
CMOS 4-Bit Microcontroller

TMP47P823VF

The TMP47P823V is the system evaluation LSI of the TMP47C623/823 with 64 Kbits one-time PROM. The TMP47P823V programs / verifies using an adapter socket to connect with PROM programmer, an it is in TMM27128AD.

In addition, the TMP47P823V and the TMP47C623/823 are pin compatible. The TMP47P823V operates as the same as the TMP47C623/823 by programming to the internal PROM.

Part No.	ROM	RAM	Package	Adapter Socket	
TMP47P823VF	OTP 8192 × 8-bit	512 × 4-bit	P-QFP64-1420-1.00A	BM1146	

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled

Quality and Reliability Assurance / Handling Precautions.

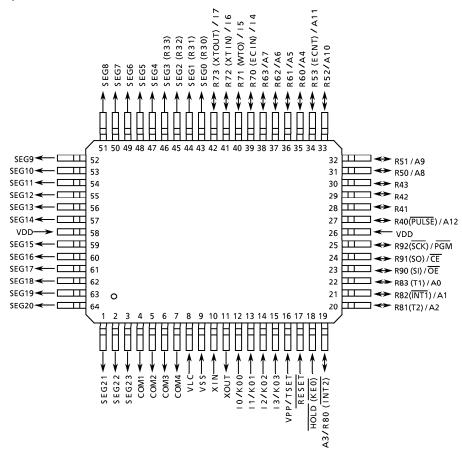
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

■ The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments traffic signal instruments control instruments medical instruments. all types of transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's

The products described in this document are subject to the foreign exchange and foreign trade laws.


The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

3-23-31 2000-10-19

Pin Assignment (Top View)

P-QFP64-1420-1.00A

Pin Function

The TMP47P823V has MCU mode and PROM mode.

(1) MCU mode

The TMP47C823 and the TMP47P823V are pin compatible (TEST pin for out-going test, Be fixed to low level).

(2) PROM mode

Pin Name	Input / Output	Functions	Pin Name (MCU Mode)			
A12			R40			
A11 to A8			R50 to R53			
A7 to A4	Input I/O Input Power supply Output Power supply	Address inputs	R60 to R63			
A3 to A0			R80 to R83			
17 to 14			R73 to R70			
13 to 10	1/0	Data inputs / outputs	K03 to K00			
PGM		Program control input	R92			
CE	Input	Chip Enable input	R91			
ŌĒ		Chip Enable input	R90			
VPP		+ 12.5 V / 6 V (Program supply voltage)	TEST			
vcc	Power supply	+5 V	VDD			
VSS		0 V	VSS			
SEG31 to SEG0						
COM4 to COM1	Output	Open				
VLC						
N.C.	Power supply					
R53 to R51						
R63 to R60]	Be fixed to low level				
R43 to R40	1/0					
R33 to R30						
RESET	Input					
HOLD	Input	PROM mode setting pins. Be fixed to low level.				
XIN	Input					
XOUT	Output	Resonator connecting pins				

Operational Description

The following is an explanation of hardware configuration and operation in relation to the TMP47P823V. The TMP47P823V is the same as the TMP47C623/823 except that an EPROM or OTP is used instead of a Mask ROM.

1. Operation Mode

The TMP47P823V has an MCU mode and a PROM mode.

1.1 MCU mode

The MCU mode is set by fixing the TEST / VPP pin at the "L" level. Operation in the MCU mode is the same as for the TMP47C623/823, except that the TEST / VPP pin does not have pull-down resistor and cannot be used open.

1.1.1 Program memory

The program storage area is the same as for the TMP47C823. Data conversion tables must be set in two locations when using the TMP47P823V to check TMP47C623 operation.

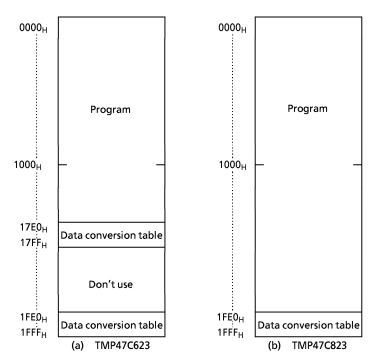


Figure 1-1. Program area

1.1.2 Data memory

The TMP47P823V has two 256 \times 4-bit data memory banks (DMB0, DMB1).

When using the TMP47P823V as a TMP47C623 evaluator, do not write data to address $80_{\rm H}$ and following, even though the DMB1 addresses are $00\text{-}FF_{\rm H}$. There is no necessary to take into consideration a special function Shared area because one is built in DMB0.

1.1.3 Input/output circuitry

(1) Control pins

This is the same as for the TMP47C623/823 except that there is no built-in pull-down resistance for the TEST pin.

(2) I/O Ports

The input/output circuit of the TMP47P823V is the same as I/O code GA of the TMP47C623/823. External resistance, for example, is required when using as evaluator of other I/O codes (GB to GF) (Refer to Figure 1-3).

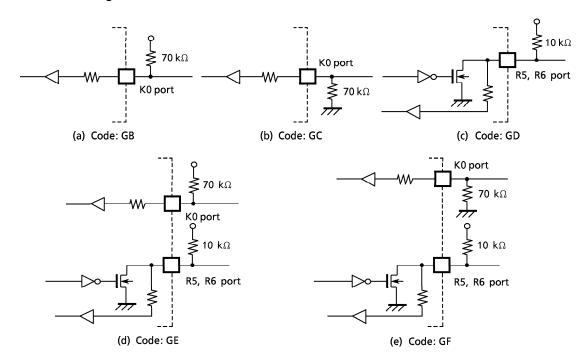


Figure 1-2. I/O code and external circuitry

1.2 PROM mode

The PROM mode is set by setting the RESET, HOLD pins to the "L" level. The PROM mode can be used as a general-purpose PROM writer for program writing and verification (A high-speed program mode is used set the ROM type the same as for the TMM2764AD).

An adapter socket (part No. BM1146) is available for connecting a PROM writer.

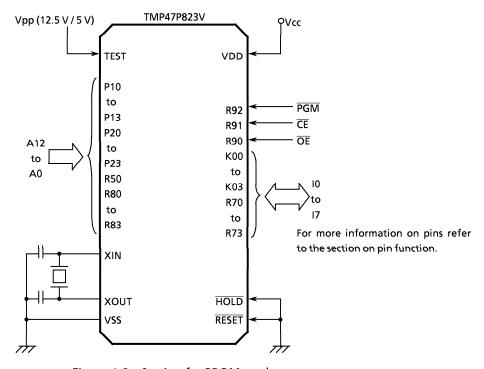


Figure 1-3. Setting for PROM mode

1.2.1 High-speed programming mode

The device is set up in the high speed programming mode when the programming voltage (12.5 V) is applied to the Vpp terminal with Vcc = 6 V and $\overline{PGM} = V_{IH4}$. The programming is achieved by applying a Single TTL low level 1 ms, pulse the \overline{PGM} input after addresses and data are stable. Then the programmed data is verified by using program Verify Mode. If the programmed data is not correct, another program pulse of 1 ms is applied and then programmed data is verified. This should be repeated until the program operates correctly (max. 25 times). After correctly programming the selected address, one additional program pulse with pulse width 3 times that needed for programming is applied. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5 V.

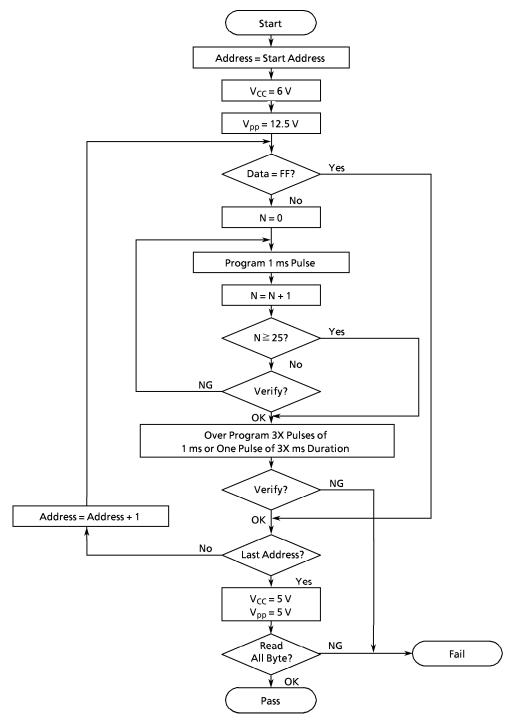


Figure 1-4. Flowchart

Electrical Characteristics

Absolute Maximum Ratings $(V_{SS} = 0 V)$

Parameter	Symbol	Pins	Ratings	Unit	
Supply Voltage	V_{DD}		– 0.3 to 7	V	
Supply Voltage (LCD drive)	V_{LC}		-0.3 to $V_{DD} + 0.3$	٧	
Input Voltage	V_{IN}		-0.3 to $V_{DD} + 0.3$	٧	
Output Voltage	V _{OUT1}	Except sink open drain pin, but include ports R7, R3	- 0.3 to V _{DD} + 0.3	V	
	Vout2	Sink open drain pin, but include ports R7, R3	– 0.3 to 10		
Output Coment (Box 1 min)	I _{OUT1}	I _{OUT1} Exept port R4			
Output Current (Per 1 pin)	I _{OUT2}	Port R4	30	mA	
Output Current (Total)	Σ I _{OUT}	Port R4	60	mA	
Power Dissipation [Topr = 50°C]	PD		600	mW	
Soldering Temperature (time)	Tsld		260 (10 s)	°C	
Storage Temperature	Tstg		– 55 to 125	°C	
Operating Temperature	Topr		– 40 to 70	°C	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Opeating Conditions

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -40 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Max	Unit
			In the Normal mode (fc = 4.2 MHz)	2.7		
CompleMala	.,		In the Normal mode (fc = 5.0 MHz) Note 2			.,
Supply Voltage	V _{DD}		In the Normal mode (fc = 6.0 MHz)	4.5	6.0	V
			In the SLOW mode	2.7		
			In the HOLD mode	2.0		
	V_{IH1}	Except Hysteresis Input	$V_{DD} \ge 4.5 V$	$V_{DD} \times 0.7$		v
Input High Voltage	$V_{\text{IH}2}$	Hysteresis Input		$V_{DD} \times 0.75$	V_{DD}	
	V _{IH3}		V _{DD} < 4.5 V	$V_{DD} \times 0.9$		
	V _{IL1}	Except Hysteresis Input	\/ > A 5 \/	$V_{DD} \ge 4.5 V$		
Input Low Voltage	V_{IL2}	Hysteresis Input	V _{DD} = 4.3 V	0	$V_{DD} \times 0.25$	V
	V_{IL3}		V _{DD} < 4.5 V		$V_{DD} \times 0.1$	
Clock Frequency	fc XIN, XOUT	XIN, XOUT	High freq. $V_{DD} \ge 2.7 V$		4.2	
			High freq. $V_{DD} \ge 2.9 V$ Note 3	0.4	5.0	MHz
			High freq. $V_{DD} \ge 4.5 V$		6.0	
	fs	XTIN, XTOUT	Low freq.	30.0	34.0	kHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Input Voltage VIH3, VIL3: in the SLOW and HOLD mode.

Note 3: Operating Temperature −30 to 50°C

DC Characteristics

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -40 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis Input		1	0.7	1	V
Input Current	I _{IN1}	Port K0, TEST, RESET, HOLD Open drain R port	V _{DD} = 5.5 V, V _{IN} = 5.5 V /0 V	_		± 2	μΑ
Input Low Current	I _{IL}	Push-pull R port $V_{DD} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$		_	_	- 2	mA
	R _{IN1}	Port K0 with pull-up/pull-down		30	70	150	
Input Registance	R _{IN2}	RESET		100	220	450	kΩ
Output Leakage Current	I _{LO}	Open drain port R	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	_	_	2	μΑ
Output High Voltage	V _{OH}	Push-pull R port	$V_{DD} = 4.5 \text{ V}, I_{OH} = -200 \ \mu\text{A}$	2.4	_	ı	V
Output Low Voltage	V _{OL}	Except XOUT	$V_{DD} = 4.5 \text{ V, } I_{OL} = 1.6 \text{ mA}$	ı	_	0.4	V
Output Low Current	I _{OL}	Port 4	$V_{DD} = 4.5 \text{ V}, V_{OL} = 1.0 \text{ V}$	15	20	1	mA
Segment Output Low Registance	R _{OS1}	SEG pin			40/20		
Common Output Low Registance	R _{OC1}	COM pin		ı	10/20	ı	
Segment Output High Registance	R _{OS2}	SEG pin				kΩ	
Common Output High Registance	R _{OC2}	COM pin	$V_{DD} = 5 \text{ V}, V_{DD} - V_{LC} = 3 \text{ V}$	_	70/200		
	V _{O2/3}			3.8	4.0	4.2	
Segment/Common Output Registance	V _{O1/2} SEG / COM pin	SEG / COM pin		3.3	3.5	3.7	V
Output Registance	V _{O1/3}			2.8	3.0	3.2	
Supply Current (in the Normal mode)	I _{DD}		$V_{DD} = 5.5 \text{ V}, V_{LC} = V_{SS}$ fc = 4 MHz	1	3	6	mA
Supply Current (in the SLOW mode)	I _{DDS}		$V_{DD} = 3.0 \text{ V}, V_{LC} = V_{SS}$ fs = 32.768 kHz	ı	30	60	μΑ
Supply Current (in the HOLD mode)	I _{DDH}		V _{DD} = 5.5 V	_	0.5	10	μΑ

Note 1: Typ. values show those at $T_{opr} = 25$ °C, $V_{DD} = 5$ V.

Note 2: Input Current I_{IN1} ; The current through resistor is not included, when the input

resistor (pull-up/pull-down) is contained.

Note 3: Output Resistance R_{os} , R_{oc} ; Shows on-resistance at the level switching.

Note 4: $V_{O2/3}$; Shows 2/3 level output voltage, when the 1/4 or 1/3 duty LCD is used.

Note 5: $V_{O1/2}$; Shows 1/2 level output voltage, when the 1/2 duty or static LCD is used.

Note 6: $V_{O1/3}$; Shows 1/3 level output voltage, when the 1/4 or 1/3 duty LCD is used.

Note 7: Supply Current I_{DD} , I_{DDH} ; $V_{IN} = 5.3 \text{ V} / 0.2 \text{ V}$

The K0 port is open when the input resistor is contained. The voltage applied to the R port is within the valid range.

Supply Current I_{DDS} ; $V_{IN} = 2.8 \text{ V} / 0.2 \text{ V}$. Only low frequency clock is only osillated

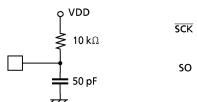
(connecting XTIN, XTOUT).

Note 8: When using LCD, it is necessary to consider values of $R_{OS1/2}$ and $R_{OC1/2}$.

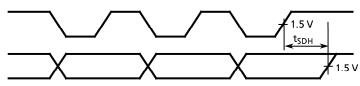
Note 9: Times for SEG / COM output switching on ; R_{OS1} , R_{OC1} : 2/fs (s)

 R_{OS2} , R_{OC2} : $1/(n \cdot f_F)$ (1/n: duty, f_F : frame frequency)

3-23-39 2000-10-19


AC Characteristics

$$(V_{SS} = 0 \text{ V}, T_{opr} = -40 \text{ to } 70^{\circ}\text{C})$$


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
		in the Normal mode	1.3	_	20	μS
Instruction Cycle Time	tcy	in the SLOW mode	235	ı	267	μS
High Level Clock Pulse Width	t _{WCH}					
Low Level Clock Pulse Width	t _{WCL}	For external clock operation	ation 80		_	ns
Shift data Hold Time	t _{SDH}		0.5 tcy – 0.3	_	_	μS
High Speed Timer / Counter input frequency	f _{HT}	ECIN input	_	_	fc	MHz

Note: Shift data Hold time:

External circuit for SCK pin and SO pin

Serial port (completion of transmission)

Recommended Oscillating Conditions

 $(V_{SS} = 0 \text{ V}, T_{opr} = -40 \text{ to } 70^{\circ}\text{C})$

Recommended oscillating conditions of the TMP47P823V are equal to the TMP47C623/823's.

DC / AC Characteristics

 $(V_{SS} = 0 V)$

(1) Read Operation

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Output Level High Voltage	V _{IH4}		V _{CC} × 0.7	-	V _{CC}	٧
Output Level Low Voltage	V _{IL4}		0	-	V _{CC} × 0.1	٧
Supply Voltage	V _{CC}					
Programming Voltage	V _{PP}		4.75	-	6.0	V
Address Access Time	t _{ACC}	V _{CC} = 5.0 ± 0.25 V	0	-	350	ns