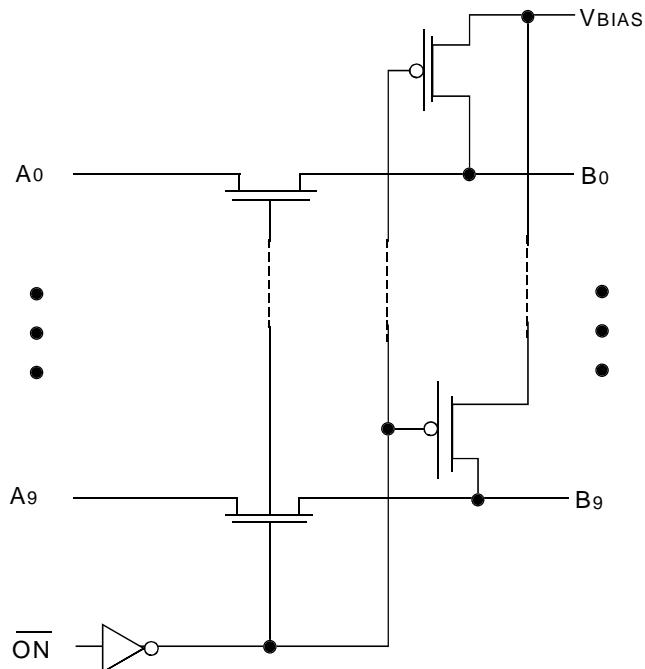


QUICKSWITCH® PRODUCTS

HIGH-SPEED CMOS 10-BIT LOW RESISTANCE QUICKSWITCH WITH PRECHARGED OUTPUTS

1DTQS3R800

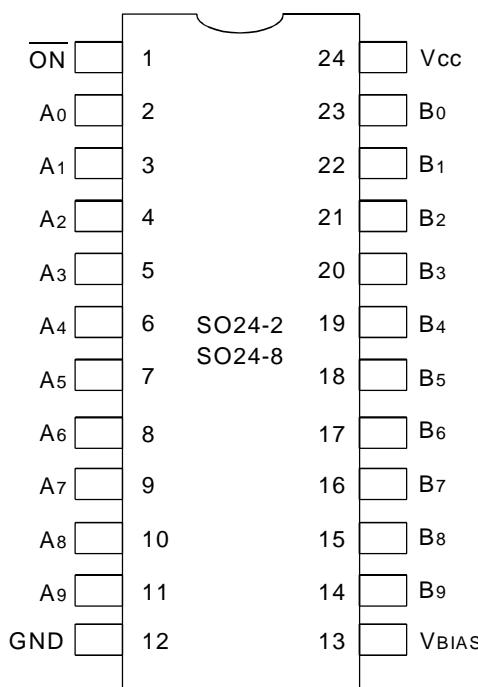
FEATURES:


- 2.5Ω bidirectional switches connect inputs to outputs
- Zero propagation delay
- Undershoot clamp diodes on all switch and control pins
- Outputs precharge voltage to minimize signal distortion during live insertion
- TTL-compatible input and output levels
- Zero ground bounce
- Available in SOIC and QSOP Packages

DESCRIPTION:

The QS3R800 is a 10-bit high-speed CMOS bus switch controlled by a single enable (ON) input. When ON is low, the switch is on and port A is connected to port B. When ON is high, the switch between port A and port B is open and port B is precharged to the bias voltage. The low ON resistance (2.5Ω) of the QS3R800 allows inputs to be connected to outputs without adding propagation delay and without generating additional noise. The QS3R800 also precharges the B port to a user-selectable bias voltage to minimize live-insertion noise, which is useful in VME bus applications.

The QS3R800 is characterized for operation at -40°C to +85°C.


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

NOVEMBER 1999

PIN CONFIGURATION

SOIC/ QSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾

Symbol	Description	Max.	Unit
V _{TERM} ⁽²⁾	Supply Voltage to Ground	-0.5 to +7	V
V _{BIAS}	Bias Voltage Range	-0.5 to V _{cc}	V
V _{TERM} ⁽³⁾	DC Input Voltage V _{IN}	-0.5 to V _{cc} + 0.5	V
V _{AC}	AC Input Voltage (pulse width \leq 20ns)	-3	V
I _{OUT}	DC Output Current	128	mA
I _{IK}	Input Clamp Current	-50	mA
P _{MAX}	Maximum Power Dissipation	.5	W
T _{TSG}	Storage Temperature	-65 to +150	°C

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. V_{cc} Terminals.
3. All terminals except V_{cc}.

CAPACITANCE

(T_A = +25°C, f = 1.0MHz, V_{IN} = 0V, V_{OUT} = 0V)

Pins	Typ.	Max. ⁽¹⁾	Unit
Control Inputs	3	4	pF
Quickswitch Channels (Switch OFF)	5	6	pF

NOTE:

1. This parameter is guaranteed at characterization but not tested.

PIN DESCRIPTION

Pin Names	I/O	Description
A ₀ - A ₉	I/O	Bus A
B ₀ - B ₉	I/O	Bus B
ON	I	Bus Switch Enable
V _{BIAS}	I	Bias Voltage

FUNCTION TABLE⁽¹⁾

ON	B ₀ -B ₉	Function
L	A ₀ - A ₉	Connect
H	V _{BIAS}	Precharge

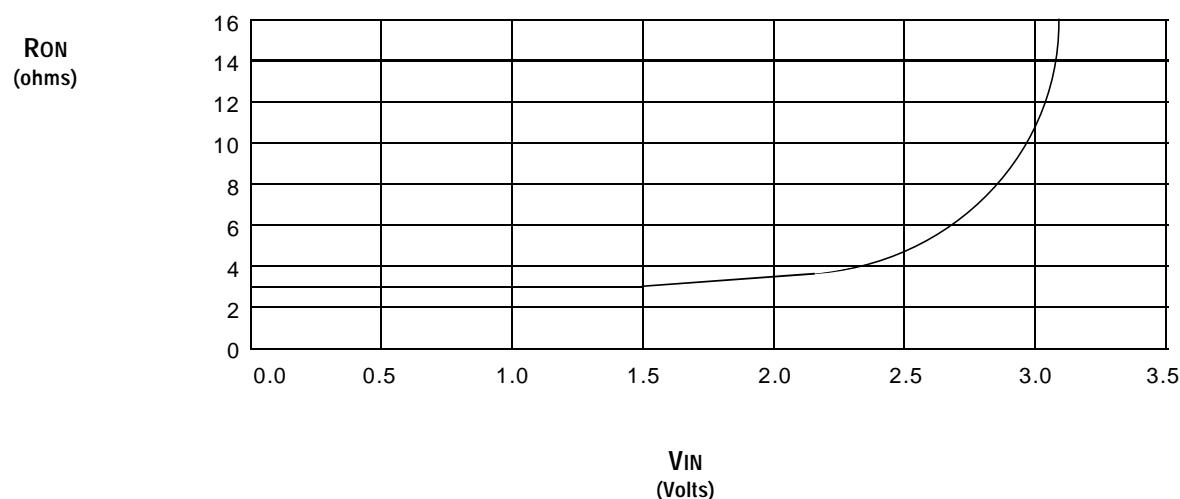
NOTE:

1. H = HIGH Voltage Level
L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$, $V_{CC} = 5.0\text{V} \pm 10\%$


Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	—	—	V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	—	—	0.8	V
V_{BIAS}	Bias Voltage	$V_{CC} = 5\text{V}$	1.3	—	V_{CC}	V
I_o	Bias Current	$V_{CC} = 4.5\text{V}$, $V_{BIAS} = 2.4\text{V}$, $V_o = 0$, $\overline{ON} = \text{HIGH}$	0.25	—	—	mA
I_{IN}	Input Leakage Current (Control Inputs)	$0\text{V} \leq V_{IN} \leq V_{CC}$	—	—	± 1	μA
I_{OZ}	Off-State Current (Hi-Z)	$0\text{V} \leq V_{OUT} \leq V_{CC}$	—	—	± 1	μA
R_{ON}	Switch On Resistance ⁽²⁾	$V_{CC} = \text{Min.}$, $V_{IN} = 0\text{V}$, $I_{ON} = 30\text{mA}$	—	2.5	5	Ω
R_{ON}	Switch On Resistance ⁽²⁾	$V_{CC} = \text{Min.}$, $V_{IN} = 2.4\text{V}$, $I_{ON} = 15\text{mA}$	—	4	8.5	Ω

NOTES:

1. Typical values are at $V_{CC} = 5.0\text{V}$, $T_A = 25^\circ\text{C}$.

2. During input/output leakage, testing all pins are at HIGH or LOW state.

TYPICAL ON RESISTANCE vs V_{IN} AT $V_{CC} = 5\text{V}$

POWER SUPPLY CHARACTERISTICS

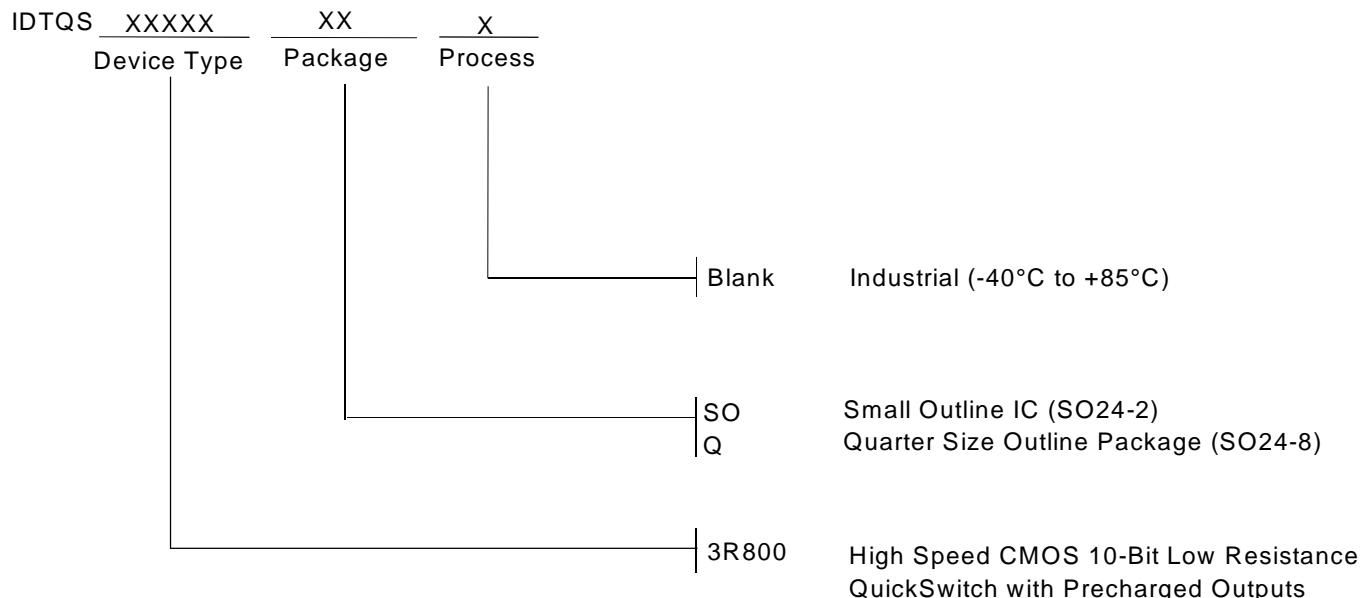
Symbol	Parameter	Test Conditions ⁽¹⁾	Typ. ⁽²⁾	Max.	Unit
I _{CCQ}	Quiescent Power Supply Current	V _{CC} = Max., V _{IN} = GND or V _{CC} , f = 0	0.2	3	µA
ΔI _{CC}	Power Supply Current per Control Input HIGH	V _{CC} = Max., V _{IN} = 3.4V ⁽³⁾ , f = 0	—	2.5	mA
I _{CCD}	Dynamic Power Supply Current per MHz ⁽⁴⁾	V _{CC} = Max., A and B pins open Data inputs = GND Control Input Toggling at 50% Duty Cycle	—	0.25	mA/MHz

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Typical values are at V_{CC} = 5.0V, T_A = 25°C.
3. Per TLL driven input (V_{IN} = 3.4V, control inputs only). A and B pins do not contribute to ΔI_{CC}.
4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

T_A = -40°C to +85°C, V_{CC} = 5.0V ± 10%


C_{LOAD} = 50pF, R_{LOAD} = 500Ω unless otherwise noted.

Symbol	Parameter	Min. ⁽¹⁾	Typ.	Max.	Unit
t _{PLH} t _{PHL}	Data Propagation Delay ^(2, 3) A to B or B to A	—	—	0.12	ns
t _{PZL} t _{PZH}	Switch Turn-On Delay ON to A or B	1.5	—	7.5	ns
t _{PZL} t _{PHZ}	Switch Turn-Off Delay ⁽²⁾ ON to A or B	1.5	—	6.5	ns

NOTES:

1. Minimums guaranteed but not tested.
2. This parameter is guaranteed but not tested
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.12ns for 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054

for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

**To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.
The IDT logo, QuickSwitch, and SynchroSwitch are registered trademarks of Integrated Device Technology, Inc.*