

Low Noise Silicon Bipolar RF Transistor

- For low noise, high-gain broadband amplifiers at collector currents from 0.5 mA to 12 mA
- f_T = 8 GHz, NF_{min} = 0.9 dB at 900 MHz
- Pb-free (RoHS compliant) package
- Qualification report according to AEC-Q101 available

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration				Package		
BFP181	RFs	1 = C	2 = E	3 = B	4 = E	-	-	SOT143

Maximum Ratings at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\sf CEO}$	12	V
Collector-emitter voltage	V_{CES}	20	
Collector-base voltage	V_{CBO}	20	
Emitter-base voltage	V_{EBO}	2	
Collector current	$I_{\mathbb{C}}$	20	mA
Base current	l _B	2	
Total power dissipation ¹⁾	P _{tot}	175	mW
<i>T</i> _S ≤ 75 °C			
Junction temperature	T_{J}	150	°C
Storage temperature	T_{Stg}	-55 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ²⁾	R _{thJS}	430	K/W

1

 $^{{}^{1}}T_{\rm S}$ is measured on the collector lead at the soldering point of the pcb

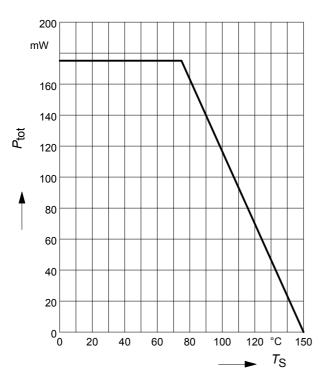
 $^{^2}$ For the definition of R_{thJS} please refer to Application Note AN077 (Thermal Resistance Calculation)

Electrical Characteristics at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	·			•	•
Collector-emitter breakdown voltage	V _{(BR)CEO}	12	-	-	V
$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0	, ,				
Collector-emitter cutoff current	I _{CES}	-	-	100	μΑ
$V_{CE} = 20 \text{ V}, V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{\rm CB} = 10 \text{ V}, I_{\rm E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	1	μA
$V_{\text{EB}} = 1 \text{ V}, I_{\text{C}} = 0$					
DC current gain	h _{FE}	70	100	140	-
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 8 V, pulse measured					

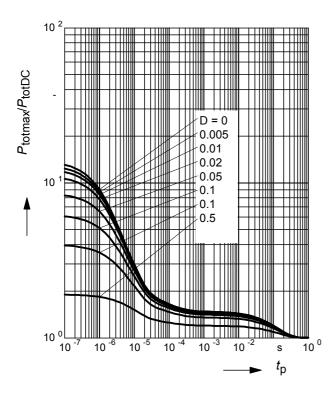
2

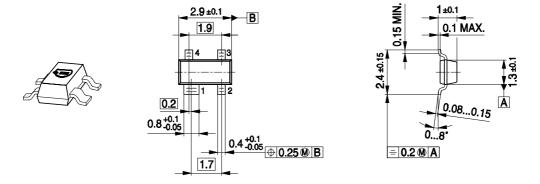
Electrical Characteristics at T_A = 25 °C, unless otherwise specified


Symbol	Values			Unit
	min.	typ.	max.	
g)	r	_	1	
f_{T}	6	8	-	GHz
C _{cb}	-	0.19	0.4	pF
C _{ce}	-	0.3	_	
C _{eb}	-	0.4	-	
NF _{min}				dB
	-	0.9	_	
	-	1.2	-	
G _{ms}				dB
	-	21	-	
	-	17.5	-	
S _{21e} ²				
	-	17.5	-	
	-	12.5	_	
	g) f _T C _{cb} C _{eb} NF _{min}	min.	min. typ. f _T 6 8 C _{Cb} - 0.19 C _{ce} - 0.4 NF _{min} - 0.9 G _{ms} - 21	min. typ. max. rg FT 6 8 - C _{cb} - 0.19 0.4 C _{ce} - 0.3 - NF _{min} - 0.9 - G _{ms} - 1.2 - IS _{21e} ² - 17.5 - IS _{21e} ² - 17.5 -

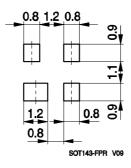
 $^{{}^{1}}G_{ms} = |S_{21} / S_{12}|$

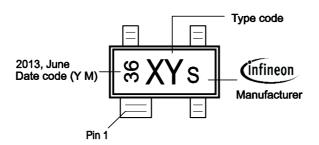
Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$


Permissible Pulse Load $R_{thJS} = f(t_p)$


Permissible Pulse Load

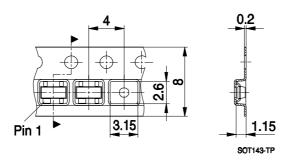
$$P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$$


Package Outline


Note: Mold flash, protrusions or gate burrs of 0,2 mm max. per side are not included

SOT143-PO V09

Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

6

2013-10-15