one RS-485 serial channel, which is connected to the Rabbit 3000 Serial

Port D through an RS-485 transceiver. The half-duplex communication uses PA4 to con-

trol the transmit enable on the communication line. Using this scheme a strict master/slave
relationship must exist between devices to insure that no two devices attempt to drive the
bus simultaneously.

Serial Port D is configured in software for RS-485 as follows.

#define ser485open serDopen
#define ser485close serDclose
#define ser485wrFlush serDwrFlush
#define ser485rdFlush serDrdFlush
#define ser485putc serDputc
#define ser485getc serDgetc

#define DINBUFSIZE 15
#define DOUTBUFSIZE 15

#ifndef _485BAUD
#define _485BAUD 115200
#endi

The configuration shown above is based on circular buffers. RS-485 configuration may
also be done using functions from the PACKET . LB library.

The Coyote can be used in an RS-485 multidrop network spanning up to 1200 m (4000 ft),
and there can be as many as 32 attached devices. Connect the 485+ to 485+ and 485- to
485- using single twisted-pair wires as shown in Figure 15. Note that a common ground is
recommended.

/

RS485+
GND [—
GND

RS-485— [~_

RS485+ |[—
GND [—

RS-485— -
RS-485—
RS485+

Figure 15. Coyote Multidrop Network

User’'s Manual 29

The Coyote comes with a 220 Q termination resistor and two 681 Q bias resistors installed
and enabled.

The load these bias and termination resistors present to the RS-485 transceiver limits the
number of Coyotes in a multidrop network to one master and nine slaves, unless the bias
and termination resistors are removed. When using more than 10 Coyotes in a multidrop
network, or when you need the full common-mode immunity per the RS-485 specification,
leave the 681 Q bias resistors in place on the master Coyote, and leave the 220 Q termina-
tion resistors in place on the Coyote at each end of the network.

510 OOOOOOOI"

us
485+ R20

termination 2200

"0 OOOOOOOI"

.
S

e
[]
o
o
o
o
o

4 O

| O

2 o)

R20 R19

Figure 16. RS-485 Termination and Bias Resistors

30 Coyote (BL2500)

3.5.3 Programming Port

The Coyote’s serial programming port is accessed via the 10-pin programming header on
the RabbitCore module or over an Ethernet connection via the RabbitLink EG2110. The
programming port uses the Rabbit 3000°s Serial Port A for communication. Dynamic C
uses the programming port to download and debug programs.

The programming port is also used for the following operations.
= Cold-boot the Rabbit 3000 on the RabbitCore module after a reset.

= Remotely download and debug a program over an Ethernet connection using the
RabbitLink EG2110.

= Fast copy designated portions of flash memory from one Rabbit-based board (the
master) to another (the slave) using the Rabbit Cloning Board.

Alternate Uses of the Programming Port

All three clocked Serial Port A signals are available as

= asynchronous serial port

= an asynchronous serial port, with the clock line usable as a general CMOS 1/0 pin

The programming port may also be used as a serial port via the DIAG connector on the
programming cable.

In addition to Serial Port A, the Rabbit 3000 startup-mode (SMODEO, SMODEL), status,
and reset pins are available on the programming port.

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.
2. It can be driven low during an interrupt acknowledge cycle.
3. It can also serve as a general-purpose output.

The /RESET _IN pin is an external input that is used to reset the Rabbit 3000 and the
RCM3400 onboard peripheral circuits. The serial programming port can be used to force a
hard reset on the RCM3400 by asserting the /RESET _IN signal.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.
3.5.4 RabbitNet Ports

The RJ-45 jacks labeled RabbitNet are multiplexed clocked SPI RS-422 serial 1/0 expan-
sion ports for use with peripheral cards currently being developed. The RabbitNet jack
does not support Ethernet connections.

User’'s Manual 31

3.5.5 Ethernet Port

Figure 17 shows the pinout for the RJ-45 Ethernet port (header J4 on the RabbitCore mod-
ule). Note that some Ethernet connectors are numbered in reverse to the order used here.

ETHERNET
' 1@8
1. E_Tx+
2. E_Tx—
3. E_Rx+
6. E_Rx-
RJ-45 Plug RJ-45 Jack

Figure 17. RJ-45 Ethernet Port Pinout

Two LEDs are placed next to the RJ-45 Ethernet jack, one to indicate an Ethernet link
(LNK) and one to indicate Ethernet activity (ACT).

The transformer/connector assembly ground is connected to the RabbitCore module
printed circuit board digital ground via a 0 Q resistor, R31, as shown in Figure 18.

RJ-45 Ethernet Plug

I

R31
Board Chassis

Ground = = Ground

Figure 18. Isolation Resistor R31
on RabbitCore Module

The RJ-45 connector is shielded to minimize EMI effects to/from the Ethernet signals.

32 Coyote (BL2500)

3.6 Serial Programming Cable

The programming cable is used to connect the serial programming port of the Coyote to a
PC serial COM port. The programming cable converts the RS-232 voltage levels used by
the PC serial port to the CMOS voltage levels used by the Rabbit 3000.

When the PROG connector on the programming cable is connected to the programming
header on the Coyote’s RabbitCore module, programs can be downloaded and debugged
over the serial interface.

The DIAG connector of the programming cable may be used on the programming header on
the Coyote’s RabbitCore module with the Coyote operating in the Run Mode. This allows
the programming port to be used as a regular serial port.

3.6.1 Changing Between Program Mode and Run Mode

The Coyote is automatically in Program Mode when the PROG connector on the pro-
gramming cable is attached, and is automatically in Run Mode when no programming
cable is attached. When the Rabbit 3000 is reset, the operating mode is determined by the
status of the SMODE pins. When the programming cable’s PROG connector is attached,
the SMODE pins are pulled high, placing the Rabbit 3000 in the Program Mode. When the
programming cable’s PROG connector is not attached, the SMODE pins are pulled low,
causing the Rabbit 3000 to operate in the Run Mode.

Program Mode Run Mode

0000000 lu

uod oo Od
oL

Programming Cable

| O
"l O
1| O
"l O
o
1 o
O

RESET BL2500 when changing mode:

Cycle power off/fon

or short out RESET pads on other side of board
after removing or attaching programming cable.

Figure 19. Coyote Program Mode and Run Mode Setup

A program “runs” in either mode, but can only be downloaded and debugged when the
Coyote is in the Program Mode.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information on the pro-
gramming port and the programming cable.

User’s Manual 33

3.7 Other Hardware
3.7.1 Clock Doubler

The Coyote takes advantage of the Rabbit 3000 microprocessor’s internal clock doubler.
A built-in clock doubler allows half-frequency crystals to be used to reduce radiated
emissions. The 29.4 MHz frequency specified for the Coyote is generated using a
14.7456 MHz crystal. The clock doubler will not work for crystals with a frequency
above 26.7264 MHz.

The clock doubler may be disabled if 29.4 MHz clock speeds are not required. Disabling
the Rabbit 3000 microprocessor’s internal clock doubler will reduce power consumption
and further reduce radiated emissions. The clock doubler is disabled with a simple config-
uration macro as shown below.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Add the line CLOCK_DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 to
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are
in the project file where you defined the macro.

NOTE: Disabling the clock doubler will degrade the A/D and D/A conversion.

34 Coyote (BL2500)

3.7.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. By
default, the spectrum spreader is on automatically, but it may also be turned off or set to a
stronger setting. The means for doing so is through a simple configuration macro as shown
below.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.

2. Normal spreading is the default, and usually no entry is needed. If you need to specify
normal spreading, add the line

ENABLE_SPREADER=1
For strong spreading, add the line
ENABLE_SPREADER=2
To disable the spectrum spreader, add the line
ENABLE_SPREADER=0
NOTE: The strong spectrum-spreading setting is not recommended since it may limit

the maximum clock speed or the maximum baud rate. It is unlikely that the strong set-
ting will be used in a real application.

3. Click OK to save the macro. The spectrum spreader will now remain off whenever you
are in the project file where you defined the macro.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information
on the spectrum-spreading setting and the maximum clock speed.

User’s Manual 35

3.8 Memory
3.8.1 SRAM

The Coyote’s RabbitCore module is designed to accept 128K to 512K of SRAM packaged
in an SOIC case. The standard Coyote’s RabbitCore modules come with 128K of SRAM.

3.8.2 Flash Memory

The Coyote is also designed to accept 128K to 512K of flash memory. The standard
Coyote’s RabbitCore modules comes with one 256K flash memory.

NOTE: Rabbit recommends that any customer applications should not be constrained by
the sector size of the flash memory since it may be necessary to change the sector size
in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead, use a
portion of the “user block” area to store persistent data. The functions writeUserBlock
and readUserBlock are provided for this. Refer to the Rabbit 3000 Microprocessor
Designer’s Handbook for additional information.

A Flash Memory Bank Select jumper configuration option based on 0 Q surface-mounted
resistors exists at header JP2 on the RabbitCore module. This option, used in conjunction
with some configuration macros, allows Dynamic C to compile two different co-resident
programs for the upper and lower halves of the 256K flash in such a way that both pro-
grams start at logical address 0000. This is useful for applications that require a resident
download manager and a separate downloaded program. See Technical Note 218, Imple-
menting a Serial Download Manager for a 256K Flash, for details.

36 Coyote (BL2500)

4. SOFTWARE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with single-board computers and other devices

based on the Rabbit® microprocessor.

Chapter 4 provides the libraries, function calls, and sample pro-
grams related to the Coyote.

4.1 Running Dynamic C

You have a choice of doing your software development in the flash memory or in the static
RAM included on the Coyote. The flash memory and SRAM options are selected with the
Options > Project Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fitin RAM.

NOTE: An application can be developed in RAM, but cannot run standalone from RAM
after the programming cable is disconnected. Standalone applications can only run from
flash memory.

NOTE: Do not depend on the flash memory sector size or type. Due to the volatility of
the flash memory market, the Coyote and Dynamic C were designed to accommodate
flash devices with various sector sizes.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 95, 98, 2000,
NT, Me, and XP. Programs can be downloaded at baud rates of up to 460,800 bps after the
program compiles.

User’'s Manual 37

Dynamic C has a number of standard features:
= Full-feature source and/or assembly-level debugger, no in-circuit emulator required.
= Royalty-free TCP/IP stack with source code and most common protocols.

= Hundreds of functions in source-code libraries and sample programs:

» Exceptionally fast support for floating-point arithmetic and transcendental functions.
» RS-232 and RS-485 serial communication.
» Analog and digital 1/O drivers.

» 12C, SPI, GPS, encryption, file system.
» LCD display and keypad drivers.
= Powerful language extensions for cooperative or preemptive multitasking

= Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

= Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

= Standard debugging features:

» Breakpoints—Set breakpoints that can disable interrupts.
» Single-stepping—Step into or over functions at a source or machine code level, uC/OS-Il aware.

» Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

P Wiatch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

» Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

» Stack window—shows the contents of the top of the stack.
» Hex memory dump—displays the contents of memory at any address.

» STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.

38 Coyote (BL2500)

4.1.1 Upgrading Dynamic C
4.1.1.1 Patches and Bug Fixes

Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
site at www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

The default installation of a patch or bug fix is to install the file in a directory (folder) dif-
ferent from that of the original Dynamic C installation. Rabbit recommends using a differ-
ent directory so that you can verify the operation of the patch without overwriting the
existing Dynamic C installation. If you have made any changes to the BIOS or to libraries,
or if you have programs in the old directory (folder), make these same changes to the
BIOS or libraries in the new directory containing the patch. Do not simply copy over an
entire file since you may overwrite a bug fix. Once you are sure the new patch works
entirely to your satisfaction, you may retire the existing installation, but keep it available
to handle legacy applications.

4.1.1.2 Upgrades

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits. Dynamic C is a complete software
development system, but does not include all the Dynamic C features. Rabbit also offers
add-on Dynamic C modules containing the popular uC/OS-II real-time operating system,
as well as PPP, Advanced Encryption Standard (AES), and other select libraries. In addi-
tion to the Web-based technical support included at no extra charge, a one-year telephone-
based technical support module is also available for purchase.

User’s Manual 39

http://www.rabbit.com/support/

4.1.2 Accessing and Downloading Dynamic C Libraries

The libraries needed to run the Coyote are available on the CD included with the Develop-
ment Kit, or they may be downloaded from http://www.rabbit.com/support/downloads/ on
Rabbit’s Web site. You may need to download upgraded or additional libraries to run
selected RabbitNet peripheral cards.

When downloading the libraries from the Web site, click on the product-specific links
until you reach the links for the BL2500 download. Once you have downloaded the self-
extracting ZIP file, the following instructions will help you to add the libraries and sample
programs to your existing Dynamic C installation.

1. Double-click on the file name of the self-extracting ZIP file.
2. The extracting program will prompt you for a folder in which to place the files.

3. Enter the drive letter and the name of the Dynamic C folder where the libraries and
samples are to be added, for example, C:\DCRabbit801.

4. Click the Unzip button.

The files from the ZIP directory will then load automatically in your Dynamic C folder.
Additional folders will be created as needed, and the LIB.DIR, DEFAULT . H, and BOARD-
TYPES. L1B files will be overwritten with the information needed to use the Coyote.

You will be able to use the revamped Dynamic C installation with the Coyote and you will
continue to be able to use this installation with all the other Rabbit products you were able
to use before.

40 Coyote (BL2500)

http://www.rabbit.com/support/downloads/

4.2 Sample Programs

Sample programs are provided in the Dynamic C SAMPLES folder. The sample program
PONG . C demonstrates the output to the STDIO window. The various directories in the
SAMPLES folder contain specific sample programs that illustrate the use of the correspond-
ing Dynamic C libraries.

The SAMPLES\BL2500 folder provides sample programs specific to the Coyote. Each
sample program has comments that describe the purpose and function of the program. Fol-
low the instructions at the beginning of the sample program.

To run a sample program, open it with the File menu (if it is not still open), compile it using
the Compile menu, and then run it by selecting Run in the Run menu. The Coyote must be
in Program mode (see Section 3.6, “Serial Programming Cable”) and must be connected

to a PC using the programming cable as described in Section 2.2, “BL2500 Connections.”

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.
4.2.1 General Coyote Operation
The following sample programs are found in the SAMPLES\BL2500.

= CONTROLLED.C—Uses the D/A converters to vary the brightness of the LEDs on the
Demonstration Board.

= FLASHLEDS.C—Uses cofunctions and costatements to flash LEDs on the Coyote at
different intervals.

e TOGGLESWITCH.C—Uses costatements to detect switches presses on the Demonstra-
tion Board with press and release debouncing. Corresponding LEDs will turn on or off.

4.2.2 Digital I1/10
The following sample programs are found in the 10 subdirectory in SAMPLES\BL2500.

e DIGIN.C—This program demonstrates the use of the digital inputs and the function
call digIn() using the Demonstration Board to see an input channel toggle from
HIGH to LOW when pressing a pushbutton on the Demonstration Board.

= DIGOUT.C—This program demonstrates the use of the digital outputs and the function
call digout() using the Demonstration Board to see the logic levels of output chan-
nels in the STDIO window and the state of the corresponding LEDs on the Demonstra-
tion Board.

4.2.3 Serial Communication
The following sample programs are found in the SERIAL subdirectory in SAMPLES\BL2500.

= FLOWCONTROL .C—Demonstrates hardware flow control by sending a pattern of *
characters out of Serial Port E (PG6) at115,200 bps. One character at a time is received
from PG6 and is displayed. In this example, PG3 is configured as the CTS input,
detecting a clear to send condition, and PG2 is configured as the RTS output, signaling
a ready condition. This demonstration can be performed with either one or two boards.

User’'s Manual 41

= SIMPLE3WIRE.C—Demonstrates basic initialization for a simple RS-232 3-wire loop-
back displayed in the STDIO window.

= SWITCHCHAR.C—This program transmits and then receives an ASCII string on Serial
Ports E and F when a switch is pressed. It also displays the serial data received from
both ports in the STDIO window.

= SIMPLE485MASTER.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a slave. The slave will send back converted upper case letters back
to the master Coyote and display them in the STDIO window. Use SIMPLESLAVE.C to
program the slave.

e SIMPLE485SLAVE.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a master Coyote. The slave will send back converted upper case
letters back to the master Coyote and display them in the STDIO window. Use
SIMPLEMASTER. C to program the master Coyote.

4.2.4 A/D Converter Inputs
The following sample programs are found in the ADC subdirectory in SAMPLES\BL2500.

= ADO.C—This program reads and displays the voltage on channel ADO and its equiva-
lent value to the STDIO window.

= ADCCALIB.C—This program demonstrates how to recalibrate one single-ended A/D
converter channel using two known voltages to generate constants that are then rewritten
into the user block data area.

= COF_ANAIN.C—This program demonstrates the use of the analog input driver as a
cofunction. Connect DAL to ADO to provide an input voltage. When the program runs,
it will read the input voltage ten times while another costate is executed concurrently.
The values will be printed out at the end of the program.

= DA2AD.C—This program allows the user to input a voltage in the Dynamic C STDIO
window for DA1 to output. The user needs to connect DAL to ADOQ. The program will
display the voltage read in the STDIO window.

4.2.5 DI/A Converter Outputs
The following sample program is found in the DAC subdirectory in SAMPLES\BL2500.

= DAC.C—Demonstrates pulse-width modulation as an analog output voltage by display-
ing the voltage entered and measuring the voltage output.

= DACCALIB.C—Demonstrates how to recalibrate one single-ended analog output chan-
nel using two known voltages to generate constants for that channel that are then rewrit-
ten into the user block data area.

= PWM.C—Demonstrates pulse-width modulation as an analog output.

42 Coyote (BL2500)

4.2.6 Using System Information from the RabbitCore Module

Calibration constants for the A/D converter are stored in the simulated EEPROM area of
the flash memory. You may find it useful to retrieve the calibration constants and save
them for future use, for example, if you should need to replace the RabbitCore module on
the Coyote.

The following sample programs, found in the ADC subdirectory in SAMPLES\BL2500\,
illustrate how to save or retrieve the calibration constants. Note that both sample programs
prompt you to use a serial number for the Coyote. This serial number can be any 5-digit
number of your choice, and will be unique to a particular Coyote. Do not use the MAC
address on the bar code label of the RabbitCore module attached to the Coyote since you
may at some later time use that particular RabbitCore module on another Coyote, and the
previously saved calibration data would no longer apply.

= UPLOADCALIB.C—This program demonstrates reading calibration constants from a
controller's user block in flash memory and transmitting the file using a serial port with
a PC serial utility such as Tera Term.

NOTE: Use the sample program DNLOADCAL IB . C to retrieve the data and rewrite it to
the single-board computer.

= DNLOADCALIB.C—This program demonstrates how to retrieve your analog calibration
data to rewrite them back to simulated EEPROM in flash using a serial utility such as
Tera Term.

NOTE: Calibration data must be saved previously in a file by the sample program
UPLOADCALIB.C.

NOTE: In addition to loading the calibration constants on the replacement RabbitCore
module, you will also have to add the product information for the Coyote to the ID block
associated with the RabbitCore module. The sample program WRITE_IDBLOCK.C,
available on the Rabbit Web site at www.rabbit.com/support/feature_downloads.shtml,
provides specific instructions and an example.

4.2.7 Real-Time Clock

If you plan to use the real-time clock functionality in your application, you will need to set
the real-time clock. Set the real-time clock using the SETRTCKB . C sample program from
the Dynamic C SAMPLES\RTCLOCK folder, using the onscreen prompts. The
RTC_TEST.C sample program in the Dynamic C SAMPLES\RTCLOCK folder provides
additional examples of how to read and set the real-time clock.

User’s Manual 43

http://www.rabbit.com/support/downloads/

4.3 Coyote Libraries

With Dynamic C running, click File > Open, and select Lib. The following list of
Dynamic C libraries and library directories will be displayed. Two library directories
provide libraries of function calls that are used to develop applications for the Coyote.

= BL2500—libraries associated with features specific to the Coyote. The functions in the
BL25xx. L IB library are described in Section 4.4, “Coyote Function Calls.”.

e RN_CFG_BL25.LI1B—used to configure the BL2500 for use with RabbitNet peripheral
cards.

e TCPIP—libraries specific to using TCP/IP functions.

Other generic functions applicable to all devices based on the Rabbit 3000 microprocessor
are described in the Dynamic C Function Reference Manual.

44 Coyote (BL2500)

4.4 Coyote Function Calls

4.4.1 Board Initialization

void brdinit (void);

Call this function at the beginning of your program. This function initializes Parallel Ports A through G
for use with the Coyote. The ports are initialized according to Table A-3.

Summary of initialization
1. RS-485 is not initialized.
2. RS-232 is not initialized.
3. Unused configurable 1/0 are either pulled-up inputs or outputs set high.

4. PWM for DAO and DA1 set to 57,600 Hz, and output voltage is zero. Uses functions
pwm_init(), pwmOutConfig(), and pwmOut().

5. Calibration constants for analog channels ADO, DAO, and DAL are read from flash user block.

User’s Manual 45

4.4.2 Digital I/O

void digOut(int channel, int value);

Sets the state of digital outputs OUT0-OUT7, whereOUTO0-OUT?7 are sinking outputs.
A run-time error will occur for the following conditions:
1. channel or value is out of range.
2. brdInitwas not called first.
PARAMETERS
channel is the digital output channels (0-7)

value is the output value (0 or 1)

RETURN VALUE
None.

SEE ALSO
digln, digBankOut

void digBankOut(int bank, int value);

Writes the state of a block of designated digital output channels. The bank consists of OUT0-OUT7.
This call is faster than setting the individual channels, but does not output states simultaneously. States
are written in succession from OUT7-OUTO.

A run-time error will occur for the following conditions:
1. bank or value is out of range.
2. brdInit was not called first.
PARAMETERS
bank is 0 for the bank of digital output channels (0-7)
value is an 8-bit output value, where each bit corresponds to one channel. OUTO is the least significant
bit 0
RETURN VALUE
None.
EXAMPLE
To send out odd channels high:
void digBankOut(0, Oxaa);

SEE ALSO
digOut, digBankln

46 Coyote (BL2500)

int digIn(int channel);
Reads the state of an input channel (INOO-IN15).
A run-time error will occur for the following conditions:
1. channel out of range.
2. brdInit was not executed before executing dign.

PARAMETER
channel is the input channel number (0-15)

RETURN VALUE
The logic state of the input (0 or 1).

SEE ALSO
digOut, digBankln

int digBankIn(int bank);

Reads the state of a block of designated digital input channels. One bank consists of INO-INO7, and the
other bank consists of INO8—IN15. This call is faster than reading the individual channels, but does not
read the states simultaneously. States are read in succession from IN15-INO8 or from INO7-INQO.

A run-time error will occur for the following conditions:
1. bank is out of range.
2. brdInit was not called first.

PARAMETER
bank is 0 for the bank of digital inputs INOO-INO7, 1 for the bank of digital inputs INOS—IN15

RETURN VALUE
An input value in the lower byte, where each bit corresponds to one channel. INOO and INO8 are in the

bit 0 place.

EXAMPLE
To read inputs 8 to 15:
int digBankIn(l);

SEE ALSO
digln, digBankOut

User’'s Manual

47

4.4.3 LEDs

void ledOut(int led, int value);

LED on/off control.

PARAMETERS
I ed is the LED to control
0 =LED DS1
1=LED DS2

2=LED DS3
3=LED DS4

value is used to control whether the LED is on or off
0=0OFF
1=0ON

RETURN VALUE
None.

48

Coyote (BL2500)

4.4.4 Serial Communication

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232_LIB library provides a set of circular-buffer-based serial functions. The
PACKET . LIB library provides packet-based serial functions where packets can be delim-
ited by the 9th bit, by transmission gaps, or with user-defined special characters. Both
libraries provide blocking functions, which do not return until they are finished transmit-
ting or receiving, and nonblocking functions, which must be called repeatedly until they
are finished. For more information, see the Dynamic C Function Reference Manual and
Technical Note 213, Rabbit Serial Port Software.

Use the following function calls with the Coyote.

void ser485Tx(void);

Enables the RS485 transmitter. Transmitted data get echo'ed back into the receive data buffer. These
echo'ed data could be used to know when to disable the transmitter by using one of the following
methods:

Byte mode—disable the transmitter after the same byte that is transmitted is detected in the receive
data buffer.

Block data mode—disable the transmitter after the same number of bytes transmitted is detected in the
receive data buffer.

RETURN VALUE
None.

SEE ALSO
ser485Rx, serXopen

void ser485Rx(void);

Disables the RS-485 transmitter. This puts the Coyote in listen mode, which allows it to receive data
from the RS-485 interface.

RETURN VALUE
None.

SEE ALSO
ser485Tx, serXopen

User’s Manual 49

4.4.5 Analog Inputs

unsigned int analn(unsigned int channel);

Uses D/A converter channel DAO to search through the full voltage range for a match to the input voltage
on channel ADO. This is done using a 10-step successive-approximation binary search, which nominally
takes 86 ms.

Call pwmOutConfig() and pwm_init() before using this function. An exception error will occur if
these functions were not been called previously.

NOTE: DAO should not be used when ADO is in use.

PARAMETER
channel is 0 for channel ADO.

RETURN VALUE
An integer value between 0 and 1023 that corresponds to a voltage between 0.0 and 3.3 V on the analog
input channel.

-1 if the return value is out of range.

SEE ALSO
cof_analn, analnVolts

void cof_analn(int channel);

This function is the cofunction version of the analog input for analog input channel ADO. This version
will “yield” on each step approximation in a costate, and will take 10 steps to complete the A/D
conversion. The function will also process costates while waiting for each approximation to settle.

NOTE: All the restrictions for analn apply to cof_analn.

PARAMETERS
channel is 0 for channel ADO

RETURN VALUE
An integer value between 0 and 1023 that corresponds to a voltage between 0.0 and 3.3 V on the analog
input channel.

-1 if the return value is out of range.

SEE ALSO
analn

50 Coyote (BL2500)

float analnVolts(unsigned iInt channel);

Reads the voltage of a single-ended analog input channel using D/A channel DAO for comparison to find
a match to the input voltage on channel ADO. This is done using a 10-step successive-approximation
binary search, which nominally takes 86 ms.

Call pwmOutConfig() and pwm_init() before using this function. An exception error will occur if
these functions were not been called previously.

NOTE: DAO should not be used when ADO is in use.

PARAMETER
channel is 0 for channel ADO

RETURN VALUE
A voltage value between 0 and 3.1 V for the analog input channel.
ADOVERFLOW is returned (defined macro = -4096) on overflow or if the return value is out of range.

SEE ALSO
analn, pwmOutConfig, pwm_init

int analnCalib(int channel, int valuel,
float voltsl,int value2, float volts2);

Calibrates the response of the A/D converter channel as a linear function using the two conversion points
provided. Values are calculated and placed into global table _adcCal ibS for analog inputs to be stored
later into simulated EEPROM using the function analnEEWr ().

Each channel will have a linear constant and a voltage offset.
PARAMETERS
channel is 0 for channel ADO
valuel is the first A/D converter value (0-1023), usually a value of 310 that corresponds to 1.0 V
voltsl is the voltage corresponding to the first A/D converter value (0-3.3 V)
value2 is the second A/D converter value (0-1023), usually a value of 930 that corresponds to 3.0 V
volts2 is the voltage corresponding to the second A/D converter value (0-3.3 V)
RETURN VALUE
0 if successful
-1 if not able to make calibration constants

SEE ALSO
analn, analnEERd, analnEEWr

User’'s Manual 51

int analnEERd(unsigned int channel);

Reads the calibration constants, gain, and offset for an input based on its designated channel code
position into global table _adcCal 1bS. Use the sample program USERBLOCK _INFO.C in
SAMPLES\USERBLOCK to get the addresses reserved for the calibration data constants and the
addresses available for use in your program.

NOTE: This function cannot be run in RAM.

PARAMETERS
channel is 0 for channel ADO

RETURN VALUE
0 if successful

-1 if invalid address or range

SEE ALSO
analnEEWr, analnCalib

int analnEEWr(unsigned int channel);

Writes the calibration constants, gain, and offset for an input based on its designated channel code
position into global table _adcCal 1bS. Use the sample program USERBLOCK _INFO.C in
SAMPLES\USERBLOCK to get the addresses reserved for the calibration data constants and the
addresses available for use in your program.

NOTE: This function cannot be run in RAM.

PARAMETER
channel is 0 for channel ADO

RETURN VALUE
0 if successful

-1 if invalid address or range

SEE ALSO
analnEERd, analnCalib

52 Coyote (BL2500)

4.4.6 Analog Outputs

unsigned long pwm_init(unsigned long frequency);

This function from the R3000. L IB library in Lib\Rabbit3000 sets the base frequency for the
PWM pulses and enables the PWM driver on all four channels. The base frequency is the frequency
without pulse spreading. Pulse spreading will increase the frequency by a factor of 4.

PARAMETER
frequency is the frequency (in Hz)

RETURN VALUE
Actual frequency set. This will be the closest possible match to the requested frequency.

void pwmOutConfig(unsigned int channel,
Int pwmoption);

Option flags are used to enable features on an individual PWM channels. Use pwm_init() to set the
frequency.

An exception error will occur if brd Init() has not been called previously.
PARAMETERS
channel is the PWM output channel to set: 0 for DAQ, 1 for DAL.
pwmoption is used to set the PWM options as a combination of the following bit masks:
PWM_NORMAL—sets normal push-pull logic output.

PWM_SPREAD—Set pulse spreading. The duty cycle is spread over four separate pulses to increase
the pulse frequency. Use this option for A/D and D/A conversions.

PWM_OPENDRA IN—sets the PWM output pin to be open-drain. This mask is usually not used.

RETURN VALUE
None.

SEE ALSO
pwm_init, brdInit

User’s Manual 53

int pwmOut(unsigned int channel, iInt rawdata);

Sets a voltage (0 to V4q) on an analog output channel given a data point on the 1024 clock count cycle.

Call pwmOutConfig() and pwm_init() before using this function. (An exception error will occur
if these functions were not been called previously.)

PARAMETERS
channel is the PWM output channel to write: 0 for DAQ, 1 for DAl

rawdata is data value (0-1024) for a 1024 clock count cycle. The value may be calculated using the
percent duty cycle value (percentage that is on or high) of the 1024 clock count cycle, for example,
0.25*1024.

RETURN VALUE
0 if successful

SEE ALSO
pwmOutConfig, pwm_init

void pwmOutVolts(unsigned int channel,
float voltage);

Sets the voltage of an analog output channel by using the previously set calibration constants to calculate the cor-
rect data values.

Call pwmOutConfig() and pwm_init() before using this function. (An exception error will occur
if these functions were not been called previously.)

PARAMETERS
channel is the output channel 0 or 1 to write: 0 for DAO, 1 for DA1

voltage is the voltage desired on the output channel (0-3.3 V)

RETURN VALUE
None.

SEE ALSO
pwmOut, pwmOutConfig, pwm_init

54 Coyote (BL2500)

int anaOutCalib(int channel, iInt valuel,
float voltsl,int value2, float volts2);
Calibrates the response of the D/A converter channel as a linear function using the two conversion points

provided. Values are calculated and placed into global table _dacCal ibS for analog inputs to be stored
later into simulated EEPROM using the function anaOutEEWr ().

Each channel will have a linear constant and a voltage offset.

PARAMETERS
channel is the output channel 0 or 1: 0 for DAO, 1 for DAl
valuel is the first D/A converter value (0-1023), usually a value of 310 that corresponds to 1.0 V
voltsl is the voltage corresponding to the first D/A converter value (0-3.3 V or V)
value2 is the second D/A converter value (0-1023), usually a value of 930 that corresponds to 3.0 V
volts2 is the voltage corresponding to the second D/A converter value (0-3.3 V or V)

RETURN VALUE
0 if successful

-1 if not able to make calibration constants

SEE ALSO
pwmOut, anaOutEERd, anaOutEEWr

int anaOutEERd(unsigned int channel);

Reads the calibration constants, gain, and offset for an output based on its designated channel code
position into global table _adcCal ibS. Use the sample program USERBLOCK_INFO.C in
SAMPLES\USERBLOCK to get the addresses reserved for the calibration data constants and the
addresses available for use in your program.

NOTE: This function cannot be run in RAM.

PARAMETERS
channel is the output channel 0 or 1: 0 for DAO, 1 for DAl

RETURN VALUE
0 if successful

-1 if invalid address or range

SEE ALSO
anaOutEEWr, anaOutCalib

User’s Manual 55

int anaOutEEWr(unsigned int channel);

Writes the calibration constants, gain, and offset for an output based on its designated channel code
position into global table _adcCal 1bS. Use the sample program USERBLOCK _INFO.C in

SAMPLES\USERBLOCK to get the addresses reserved for the calibration data constants and the
addresses available for use in your program.

NOTE: This function cannot be run in RAM.

PARAMETER
channel is the output channel 0 or 1: 0 for DAQ, 1 for DAl

RETURN VALUE
0 if successful

-1 if invalid address or range

SEE ALSO
anaOutEERd, anaOutCalib

56 Coyote (BL2500)

4.4.7 RabbitNet Port

The function calls described in this section are used to configure the BL2500 for use with
RabbitNet peripheral cards. The user’s manual for the specific peripheral card you are
using contains additional function calls related to the RabbitNet protocol and the individ-
ual peripheral card.

Add the following lines at the start of your program.

#define RN_MAX_DEV 10 // max number of devices
#define RN_MAX_DATA 16 // max number of data bytes in any transaction
#define RN_MAX_PORT 2 // max number of serial ports

Set the following bits in RNSTATUSABORT to abort transmitting data after the status byte is
returned. This does not affect the status byte and still can be interpreted. Set any bit com-
bination to abort:

bit 7—device busy is hard-coded into driver
bit 5—identifies router or slave

bits 4,3,2—peripheral-board-specific bits
bit 1—command rejected

bit 0—watchdog timeout

#define RNSTATUSABORT 0x80
// hard-coded driver default to abort if the peripheral card is busy

void rn_sp_info();

Provides rn_init() with the serial port control information needed for BL2500 series controllers.

RETURN VALUE
None.

void rn_sp_close(int port);

Deactivates the BL2500 RabbitNet port as a clocked serial port. This call is also used by rn_init().

PARAMETERS
portnum=0

RETURN VALUE
None

User’s Manual 57

This is a macro that enables or asserts the BL2500 RabbitNet port select prior to data transfer.

PARAMETERS
portnum=0

RETURN VALUE
None

This is a macro that disables or deasserts the BL2500 RabbitNet port select to invalidate data transfer.

PARAMETERS
portnum=20

RETURN VALUE
None.

58 Coyote (BL2500)

5. USING THE TCP/IP FEATURES

Chapter 5 discusses using the TCP/IP features on the Coyote
boards.

5.1 TCP/IP Connections

Before proceeding you will need to have the following items.

= |f you don’t have an Ethernet connection, you will need to install a 10Base-T Ethernet
card (available from your favorite computer supplier) in your PC.

= Two RJ-45 straight-through Ethernet cables and a hub, or an RJ-45 crossover Ethernet
cable.

The Ethernet cables and Ethernet hub are available from Rabbit in a TCP/IP tool kit. More
information is available at www.rabbit.com.

1. Connect the AC adapter and the programming cable as shown in Chapter 2, “Getting
Started.”

2. Ethernet Connections

= |f you do not have access to an Ethernet network, use a crossover Ethernet cable to con-
nect the Coyote to a PC that at least has a 10Base-T Ethernet card.

= If you have an Ethernet connection, use a straight-through Ethernet cable to establish
an Ethernet connection to the Coyote from an Ethernet hub. These connections are
shown in Figure 20.

Coyote
Coyote
Board
Board
-]
User’s PC
Ethernet —— >
Ethernet cables
crossover Nl [[H_,. To additional
cable Hub \—/network
Direct Connection _) ?Iements
(network of 2 computers) Direct Connection Using a Hub

Figure 20. Ethernet Connections

User’s Manual 59

http://www.rabbit.com/

3. Apply Power
Plug in the AC adapter. The Coyote is now ready to be used.

NOTE: A hardware RESET is accomplished by unplugging the AC adapter, then plug-
ging it back in, or by momentarily grounding the reset pins on the back of the Coyote.

When the PROG connector of the programming cable connects the Coyote to your PC,
and Dynamic C is running, a RESET occurs when you press <Ctrl-Y>.

The green LNK light on the Coyote’s RabbitCore module is on when the Coyote is prop-
erly connected either to an Ethernet hub or to an active Ethernet card. The orange ACT
light flashes each time a packet is received.

60 Coyote (BL2500)

5.2 TCP/IP Sample Programs

We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require that you connect your PC and the
Coyote together on the same network. This network can be a local private network (pre-
ferred for initial experimentation and debugging), or a connection via the Internet.

5.2.1 How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. You will see a TCPCONFIG macro. This macro tells
Dynamic C to select your configuration from a list of default configurations. You will
have three choices when you encounter a sample program with the TCPCONF1G macro.

1. You can replace the TCPCONFIG macro with individual MY__IP_ADDRESS,
MY_NETMASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFI1G at the usual default of 1, which will set the IP configurations
t0 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway
t010.10.6.1. If you would like to change the default values, for example, to use an IP
address of 10.1.1.2 for the Coyote board, and 10.1.1.1 for your PC, you can edit
the values in the section that directly follows the “General Configuration” comment in
the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TCPCONFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the
TCP_CONFI1G.LIB library in the LIB\TCPIP directory. More information is available in
the Dynamic C TCP/IP User’s Manual.

IP Addresses Before Dynamic C 7.30

Most of the sample programs use macros to define the IP address assigned to the board and
the IP address of the gateway, if there is a gateway. Instead of the TCPCONFIG macro, you
will see a MY__IP_ADDRESS macro and other macros.

#define MY_IP_ADDRESS "10.10.6.170"
#define MY_NETMASK '255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER ''10.10.6.1"

In order to do a direct connection, the following IP addresses can be used for the Coyote:

#define MY_IP_ADDRESS "10.1.1.2"
#define MY_NETMASK "255.255.255.0"
// #define MY_GATEWAY "10.10.6.1"
// #define MY_NAMESERVER "10.10.6.1"
In this case, the gateway and nameserver are not used, and are commented out. The IP
address of the board is defined to be 10.1.1.2. The IP address of you PC can be defined

as10.1.1.1.

User’'s Manual 61

5.2.2 How to Set Up your Computer’s IP Address for a Direct Connection

When your computer is connected directly to the Coyote via an Ethernet connection, you
need to assign an IP address to your computer. To assign the PC the address
10.10.6.101 with the netmask 255.255.255.0, do the following.

Click on Start > Settings > Control Panel to bring up the Control Panel, and then dou-
ble-click the Network icon. Depending on which version of Windows you are using, look
for the TCP/IP Protocol/Network > Dial-Up Connections/Network line or tab. Double-
click on this line or select Properties or Local Area Connection > Properties to bring
up the TCP/IP properties dialog box. You can edit the IP address and the subnet mask
directly. (Disable “obtain an IP address automatically.”) You may want to write down the
existing values in case you have to restore them later. It is not necessary to edit the gate-
way address since the gateway is not used with direct connect.

Coyote
IP 10.10.6.101 Board
Netmask
255.255.255.0
-
User’'s PC
Ethernet
crossover
cable
Direct Connection PC to Coyote Board

62 Coyote (BL2500)

5.2.3 Run the PINGME.C Demo

Connect the crossover cable from your computer’s Ethernet port to the Coyote’s RJ-45
Ethernet connector. Open this sample program from the SAMPLES\TCP 1P\ 1CMP folder,
compile the program, and start it running under Dynamic C. When the program starts run-
ning, the green LNK light on the Coyote should be on to indicate an Ethernet connection is
made. (Note: If the LNK light does not light, you may not have a crossover cable, or if you
are using a hub perhaps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-
DOS window and running the ping program:
ping 10.10.6.100
or by Start > Run
and typing the command

ping 10.10.6.100

Notice that the orange ACT light flashes on the Coyote while the ping is taking place, and
indicates the transfer of data. The ping routine will ping the board four times and write a
summary message on the screen describing the operation.

User’s Manual 63

5.2.4 Running More Demo Programs With a Direct Connection

The sample programs discussed in this section use the Demonstration Board from the
BL2500/0EM2500 Development Kit to illustrate their operation. Appendix C, “Demon-
stration Board Connections,” contains diagrams of typical connections between the Coy-
ote and the Demonstration Board used to run these sample programs.

The program SMPTP .C (SAMPLES\BL2500\TCPIP\) uses the SMTP library to send an
e-mail when a switch on the Demonstration Board is pressed.

The program BROWSELED .C (SAMPLES\BL2500\TCP IP\) demonstrates a basic con-
troller running a Web page. Two “LEDs” are created on the Web page, and two buttons on
the Demonstration Board then toggle them. Users can change the status of the lights from
the Web browser. The LEDs on the Demonstration Board match the ones on the Web page.
As long as you have not modified the TCPCONFIG 1 macro in the sample program, enter
the following server address in your Web browser to bring up the Web page served by the
sample program.

http://10.10.6.100
Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

The program PINGLED.C (SAMPLES\BL2500\TCP IP\) demonstrates ICMP by ping-
ing a remote host. It will flash LEDs DS1 and DS2 on the Demonstration Board when a
ping is sent and received.

5.3 Where Do | Go From Here?

NOTE: If you purchased your Coyote through a distributor or Rabbit partner, contact the
distributor or partner first for technical support.

If there are any problems at this point:
= Use the Dynamic C Help menu to get further assistance with Dynamic C.

= Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

= Use the Technical Support e-mail form at www.rabbit.com/support/questionSubmit.shtml.
If the sample programs ran fine, you are now ready to go on.

If the sample programs ran fine, you are now ready to go on.

Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Refer to the Dynamic C TCP/IP User’s Manual to develop your own applications. An
Introduction to TCP/IP provides background information on TCP/IP, and is available on
the Web site.

64 Coyote (BL2500)

http://www.rabbit.com/
http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

APPENDIX A. SPECIFICATIONS

Appendix A provides the specifications for the Coyote.

User’s Manual 65

A.l1 Electrical and Mechanical Specifications

Figure A-1 shows the mechanical dimensions for the Coyote.

RJ-45 jack extends

Diameter of mounting 0.16" (4.0 mm)
holes = 0.12" (3 mm) past edge of
board This mounting hole

is located under the
RabbitCore module.

2
(0]
ST
8 EDO
P~ O © O —~
Be S 38
©e Q5 2 mT
1 — [7)]
s 3
NGO
Vo
—Q
~©
O«
og
55 ST
o= o=
s 0
' (5.1)
3.94
(100)
—5—
b
o<
T 1.16
<+ (29
A=
O¢V
-‘r
‘ 85
‘ 3.94 S
(100) o

Figure A-1. Coyote Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

66 Coyote (BL2500)

Table A-1 lists the electrical, mechanical, and environmental specifications for the Coyote.

Table A-1. Coyote Specifications

Feature BL2500 BL2510
Microprocessor Rabbit 3000® at 29.4 MHz
Ethenet Por with 10Base T teface -
Flash Memory 256K standard, 512K (2 x 256K) option
SRAM 128K standard, 512K option
Backup Battery 3V lithium coin type, 1000 mA-h, supports RTC and SRAM”
LEDs 4, user-programmable
BB e s v nomiray 72 06
Digital Outputs 8: sink up to 200 mA each, 36 V DC max.
Analog Inputs One 10-bit resolution, 8-bit accuracy, input range 0.1-3.1 V, 10 samples/s
Two 9-bit PWM, 0.1-3.1 V DC,
Analog Outputs worst-case 17 ms settling time to within 5 mV of final value
(built-in RC settling time constant = 2.5 ms)
6 serial ports:
* one RS-485
* two RS-232 or one RS-232 (with CTS/RTS)
Serial Ports * one clocked serial port multiplexed to two RS-422 SPI master ports*
* one CMOS level asynchronous or clocked serial port
* one serial port dedicated for programming/debug
Serial Rate Max. asynchronous rate = CLK/8,

Max. synchronous rate = CLK/2
Real-Time Clock Yes
Ten 8-bit timers (6 cascadable, 3 are reserved for internal peripherals),

Timers one 10-bit timer with 2 match registers
Watchdog/Supervisor Yes
5 8-40 V DC (RabbitNet peripheral cards are limited to 32 V DC max.)
ower
1 W typ. with no load 0.8 W typ. with no load
Temperature -40°C to +70°C
Humidity 5% to 95%, noncondensing
Friction-lock connectors:
Connectors five polarized 9-position terminals with 0.1" pitch
two 2-position power terminals with 0.156" pitch
two 4-position terminals with 0.156" pitch

Unit Size 3.94" x 3.94" x 1.16" 3.94" x 3.94" x 0.80"

(100 mm x 100 mm x 29 mm) (100 mm x 100 mm x 20 mm)

* not present on standard OEM versions
t only 8 protected inputs on standard OEM versions

User’s Manual 67

A.1.1 Exclusion Zone

It is recommended that you allow for an “exclusion zone” of 0.25" (6 mm) around the
Coyote in all directions when the Coyote is incorporated into an assembly that includes
other components. An “exclusion zone” of 0.12" (3 mm) is recommended below the
Coyote. Figure A-2 shows this “exclusion zone.”

0.25
(6)

Exclusion
Zone

Figure A-2. Coyote “Exclusion Zone”

68 Coyote (BL2500)

A.1.2 Physical Mounting

Figure A-3 shows position information to assist with interfacing other boards with the
Coyote.

3.250
(82.5)
3.225
(81.9)
1.650
(41.9)
1.380 |
(35.0)
0.710
(18.0)
0.379
(9.6) 0g
0~ NS O
88 =ERCH
o~ | y o ?
il
|l J1 ! gaT
3| 463353 R
8o o= 8y
= g vooS
<3 : l
q
=) <
38 e

2725
(69.2)

000000

/12

J9

o5 000000

0.400
(10.2)

Figure A-3. User Board Footprint for Coyote

User’'s Manual

A.2 Conformal Coating

The areas around the crystal oscillator and the battery backup circuit on the Coyote’s Rab-
bitCore module have had the Dow Corning silicone-based 1-2620 conformal coating
applied. The conformally coated areas are shown in Figure A-4. The conformal coating
protects these high-impedance circuits from the effects of moisture and contaminants over
time, and helps to maintain the accuracy of the real-time clock.

Conformally coated
area

o

O ”o 0000000 -u

R21 R20 R1
D

RS485 TERMINATION RESISTORS

Z|

Figure A-4. Coyote’'s RabbitCore Module Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303,
Conformal Coatings.

70 Coyote (BL2500)

A.3 Jumper Configurations

Figure A-5 shows the header and jumper locations used to configure the various Coyote options.

R21R20R19
I |

Figure A-5. Location of Coyote Configurable Positions

(RabbitCore module is not shown)

Table A-2 lists the configuration options. 0 Q surface mount resistors are used for all the

positions except JP10 and J8, which use standard pluggable jumpers.

Table A-2. Coyote Jumper Configurations

Description Pins Connected Eii;%?{
R58 | Pulled up to +3.3 V X
IN0O-INO7 R56 | Pulled down
R55 | Pulled up to +K
R20 | Termination resistor X
RS—_485 Bias and Termination
Resistors E;i Bias resistors X

User’'s Manual

71

A.4 Use of Rabbit 3000 Parallel Ports
Figure A-6 shows the Rabbit 3000 parallel ports.

PAO—PA7 paiSn, PB1-PB3 PDA_PDS
Port D
Port A Port B (+Ethernet Port)
PCO, PC2, PO+ 4EE port G i PEL
PC1, PC3, PC5 I (Serial Ports B &D) | g SJ.Y-1-T) s
PP(S)Z‘PPGGE . .?grst % o 3000 B nPF& PF7
, s erial Ports _
PG3-PG5, PG7 PFO-PFS
PC6 Programming Real-Time Clock Port G PGO-PG1
PB1, PC7, IRES (SeriaPIoF!})rt A) A L [Py PG4-PG5
11 Timers /RES_IN
. Ethernet Slave Port Misc. I/O /IORD
4 Ethernet &gnalsH Port SCRDCETEE JRESET,
/IOWR,
Backup Batt SMODE0
ackKup battery
R Support e SMODE1
Figure A-6. Coyote Rabbit-Based Subsystems
Table A-3 lists the Rabbit 3000 parallel ports and their use in the Coyote.
Table A-3. Use of Rabbit 3000 Parallel Ports
Port 1/0 Signal Initial State
PAO Output ouTo Low
PA1 Output OUT1 Low
PA2 Output ouT2 Low
PA3 Output ouT3 Low
PA4 Output RS-485 Transmit Enable Low (disables transmit)
Low (= select SPI1)
PA5 Output SPI Select (high selects SPI2)
PAG Output LED DS4 High (disabled)
PA7 Output LED DS3 High (disabled)
PBO Output CLKB SPI High
PB1 Input Programming Port Clock High
PB2 Input ADO Low Comparator Driven by comparator
PB3 Input ADO High Comparator Driven by comparator

72

Coyote (BL2500)

Table A-3. Use of Rabbit 3000 Parallel Ports (continued)

Port 1/0 Signal Initial State

PB4 Output ouT6 Low

PB5 Output ouT7? Low

PB6 Output LED DS1 High (disabled)

PB7 Output LED DS2 High (disabled)

PCO Output TXD RS-485 Inactive high
Serial Port D

PC1 Input RXD RS-485 Inactive high

PC2 Output Configurable Low

PC3 Input IN14 Pulled upto 3.3V

PC4 Output TXB SPI Inactive high
Serial Port B

PC5 Input RXB SPI Inactive high

PC6 Output TXA Programming Port Inactive high
Serial Port A

PC7 Input RXA Programming Port Inactive high

PDO Output Realtek RSTDRV Inactive high

PD1 Output Not Used High

PD2 Output Ethernet High

PD3 Output Ethernet High

PD4 Output ouT4 Low

PD5 Output OouTs Low

PD6 Output Ethernet High

PD7 Output Ethernet High

PEO Output Not Used High

PE1 Input INOO Pulled upto 3.3V

PE2 Output Realtek AEN High

PE3 Input INO1 Pulled upto 3.3V

PE4 Input IN13 Pulled upto 3.3V

PES Input IN12 Pulled upto 3.3V

PEG6 Input INO2 Pulled upto 3.3V

PE7 Input INO3 Pulled upto 3.3V

PFO Input IN15 Pulled upto 3.3V

PF1 Input Configurable Pulledupto 3.3V

PF2 Input INO8 Pulled upto 3.3V

User’'s Manual

73

Table A-3. Use of Rabbit 3000 Parallel Ports (continued)

Port 1/0 Signal Initial State

PF3 Input INO9 Pulled upto 3.3V

PF4 Input IN10 Pulled upto 3.3V

PF5 Input IN11 Pulled upto 3.3V

PF6 Output DAO High

PF7 Output DAl High

PGO Input INO4 Pulled upto 3.3V

PG1 Input INO5 Pulled upto 3.3V

PG2 Output TXF RS-232 High
Serial Port F

PG3 Input RXF RS-232 High

PG4 Input INO6 Pulled upto 3.3V

PG5 Input INO7 Pulled upto 3.3V

PG6 Output TXE RS-232 High
Serial Port E

PG7 Input RXE RS-232 High

74

Coyote (BL2500)

APPENDIX B. POWER SUPPLY

Appendix B describes the power circuitry provided on the
Coyote.

B.1 Power Supplies

Power is supplied to the Coyote via the friction-lock connector terminal at J2. The Coyote
has an onboard +5 V switching power regulator from which a +3.3 V linear regulator
draws its supply. Thus both +5 V and +3.3 V are available. The Coyote is protected
against reverse polarity by a diode at D1 as shown in Figure B-1.

LINEAR POWER
DCIN SWITCHING POWER REGULATOR ~ +5V REGULATOR 55,

LM1117
D1 I DCIN

3| U10 2

1N§[é19) 101 e m JT_
2
I ™ T

LM2575 L1

= L 1

10 uF

POWER |¢
IN
—

1

£l
h

D2
1N5819

1l

Figure B-1. Coyote Power Supply

The input voltage range is from 8 V to 40 VV DC.

There is provision on the printed-circuit board for a transorb to be installed at TVS1 in
parallel with C1 to provide suppression for positive noise pulses above 51 V. This part is
only needed when the Coyote will be used in industrial environments where a clean source
of power cannot be guaranteed, and is not part of the normal factory build.

User’'s Manual 75

B.2 Batteries and External Battery Connections

The SRAM and the real-time clock have battery backup. Power to the SRAM and the real-
time clock (VRAM) on the Coyote’s RabbitCore module is provided by two different
sources, depending on whether the main part of the Coyote is powered or not. When the
Coyote is powered normally, and Vcc is within operating limits, the SRAM and the real-
time clock are powered from Vcc. If power to the board is lost or falls below 2.93 V, the
VRAM and real-time clock power will come from the battery. The reset generator circuit
controls the source of power by way of its /RESET output signal.

A soldered-in 1000 mA-h lithium battery provides power to the real-time clock and SRAM
when external power is removed from the circuit board. The drain on the battery is less than
10 A when there is no external power applied to the Coyote, and so the expected shelf life
of the battery is more than

1000 mA:h

= 11.4 years.
10 pA

The drain on the battery is typically less than 4 pA when external power is applied, and so
the expected battery in-service life is

1000 mA-h
4 pA

Since the nominal shelf life of the lithium battery is 10-20 years, the in-service life should
not be of concern.

= 28 years.

NOTE: The SRAM contents and the real-time clock settings will be lost if the battery is
replaced with no power applied to the Coyote. Exercise care if you replace the battery
while external power is applied to the Coyote.

76 Coyote (BL2500)

B.2.1 Power to VRAM Switch

The VRAM switch on the Coyote’s RabbitCore module, shown in Figure B-2, allows the
battery backup to provide power when the external power goes off. The switch provides

an isolation between Vcc and the battery when Vcc goes low. This prevents the Vcc line

from draining the battery.

+3.3V

VRAM

RESOUT

Figure B-2. VRAM Switch

The field-effect transistor provides a very small voltage drop between Vcc and VRAM
(<100 mV, typically 10 mV) so that the board components powered by Vcc will not have a
significantly different voltage than VRAM.

When the Coyote is not in reset, the RESOUT line will be high. This allows VRAM to
nearly equal Vcc.

When the Coyote is in reset, the RESOUT line will go low. This provides an isolation
between Vcc and VRAM.

B.2.2 Reset Generator

The Coyote’s RabbitCore module uses a reset generator to reset the Rabbit 3000 micro-
processor when the voltage drops below the voltage necessary for reliable operation. The
reset typically occurs at 2.93 V (2.63 V for the BL2510).

B.3 Chip Select Circuit

The current drain on the battery in a battery-backed circuit must be kept at a minimum.
When the Coyote is not powered, the battery keeps the SRAM memory contents and the
real-time clock (RTC) going. The SRAM has a powerdown mode that greatly reduces
power consumption. This powerdown mode is activated by raising the chip select (CS)
signal line. Normally the SRAM requires Vcc to operate. However, only 2 V is required
for data retention in powerdown mode. Thus, when power is removed from the circuit, the
battery voltage needs to be provided to both the SRAM power pin and to the CS signal
line. The CS control circuit accomplishes this task for the SRAM’s chip select signal line.

User’'s Manual 77

B.4 Power to Peripheral Cards

DCIN and Vcc are available on friction-lock connector terminals J7 and J8 to power
peripheral cards that may be used with the Coyote.

Figure B-3. Pinout Friction-Lock Connector Terminals J7 and J8

Keep in mind that the Coyote draws 377 mA from the VVcc supply, and that the diode at D1
(shown in Figure B-1) can handle at most 1 A at Vgaw, SO that leaves the remaining current
capacity to be shared among the DCIN and Vcc pins on friction-lock connector terminals

J7 and J8. Table B-1 lists the available current at DCIN based on the current drawn at Vcc.

Table B-1. DCIN Current Available at J7 and J8 (in mA)
Based on Power Supply and Vcc (=5 V) Current Used at J7 and J8

Vraw Power Supply Current at Vcc
Input at J2
) 100 mA | 200 mA | 300 mA | 400 mA | 500 mA | 600 mA | 623 mA
8.0 545 450 355 260 164 69 47
8.5 574 484 395 306 216 127 107
9.0 599 515 431 347 263 178 159
10 641 566 490 415 340 265 248
12 703 641 579 517 455 393 378
18 805 764 723 682 642 601 591
24 855 824 794 763 733 703 696
30 884 860 836 811 787 763 750
40 913 895 877 859 841 823 819

78 Coyote (BL2500)

APPENDIX C.
DEMONSTRATION BOARD CONNECTIONS

Appendix C shows how to connect the Demonstration Board to
the Coyote.

C.1 Assemble Wire Harness

Before you can connect the Demonstration Board to the Coyote to run the sample pro-
grams based on the Demonstration Board, you will need to assemble a wiring harness
using the friction-lock connectors and crimp terminals supplied with the BL2500/0OEM2500
Development Kit. In addition, you will need:

- Wire—22 to 30 AWG (0.33 mm? to 0.049 mm?) for the 0.1" crimp terminals,
22 t0 26 AWG (0.33 mm? to 0.13 mm?) for the 0.156" crimp terminals

= Wire cutters and wire insulation stripper

= Crimp tool (pliers may be used, but a crimp tool provides a better crimp with a stronger
force)

Rabbit sells a crimp tool and a Connectivity Kit that contains additional friction-lock con-
nectors and crimp terminals. Table 3 in Chapter 3 provides information on specific friction-
lock connectors and crimp terminals to be used with the various headers on the BL2500.

Contact your authorized Rabbit distributor or your sales representative for more information.

User’'s Manual 79

Follow these steps to build your wire harness.

1. Prepare a few lengths of wire about 30 cm (12") long. The wires should have different
colors of insulation to facilitate identifying the connections.

2. Trim about 2-3 mm (0.1") of insulation from your wire.

3. Position the wire in the crimp terminal as shown in Figure C-1.

) . Crimp
@ Crimp wire. insulation.

/

)

Figure C-1. Crimp Wire in Crimp Terminal

—~

4. Use a crimp tool or pliers to first crimp the bare wire, then the insulation as shown in
Figure C-1.
5. Insert the crimp terminals with wires into the friction-lock connector with the tab on the

crimp terminal facing the opening on the side of the friction-lock connector. Insert the
crimp terminal until the tab snaps into place in the side opening.

Tab

w Plug this hole to
polarize connector.

Insert with tab facing
side opening.

Tonooooonon

10000

Molex
connector

Side
opening

Figure C-2. Insert Crimp Terminals Into Friction-Lock Connector

6. Repeat these steps until all the wires and crimp terminals have been assembled.

TIP: Use different wire colors to help you color-code your harness.

TIP: On 10-pin friction-lock connectors, insert a plug into the hole indicated in Figure C-2
to polarize your connector to help prevent offsetting the connector by one pin when you
attach it to your Coyote. Polarizing plugs are not included in Rabbit’s Connectivity Kit.

80 Coyote (BL2500)

C.2 Connecting Demonstration Board

Before running sample programs based on the Demonstration Board, you will have to con-
nect the Demonstration Board from the BL2500/0OEM2500 Development Kit to the Coyote
board. Proceed as follows.

1. Use one of the wiring harnesses you have built to connect header J1 on the Demonstra-
tion Board to the Coyote. The connections are shown in Figure C-3 for sample program
DIGIN.C, in Figure C-4 for sample program DIGOUT . C, and in Figure C-5 for the
BL2500\TCPIP TCP/IP sample programs.

2. Make sure that your Coyote is connected to your PC and that the power supply is con-
nected to the Coyote and plugged in as described in Chapter 2, “Getting Started.”

BL2500 Demonstration Board
(Header J11) (Screw Terminals J1)

K (J7, 3) +5V
GND (J11, 9) GND
INOO (J11, 1) SW1
INO1 (J11, 2) SW2
INO2 (J11, 3) SW3
INO3 (J11, 4) Sw4

Jumpers:

H1: None
H2: As shown

| MS
(o]
@
=y

aNo

sL% LMS

ZMS

e EMS
7@

- YMS

r,_n /\9+

@ "

©
2@ a3
w

1z
- _za3l
- m,
er E.sua'l
&9 va31
L8 y3zzng

L ;uo 0000000 -"

SSNIONERENENE

@)

T
Io
@)

Figure C-3. Connections Between Coyote and Demonstration Board
for DIGIN.C Sample Program

User’'s Manual 81

T TS W50 SN G IV VOB G AT

BL2500 Demonstration Board
(Header J3/J7) (Screw Terminals J1)
K (J7, 3) +5V
OUTO (J3, 1) LED1
OUT1 (J3, 2) > LED2
OoUT2 (J3, 3) LED3
OUT3 (J3, 4) LED4
Jumpers:
H1: None
H2: As shown
L. 4
@) @)
2 J1
5 I VeIl 5 B
O o0 o'
g@ 2¢R ms ||@ SR
N s || (D .
U e s ||@
(2] ITI.
o)
3@ m ¥ oms||® 4 Hie2le]_||elele] | Dm
< = o i (=)
%) (@) U. ns+ @ o 0y R "
= N A0 []
N o - A @ HIN) g cs 2
(@) §.L031 % ol O o (!9
e E C an||©n e e
crlee| B DO I | o ¢
§ O R eaa||@ | o o ST
9 a3 ||] S 2
18 os] O @
¥3zzna || | O < O I+
H = o 8 |
@ D : :
O s O i
.
ooon 3
- | g £
- uuy & m’{w

Figure C-4. Connections Between Coyote and Demonstration Board
for DIGOUT .C Sample Program

82

Coyote (BL2500)

BL2500 Demonstration Board
(Header J3/J7/J11) (Screw Terminals J1)
K (J7, 3) 5V
GND (J11,9) GND
INOO (J11, 1) SW1
INO1 (J11, 2) Sw2
OUTO (J3, 1) LED1
OUT1 (J3, 2) LED2
Jumpers:
H1: None
H2: As shown Ep—
50
L o
O O ﬁ
2 J1 o
= I =T /
O 00 I
g W = Jo4]
@l s L5 wms||@y Wk
E@ ms QD.\ o E
el O mews|[@| ™ |
@] m @ G
s == s ||® G
z - ;*]
) (©) o@ "¢t @ B
0 o o '
= vs) r'_n A osf| Q
o 8.LCIEI'I @ ff o
e % = _za31 || &1 S
v O 80 @ l 0
s HI
59 i
e va3 || L
¥3zzna || o[W
LH = - 0
O 18
O s O 19
4l O
sl O
Lo |8 [T
%g GND RS435 TERMINATION RESISTORS

Figure C-5. Connections Between Coyote and Demonstration Board
for TCP/IP SMPT .C Sample Program

User’'s Manual

84

Coyote (BL2500)

APPENDIX D. RABBITNET

D.1 General RabbitNet Description

RabbitNet is a high-speed synchronous protocol developed by Rabbit to connect periph-
eral cards to a master and to allow them to communicate with each other.

D.1.1 RabbitNet Connections

All RabbitNet connections are made point to point. A RabbitNet master port can only be
connected directly to a peripheral card, and the number of peripheral cards is limited by
the number of available RabbitNet ports on the master.

SLAVE

Iﬂ““v
-’_

. Straight-through
Ethernet cable
e =
MASTER i

Crossover
Ethernet cable

MASTER i SLAVE /

“~~ Straight-through
Ethernet cable

Figure D-1. Connecting Peripheral Cards to a Master

User’s Manual 85

Use a straight-through Ethernet cable to connect the master to slave peripheral cards, unless
you are using a device such as the OP7200 that could be used either as a master or a slave. In
this case you would use a crossover cable to connect an OP7200 that is being used as a slave.

Distances between a master unit and peripheral cards can be up to 10 m or 33 ft.
D.1.2 RabbitNet Peripheral Cards

Digital 1/0

24 inputs, 16 push/pull outputs, 4 channels of 10-bit A/D conversion with ranges of
0 to10V,0to 1V, and-0.25 to +0.25 V. The following connectors are used:
Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

A/D converter

8 channels of programmable-gain 12-bit A/D conversion, configurable as current mea-
surement and differential-input pairs. 2.5 V reference voltage is available on the con-
nector. The following connectors are used:

Signal = 0.1" friction-lock connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

D/A converter

8 channels of 0-10 V 12-bit D/A conversion. The following connectors are used:

Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

Display/Keypad interface

allows you to connect your own keypad with up to 64 keys and one character liquid
crystal display from 1 x 8 to 4 x 40 characters with or without backlight using standard
1 x 16 or 2 x 8 connectors. The following connectors are used:

Signal = 0.1" headers or sockets

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

Relay card

6 relays rated at 250 VV AC, 1200 V-A or 100 V DC up to 240 W. The following connectors are
used:

Relay contacts = screw-terminal connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

Visit our Web site for up-to-date information about additional cards and features as they
become available.

86

Coyote (BL2500)

http://www.rabbit.com/

D.2 Physical Implementation

There are four signaling functions associated with a RabbitNet connection. From the mas-
ter’s point of view, the transmit function carries information and commands to the periph-
eral card. The receive function is used to read back information sent to the master by the
peripheral card. A clock is used to synchronize data going between the two devices at high
speed. The master is the source of this clock. A slave select (SS) function originates at the
master, and when detected by a peripheral card causes it to become selected and respond
to commands received from the master.

The signals themselves are differential RS-422, which are series-terminated at the source.
With this type of termination, the maximum frequency is limited by the round-trip delay
time of the cable. Although a peripheral card could theoretically be up to 45 m (150 ft)
from the master for a data rate of 1 MHz, Rabbit recommends a practical limit of 10 m
(33 ft).

Connections between peripheral cards and masters are done using standard 8-conductor
Ethernet cables. Masters and peripheral cards are equipped with RJ-45 8-pin female con-
nectors. The cables may be swapped end for end without affecting functionality.

D.2.1 Control and Routing

Control starts at the master when the master asserts the slave select signal (SS). Then it
simultaneously sends a serial command and clock. The first byte of a command contains
the address of the peripheral card if more than one peripheral card is connected.

A peripheral card assumes it is selected as soon as it receives the select signal. For direct
master-to-peripheral-card connections, this is as soon as the master asserts the select sig-
nal. The connection is established once the select signal reaches the addressed slave. At
this point communication between the master and the selected peripheral card is estab-
lished, and data can flow in both directions simultaneously. The connection is maintained
so long as the master asserts the select signal.

User’s Manual 87

D.3 Function Calls

The function calls described in this section are used with all RabbitNet peripheral cards,
and are available in the RNET . LIB library in the Dynamic C RABBITNET folder.

int rn_init(char portflag, char servicetype);

Resets, initializes, or disables a specified RabbitNet port on the master single-board computer. During
initialization, the network is enumerated and relevant tables are filled in. If the port is already initialized,
calling this function forces a re-enumeration of all devices on that port.

Call this function first before using other RabbitNet functions.

PARAMETERS
portflag is a bit that represents a RabbitNet port on the master single-board computer (from 0 to the
maximum number of ports). A set bit requires a service. If portflag = 0x03, both RabbitNet ports 0
and 1 will need to be serviced.

servicetype enables or disables each RabbitNet port as set by the port flags.
0 = disable port
1 =enable port

RETURN VALUE
0

Int rn_device(char pna);

Returns an address index to device information from a given physical node address. This function will
check device information to determine that the peripheral card is connected to a master.

PARAMETER
pna is the physical node address, indicated as a byte.

7,6—2-bit binary representation of the port number on the master
5,4,3—Level 1 router downstream port
2,1,0—Level 2 router downstream port

RETURN VALUE
Pointer to device information. -1 indicates that the peripheral card either cannot be identified or is not
connected to the master.

SEE ALSO
rn_find

88 Coyote (BL2500)

int rn_find(rn_search *srch);

Locates the first active device that matches the search criteria.

PARAMETER

srch is the search criteria structure rn_search:

unsigned int flags; //
unsigned iInt ports; //

char productid; //
char productrev; //
char coderev; //
long serialnum; //

Use a maximum of 3 macros for the s

RN_MATCH_PORT /7/
RN_MATCH_PNA //
RN_MATCH_HANDLE //
RN_MATCH_PRDID //
RN_MATCH_PRDREV //
RN_MATCH_CODEREV //
RN_MATCH_SN //
For example:

rn_search newdev;

newdev.flags = RN_MATCH_P
newdev.ports = 0x03; //se
newdev.serialnum = E3446C
handle = rn_find(&newdev)

RETURN VALUE
Returns the handle of the first device

SEE ALSO
rn_device

status flags see MATCH macros below
port bitmask

product id

product rev

code rev

serial number

earch criteria:

match port bitmask

match physical node address
match instance (reg 3)
match id/version (reg 1)
match product revision
match code revision

match serial number

ORT|RN_MATCH_SN;
arch ports 0 and 1
01L;

matching the criteria. 0 indicates no such devices were found.

int rn_echo(int handle, char sendecho,

char *recdata);

The peripheral card sends back the character the master sent. This function will check device information

to determine that the peripheral card i

PARAMETERS

s connected to a master.

handle is an address index to device information. Use rn_device() or rn_find() to establish the

handle.

sendecho is the character to echo b

ack.

recdata is a pointer to the return address of the character from the device.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates the peripheral

card is not connected to the master.

User’'s Manual

89

int rn_write(int handle, int regno, char *data,
Iint datalen);

Writes a string to the specified device and register. Waits for results. This function will check device infor-
mation to determine that the peripheral card is connected to a master.

PARAMETERS

handl e is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

regno is the command register number as designated by each device.
data is a pointer to the address of the string to write to the device.
datalen is the number of bytes to write (0-15).

NOTE: A data length of O will transmit the one-byte command register number.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master, and -2 means that the data length was greater than 15.

SEE ALSO
rn_read

int rn_read(int handle, i1Int regno, char *recdata,
int datalen);

Reads a string from the specified device and register. Waits for results. This function will check device
information to determine that the peripheral card is connected to a master.

PARAMETERS

handl e is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

regno is the command register number as designated by each device.
recdata is a pointer to the address of the string to read from the device.

datalen is the number of bytes to read (0-15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master, and -2 means that the data length was greater than 15.

SEE ALSO
rn_write

20 Coyote (BL2500)

Int rn_reset(int handle, int resettype);

Sends a reset sequence to the specified peripheral card. The reset takes approximately 25 ms before the
peripheral card will once again execute the application. Allow 1.5 seconds after the reset has completed
before accessing the peripheral card. This function will check peripheral card information to determine
that the peripheral card is connected to a master.

PARAMETERS
handl e is an address index to device information. Use rn_device() or rn_find() to establish the

handle.
resettype describes the type of reset.

0 = hard reset—equivalent to power-up. All logic is reset.
1 = soft reset—only the microprocessor logic is reset.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral

card is not connected to the master.

int rn_sw_wdt(int handle, float timeout);

Sets software watchdog timeout period. Call this function prior to enabling the software watchdog timer.
This function will check device information to determine that the peripheral card is connected to a master.

PARAMETERS
handl e is an address index to device information. Use rn_device() or rn_find() to establish the

handle.
timeout is a timeout period from 0.025 to 6.375 seconds in increments of 0.025 seconds. Entering a
zero value will disable the software watchdog timer.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral

card is not connected to the master.

User’'s Manual 91

int rn_enable_wdt(int handle, 1nt wdttype);

Enables the hardware and/or software watchdog timers on a peripheral card. The software on the periph-
eral card will keep the hardware watchdog timer updated, but will hard reset if the time expires. The
hardware watchdog cannot be disabled except by a hard reset on the peripheral card. The software watch-
dog timer must be updated by software on the master. The peripheral card will soft reset if the timeout set
by rn_sw_wdt() expires. This function will check device information to determine that the peripheral
card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the

handle.
wdttype

0 enables both hardware and software watchdog timers
1 enables hardware watchdog timer
2 enables software watchdog timer

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral

card is not connected to the master.

SEE ALSO
rn_hitwd, rn_sw_wdt

int rn_hitwd(int handle, char *count);

Hits software watchdog. Set the timeout period and enable the software watchdog prior to using this
function. This function will check device information to determine that the peripheral card is connected to
a master.

PARAMETERS
handl e is an address index to device information. Use rn_device() or rn_find() to establish the

handle.

count is a pointer to return the present count of the software watchdog timer. The equivalent time left in
seconds can be determined from count x 0.025 seconds.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
card is not connected to the master.

SEE ALSO
rn_enable_wdt, rn_sw_wdt

92 Coyote (BL2500)

Int rn_rst_status(int handle, char *retdata);
Reads the status of which reset occurred and whether any watchdogs are enabled.

PARAMETERS
handl e is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

retdata is a pointer to the return address of the communication byte. A set bit indicates which error
occurred. This register is cleared when read.

7—HW reset has occurred
6—SW reset has occurred
5—HW watchdog enabled
4—SW watchdog enabled
3,2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

int rn_comm_status(int handle, char *retdata);

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

retdata is a pointer to the return address of the communication byte. A set bit indicates which error
occurred. This register is cleared when read.

7—Data available and waiting to be processed MOSI (master out, slave in)
6—Write collision MISO (master in, slave out)

5—Overrun MOSI (master out, slave in)

4—Mode fault, device detected hardware fault

3—Data compare error detected by device

2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

User’s Manual 93

D.3.1 Status Byte

Unless otherwise specified, functions returning a status byte will have the following format
for each designated bit.

00 = Reserved

01 = Ready

10 = Busy

11 = Device not connected

0 = Device
1 = Router

0 = No error

- . *
1 = Communication error

Reserved for individual peripheral
cards

Reserved for individual peripheral
cards

0 = Last command accepted
1 = Last command unexecuted

0 = Not expired
x |1=HW or SW watchdog timer
expiredJr

* Use the function rn_comm_status() to determine which error occurred.
t Use the function rn_rst_status() to determine which timer expired.

94 Coyote (BL2500)

A PWMOUL ..., 54 SIEPS i 59
pwmOutConfig 53 Ethernet portcccoeovveennn 32
AJD converter pWMOULVOILS 54 handling EMI and noise ... 32
calibration constants Demonstration Board PINOUL .vovoeeveeiienns 32
board serial number 43 hookup instructions 81 exclusion zonecccceewnee 68
function calls digital 1/0 sample programs
analn ..o, 50 81 F
analnCalib 51 i i i
jumper configurations 81,82,
analnEERd ... 52 83 :fatﬁres 1
analnEEWrcoccovvev. 52 WITES .ovvcvivcveeevceceeve e 3 as memory
analnVoltsc..ccoeee. 51 Devel t Kit lifetime write Cycles 37
f anal =0 evelopment K flash memory addresses
CoT_analn ...oovvvennennies crimp terminals 3 user blocks 36
analog inputs See A/D converter Dynamic C software < TP
analog outputs See D/A convert- friction-lock Connecto}'g """" 3 ﬂz_’lSh. memory bank select 36
or e T friction-lock connectors
(SOPIWATE ..o 3 PATES ©.oveeeeeee e 19
B digital 1/0
SMODEQDcccovvvevrrierenas 31 H
battery connections 76 SMODEL . 31 head
board initialization digital inputscccoevveienns 21 eacers)
function calls 45 dimensions Demonstration Board
BrAINit c.vvvvvvvveeeen 45 BL2500 ..o 66 :; ---------------------- gi g; 23
board serial number 43 DINrail mounting S Mo 1 05
COMPONENTSoovvvviriiiirne, 5 |
C Dynamic Cccccoveverenene 4,38
CE compliance ... 7 add-on modules 39 IP addressescoevrienene. 62
design guidelines 8 COM port -------------------------- 14 how to Set ...ccvvvvveeveieeeen, 61
. L T debugging features 38 how to set PC IP address .. 62
chip select circuit 77) - .
downloading RabbitNet librar-
clock doublercccoevviinnns 34 - J
. 18S i 40
connections installation 13
Ethernet cable 59 Rabbit EmbeddedSecurlt J7
connectivity tools y power to peripheral cards .. 78
7 . Pack ..ooveieieieiiiciiens 4
Connectivity Kit 4 samole proarams a1 J8
crimp tool ..., 4 stangarc? fegtures """""""" power to peripheral cards .. 78
friction-lock connector parts . debuagin 38 jumper configurations 71
19 DUGGING oo Demonstration Board . 81,82,
starting ..o 14
telephone-based technical sup- . 33 .
D port 4 39 digital inputsccevenene 71
D/A converter upgrades and patches 39 in'g:sr;eii?obrlsas and termln?al—
function calls i | istc) e n
anaOutCalib 55 E Jumper locations
anaOutEERd 55 M
anaOutEEWr 56 Ethernet cables R 59
. Ethernet connections 59
PWM_INIE oo 53 MEMONY ..o 36
User’s Manual 95

MOUEIS oo 2 D/A converter 86 USERBLOCK _INFO.C 52,
BL2500coooveiieiirininieienns 2 digital 1/Occccvvvvvne. 86 55, 56
BL2510 ..o, 2 display/keypad interface 86 serial communication
OEM Versionscccccveveene. 2 relay cardccocevvvnee 86 function calls
physical implementation ...87 SEr485RX ...ovvevvvieeiieninns 49
P RabbitNet port 31 SEr485TX ovooovoorrrree 49
peripheral cards 6 RabbitNet port programming port 31
connection to master85, 86 function calls RabbitNet port 31
power from BL2500 78 rn_sp_closec.ccevneee. 57 RS-232 description 28
physical mounting 69 rn_sp_disable 58 RS-485 network 29
pinout rn_sp_enable 58 RS-485 termination and bias
BL2500 headers 18 rn_sp_infocccecevvennne 57 reSiStorscoovvvvvvvernnnnns 30
Ethernet portcccceeneee. 32 reset serial ports
power management 75 hardwarecccceevvvvennnne, 12 Ethernet portcccuveee. 32
POWE SUPPLY «.vvvvevvrrererersesee 75 reset generatorce..... 77 =] (1] o PRSP s 10
battery BackUP ~.........cco... 76 RS-485 network ... 29 power supply connections .10
chip select Circuit 77 termination and bias resistors programming cable connec-
CONNECHONS oo 10 30 tIONS oo 13
switching voltage regulator 75 Run Modecocevvinieiine. 33 software RIS s s 4
VRAM SWitch oo 7 g downloading RabbitNet librar-
Program Modecccceeenene 33 MBS 40
programming sample programsc.c..... 41 libraries ... 44
flash vs. RAM 37 AJ/D converter inputs BL2500 ...ooovvvone 44
programming cable 3 ADO.C ..., 42 PACKET.LIBccceee 49
programming port 31 ADCALIB.Ccccu... 42 RN_CFG_BL25.LIB ... 44
programming cable 3 COF_ANAIN.C 42 RNET.LIB ...oc.o..c.ccooeee 88
CONNECHIONS <....covrreeeeee. 10 DA2AD.C ..ooovorrere 42 RS232.LIB ...oovvvsvven 49
PROG CONNECLOT 33 DNLOADCALIB.C43 TCP/IP oo a4
switching between Program UPLOADCALIB.C 43 RabDItNEt port o7
Mode and Run Mode33 CONTROLLED.C ... 41 MACIOS .ovvvrsvvveesvnes 57
programming port 31 D/A converter sa!"n_ple_programs """""""" 41
DAC.C wovooooeeeeeeeeen 42 Specifications
R DACCALIB.C 42 Blaziri(:a?]sions .
Rabbit 3000 IS e 2 electrical67
parallel ports 72 digital 1/O exclusion zone 68
RADDIENE ... 6 DIGING 4L, 81 omperature 67
Ethernet cables to connect pe- FL ASHLLIJEbS o T header footprint 69
ripheral cards 85, 86 h T e physical mounting 69
function calls ow to set IP address 61 Iative pin 1 locati 69
tatus 93 PONG.C ..oovovvvverseseeninns 15 relative pin 1 focations ...
_GEVICE o8 rEEHIME cloCk specum spreader .
MN_ECNO w.vvvvvrrvevreessne 89 RTC_TEST.C oo 43 t s;e IQ gts """""""""""""""""" 94
i erable o o SETRTCKB.C oo 43 S abus ty - TR ”
SR 11T 89 serial communication SUDSYSIEIMS vt
F_DIW oo 92 FLOWCONTROLC41 T
PO INTE oo 88 SIMPLESWIRE.C 42
mread oo 90 SIMPLE485MASTER.C 42 TCP/IP connections 59
moreset ... 91 SIMPLE485SLAVE.C ..42 10Base-T Ethernet card59
N rst Status oo 93 SWITCHCHAR.C 42 additional resources 64
M oSW WAt 91 TCP/IP ..o 61, 81, 83 Ethernethubc.cccceeee. 59
m OWrte o 90 PINGME.Cccccu... 63 STEPS e 59
general description 85 SSIC o 64 U
peripheral cards 86 TOGGLESWITCH.C 41
AID converter 86 user block user block
96 Coyote (BL2500)

function calls
readUserBlock 36
writeUserBlock 36
sample programs
USERBLOCK_INFO.C 52,
55, 56

User’'s Manual

97

98

Coyote (BL2500)

SCHEMATICS

090-0158 Coyote (BL2500) Schematic

www.rabbit.com/documentation/schemat/090-0158.pdf

090-0042 Demonstration Board Schematic

www.rabbit.com/documentation/schemat/090-0042.pdf

090-0128 Programming Cable Schematic

www.rabbit.com/documentation/schemat/090-0128.pdf

You may use the URL information provided above to access the latest schematics directly.

The Coyote consists of a main board with a RabbitCore module. Refer to the RabbitCore
module manuals for more information on the RabbitCore modules, including their
schematics.

User’s Manual 99

http://www.rabbit.com/documentation/schemat/090-0042.pdf
http://www.rabbit.com/documentation/schemat/090-0158.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Rabbit Semiconductor:
101-0577

http://www.mouser.com/Rabbit-Semiconductor
http://www.mouser.com/access/?pn=101-0577

	Coyote (BL2500)
	Table of Contents
	1. Introduction
	1.1 Features
	1.1.1 OEM Versions

	1.2 Development and Evaluation Tools
	1.2.1 Development Kit
	1.2.2 Software
	1.2.3 Connectivity Tools
	1.2.4 DIN Rail Mounting

	1.3 RabbitNet Peripheral Cards
	1.4 CE Compliance
	1.4.1 Design Guidelines
	1.4.2 Interfacing the BL2500 to Other Devices

	2. Getting Started
	2.1 Preparing the BL2500 for Development
	2.2 BL2500 Connections
	2.2.1 Hardware Reset

	2.3 Installing Dynamic C
	2.4 Starting Dynamic C
	2.5 PONG.C
	2.6 Where Do I Go From Here?
	2.7 Using the Coyote In High-Vibration Environments

	3. Subsystems
	3.1 Coyote Pinouts
	3.1.1 Headers

	3.2 Indicators
	3.2.1 LEDs

	3.3 Digital I/O
	3.3.1 Digital Inputs
	3.3.2 Digital Outputs

	3.4 Analog Features
	3.4.1 A/D Converter
	3.4.2 D/A Converters

	3.5 Serial Communication
	3.5.1 RS-232
	3.5.2 RS-485
	3.5.3 Programming Port
	3.5.4 RabbitNet Ports
	3.5.5 Ethernet Port

	3.6 Serial Programming Cable
	3.6.1 Changing Between Program Mode and Run Mode

	3.7 Other Hardware
	3.7.1 Clock Doubler
	3.7.2 Spectrum Spreader

	3.8 Memory
	3.8.1 SRAM
	3.8.2 Flash Memory

	4. Software
	4.1 Running Dynamic C
	4.1.1 Upgrading Dynamic C
	4.1.2 Accessing and Downloading Dynamic C Libraries

	4.2 Sample Programs
	4.2.1 General Coyote Operation
	4.2.2 Digital I/O
	4.2.3 Serial Communication
	4.2.4 A/D Converter Inputs
	4.2.5 D/A Converter Outputs
	4.2.6 Using System Information from the RabbitCore Module
	4.2.7 Real-Time Clock

	4.3 Coyote Libraries
	4.4 Coyote Function Calls
	4.4.1 Board Initialization
	4.4.2 Digital I/O
	4.4.3 LEDs
	4.4.4 Serial Communication
	4.4.5 Analog Inputs
	4.4.6 Analog Outputs
	4.4.7 RabbitNet Port

	5. Using the TCP/IP Features
	5.1 TCP/IP Connections
	5.2 TCP/IP Sample Programs
	5.2.1 How to Set IP Addresses in the Sample Programs
	5.2.2 How to Set Up your Computer’s IP Address for a Direct Connection
	5.2.3 Run the PINGME.C Demo
	5.2.4 Running More Demo Programs With a Direct Connection

	5.3 Where Do I Go From Here?

	Appendix A. Specifications
	A.1 Electrical and Mechanical Specifications
	A.1.1 Exclusion Zone
	A.1.2 Physical Mounting

	A.2 Conformal Coating
	A.3 Jumper Configurations
	A.4 Use of Rabbit 3000 Parallel Ports

	Appendix B. Power Supply
	B.1 Power Supplies
	B.2 Batteries and External Battery Connections
	B.2.1 Power to VRAM Switch
	B.2.2 Reset Generator

	B.3 Chip Select Circuit
	B.4 Power to Peripheral Cards

	Appendix C. Demonstration Board Connections
	C.1 Assemble Wire Harness
	C.2 Connecting Demonstration Board

	Appendix D. RabbitNet
	D.1 General RabbitNet Description
	D.1.1 RabbitNet Connections
	D.1.2 RabbitNet Peripheral Cards

	D.2 Physical Implementation
	D.2.1 Control and Routing

	D.3 Function Calls
	D.3.1 Status Byte

	Index
	Schematics

