

M62015L/FP, M62016L/FP

Low Power 2 Output System Reset IC

REJ03D0783-0100 Rev.1.00 Sep 14, 2005

Description

The M62015 and M62016 are semiconductor integrated circuits whose optimum use is for the detection of the rise and fall in the power supply to a microcomputer system in order to reset or release the microcomputer system.

The M62015 and M62016 carry out voltage detection in two steps and have two output pins. As Bi-CMOS process and low power dissipating circuits are employed, they output optimum signals through each output pin to a system that requires RAM backup.

These ICs also support the backup mode of Renesas microcomputer the M16C.

Features

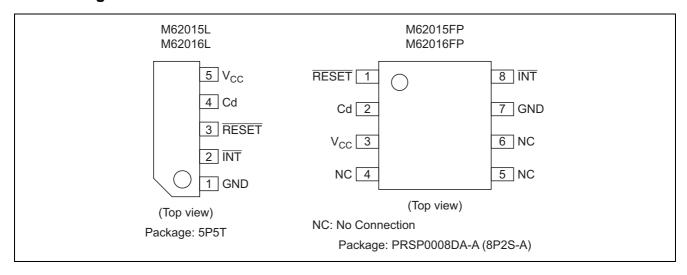
Bi-CMOS process realizes a configuration of low current dissipating circuits.
 Circuit current

 $I_{CC} = 3 \mu A$ (Typ, normal mode, $V_{CC} = 3.0 \text{ V}$) $I_{CC} = 1 \mu A$ (Typ, backup mode, $V_{CC} = 2.5 \text{ V}$)

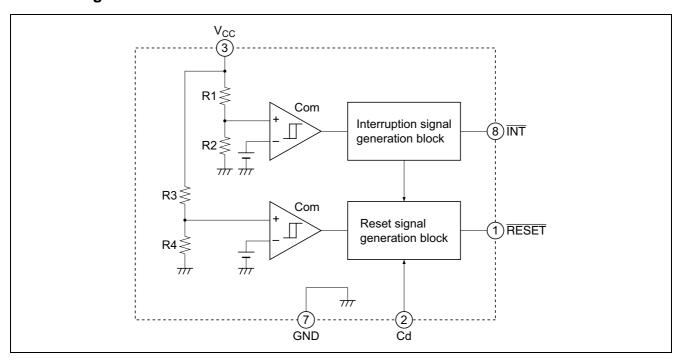
Two-step detection of supply voltage

Detection voltage in normal mode: $V_S = 2.7 \text{ V (Typ)}$ Detection voltage in backup mode: $V_{BATT} = 2.0 \text{ V (Typ)}$

Two outputs


Reset output (RESET): output of compulsive reset signal Interruption output (INT): output of interruption signal

 Two types of output forms CMOS output: M62015L/FP open drain output: M62016L/FP


Application

• Prevention of errors in microcomputer system in electronic equipment that requires RAM backup, such as office, industrial, and home-use equipment.

Pin Arrangement

Block Diagram

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C, unless otherwise noted)$

Item	Symbol	Ratings	Unit	Conditions	
Supply voltage	V _{CC}	8	V		
Output sink current	Isink	4	mA		
Power dissipation	Pd	440	mW		
Thermal derating	Кθ	4.4	mW/°C	Ta ≥ 25°C	
Operating temperature	Topr	-20 to +75	°C		
Storage temperature	Tstg	-40 to +125	°C		

Electrical Characteristics

 $(Ta = 25^{\circ}C, unless otherwise noted)$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	
Supply voltage	Vs	2.55	2.70	2.85	V	Interruption level during V _{CC} drop	
Battery voltage	V_{BATT}	1.85	2.00	2.15	V	Reset level at backup	
Hysteresis voltage	ΔV_S	_	60	1	mV	$\Delta V_S = V_{SH} - V_{SL}$	
Circuit current	I _{CC}	_	3.0	12	μΑ	V _{CC} = 3.0V: in normal mode	
		_	1.0	4.0		V _{CC} = 2.5V: in backup mode	
Sink ability	Vsat	_	0.4	0.6	V	V _{CC} = 2.5V, Isink = 2mA	
Delay time	td	_	50	_	ms	External capacitance Cd = 0.33μF	
Reset output response time	t _{RESET}	_	50		μS	When V _{CC} falling	
Interruption output reset time	t _{īNT}	_	40	_	μS	When V _{CC} falling	

Application Example

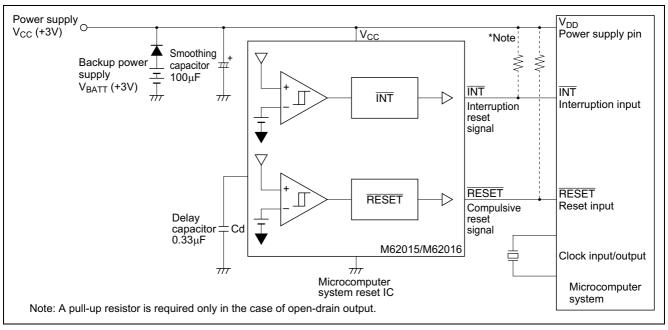
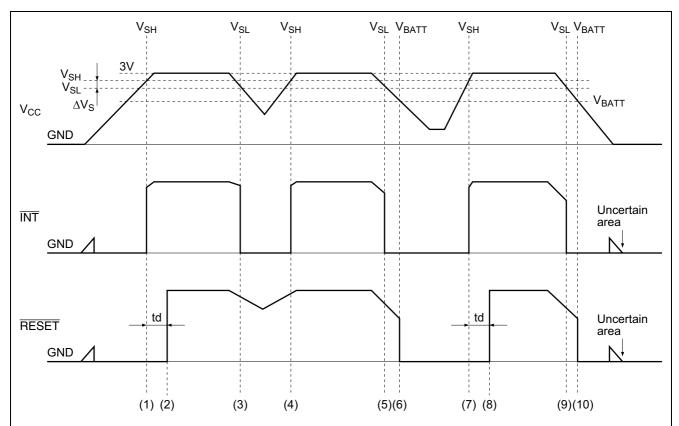
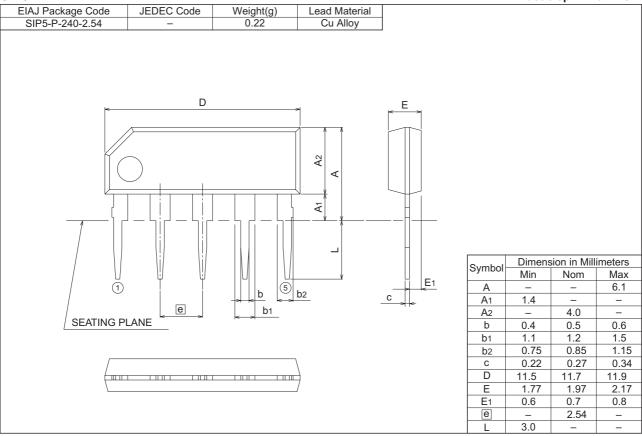



Figure 1 Application Example

Operating Description



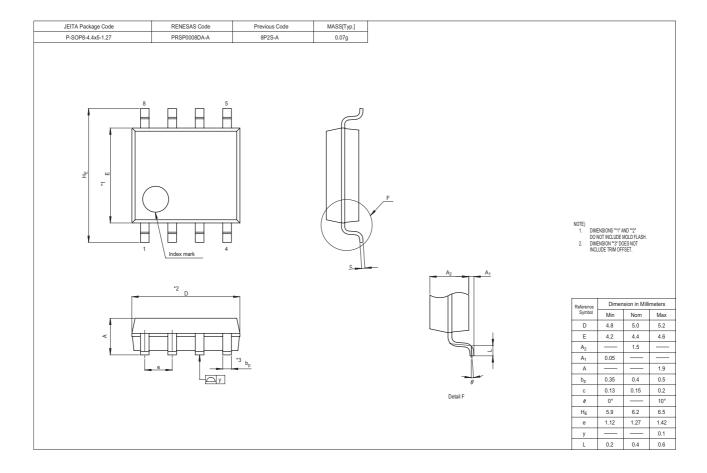

- (1): If V_{CC} rises to V_{SH} (2.76V), the \overline{INT} output is set to high level.
- (2): $\overline{\text{RESET}}$ goes high t_d (s) after V_{SH} .
 - * td = $1.52 \times 10^5 \times C$ (s)
- (3): If V_{CC} drops to V_{SL} (2.70V), \overline{INT} goes low.
 - * RESET output continues to be held high.
- (4): If V_{CC} returns to V_{SH} , the \overline{INT} output is set to high level.
- (5): Same as (3).
- (6): If V_{CC} becomes lower than V_{BATT} (2.00V), the RESET output is set to low thereby resetting the microcomputer and initializing system.
- (7): Same as (1).
- (8): Same as (2).
- (9): Same as (3) and (5).
- (10): Same as (6).

Figure 2 Operating Waveform

Package Dimensions

5P5T Plastic 5pin 240mil SIP

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

A. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510