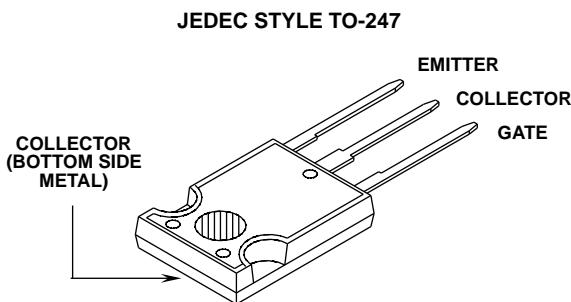
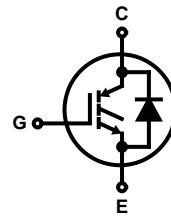


April 1995

**12A, 600V N-Channel IGBT
with Anti-Parallel Ultrafast Diode**
Features

- 12A, 600V
- Latch Free Operation
- Typical Fall Time <500ns
- Low Conduction Loss
- With Anti-Parallel Diode
- $t_{RR} < 60\text{ns}$

Description



The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between $+25^\circ\text{C}$ and $+150^\circ\text{C}$. The diode used in parallel with the IGBT is an ultrafast ($t_{RR} < 60\text{ns}$) with soft recovery characteristic.

The IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND
HGTG12N60D1D	TO-220AB	G12N60D1D

NOTE: When ordering, use the entire part number

Package

Terminal Diagram
N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings $T_C = +25^\circ\text{C}$, Unless Otherwise Specified

		HGTG12N60D1D	UNITS
Collector-Emitter Voltage	BV_{CES}	600	V
Collector-Gate Voltage $R_{GE} = 1\text{M}\Omega$	BV_{CGR}	600	V
Collector Current Continuous at $T_C = +25^\circ\text{C}$	I_{C25}	21	A
at $T_C = +90^\circ\text{C}$	I_{C90}	12	A
Collector Current Pulsed (Note 1)	I_{CM}	48	A
Gate-Emitter Voltage Continuous	V_{GES}	± 20	V
Switching Safe Operating Area at $T_J = +150^\circ\text{C}$	$SSOA$	30A at 0.8 BV_{CES}	-
Diode Forward Current at $T_C = +25^\circ\text{C}$	I_{F25}	21	A
at $T_C = +90^\circ\text{C}$	I_{F90}	12	A
Power Dissipation Total at $T_C = +25^\circ\text{C}$	P_D	75	W
Power Dissipation Derating $T_C > +25^\circ\text{C}$		0.6	$W^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{STG}	-55 to +150	$^\circ\text{C}$
Maximum Lead Temperature for Soldering (0.125 inches from case for 5s)	T_L	260	$^\circ\text{C}$

NOTE:

 1. Repetitive Rating: Pulse width limited by maximum junction temperature.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4,969,027							

Specifications HGTG12N60D1D

Electrical Specifications $T_C = +25^\circ\text{C}$, Unless Otherwise Specified

PARAMETERS	SYMBOL	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Collector-Emitter Breakdown Voltage	BV_{CES}	$I_C = 280\mu\text{A}, V_{\text{GE}} = 0\text{V}$	600	-	-	V
Collector-Emitter Leakage Voltage	I_{CES}	$V_{\text{CE}} = \text{BV}_{\text{CES}}$	$T_C = +25^\circ\text{C}$	-	-	μA
		$V_{\text{CE}} = 0.8 \text{ BV}_{\text{CES}}$	$T_C = +125^\circ\text{C}$	-	-	5.0 mA
Collector-Emitter Saturation Voltage	$V_{\text{CE}(\text{SAT})}$	$I_C = I_{\text{C90}}, V_{\text{GE}} = 15\text{V}$	$T_C = +25^\circ\text{C}$	-	1.9	2.5 V
			$T_C = +125^\circ\text{C}$	-	2.1	2.7 V
Gate-Emitter Threshold Voltage	$V_{\text{GE}(\text{TH})}$	$I_C = 250\mu\text{A}, V_{\text{CE}} = V_{\text{GE}}, T_C = +25^\circ\text{C}$	3.0	4.5	6.0	V
Gate-Emitter Leakage Current	I_{GES}	$V_{\text{GE}} = \pm 20\text{V}$	-	-	± 500 nA	
Gate-Emitter Plateau Voltage	V_{GEP}	$I_C = I_{\text{C90}}, V_{\text{CE}} = 0.5 \text{ BV}_{\text{CES}}$	-	7.2	-	V
On-State Gate Charge	$Q_{\text{G}(\text{ON})}$	$I_C = I_{\text{C90}}, V_{\text{CE}} = 0.5 \text{ BV}_{\text{CES}}$	$V_{\text{GE}} = 15\text{V}$	-	45	60 nC
			$V_{\text{GE}} = 20\text{V}$	-	70	90 nC
Current Turn-On Delay Time	$t_{\text{D}(\text{ON})\text{I}}$	$L = 500\mu\text{H}, I_C = I_{\text{C90}}, R_G = 25\text{V}, V_{\text{GE}} = 15\text{V}, T_J = +150^\circ\text{C}, V_{\text{CE}} = 0.8 \text{ BV}_{\text{CES}}$	-	100	-	ns
Current Rise Time	t_{RI}		-	150	-	ns
Current Turn-Off	$t_{\text{D}(\text{OFF})\text{I}}$		-	430	600	ns
Current Fall Time	t_{FI}		-	430	600	ns
Turn-Off Energy (Note 1)	W_{OFF}		-	1.8	-	mJ
Thermal Resistance IGBT	$R_{\theta\text{JC}}$		-	-	1.67	$^\circ\text{C}/\text{W}$
Thermal Resistance Diode	$R_{\theta\text{JC}}$		-	-	1.5	$^\circ\text{C}/\text{W}$
Diode Forward Voltage	V_{EC}	$I_{\text{EC}} = 12\text{A}$	-	-	1.50	V
Diode Reverse Recovery Time	t_{RR}	$I_{\text{EC}} = 12\text{A}, dI_{\text{EC}}/dt = 100\text{A}/\mu\text{s}$	-	-	60	ns

NOTE:

1. Turn-off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero ($I_{\text{CE}} = 0\text{A}$). The HGTG12N60D1D was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-off Switching Loss. This test method produces the true total Turn-off Energy Loss.

Typical Performance Curves

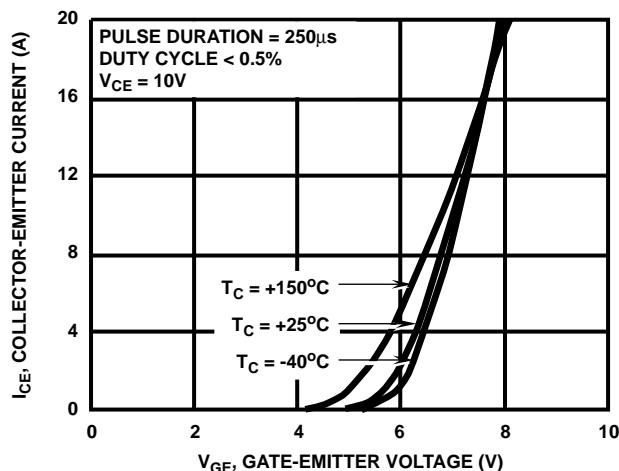


FIGURE 1. TRANSFER CHARACTERISTICS (TYPICAL)

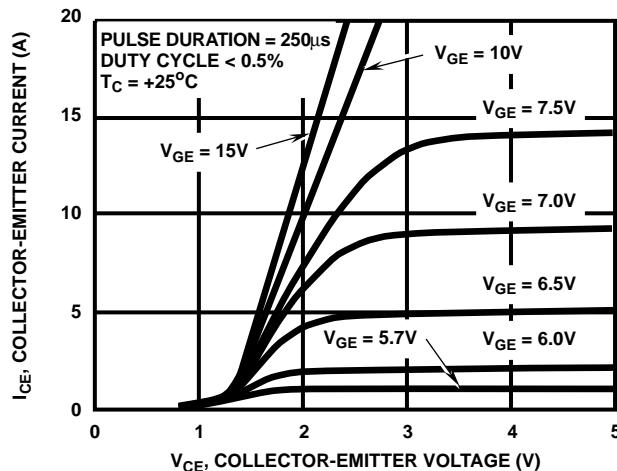


FIGURE 2. SATURATION CHARACTERISTICS (TYPICAL)

Typical Performance Curves (Continued)

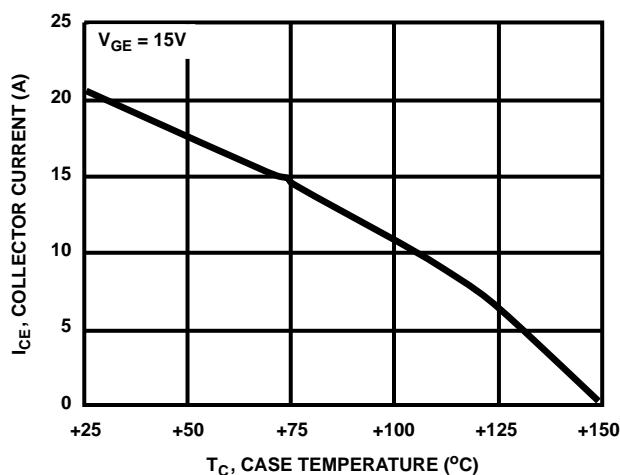


FIGURE 3. DC COLLECTOR CURRENT vs CASE TEMPERATURE

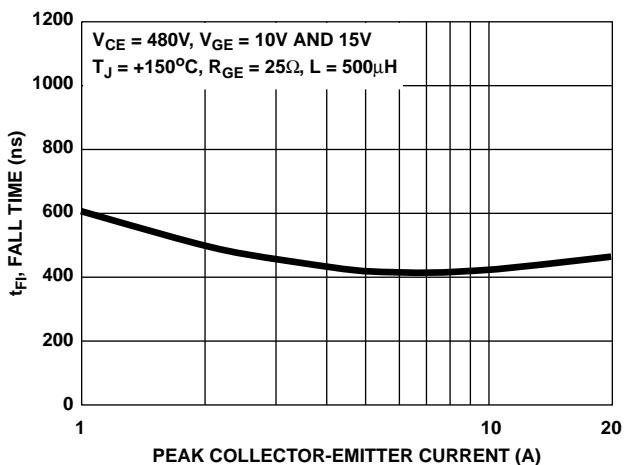


FIGURE 4. FALL TIME vs COLLECTOR-EMITTER CURRENT

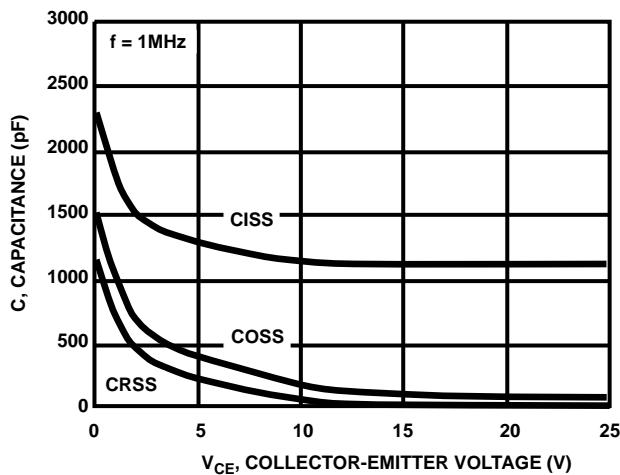


FIGURE 5. CAPACITANCE vs COLLECTOR-EMITTER VOLTAGE

FIGURE 6. NORMALIZED SWITCHING WAVEFORMS AT CONSTANT GATE CURRENT. (REFER TO APPLICATION NOTES AN7254 AND AN7260)

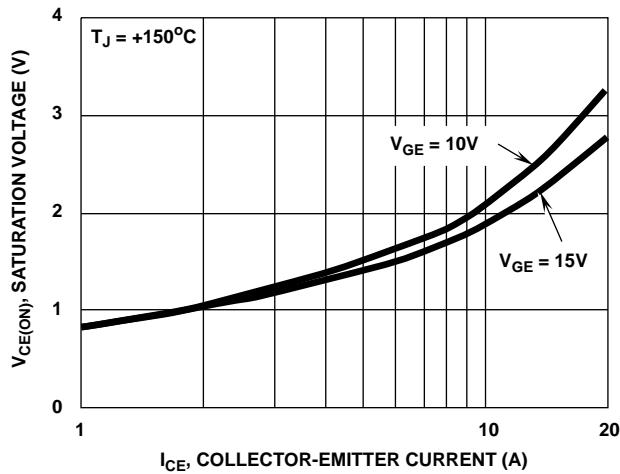


FIGURE 7. SATURATION VOLTAGE vs COLLECTOR-EMITTER CURRENT

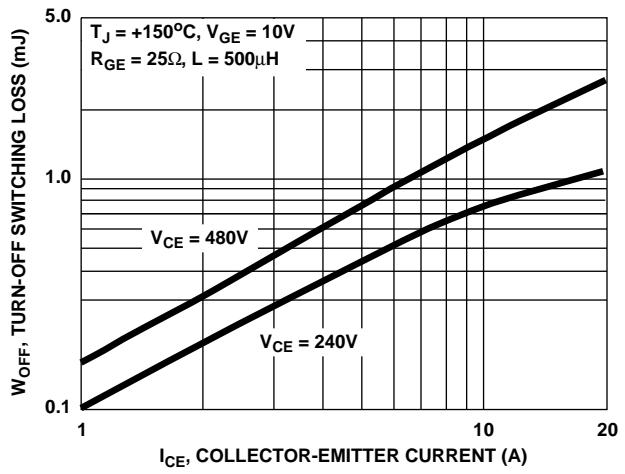


FIGURE 8. TURN-OFF SWITCHING LOSS vs COLLECTOR-EMITTER CURRENT

Typical Performance Curves (Continued)

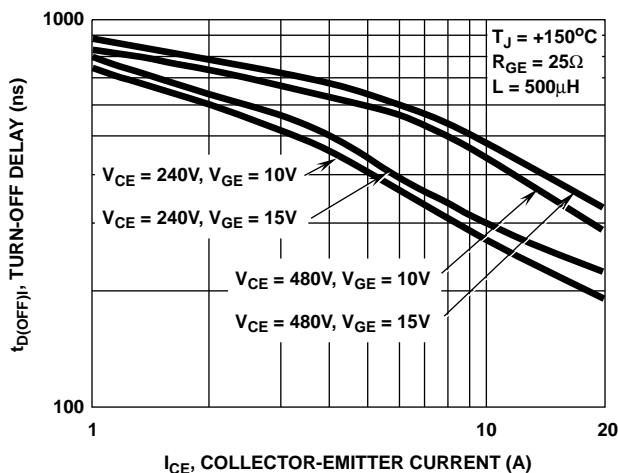


FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

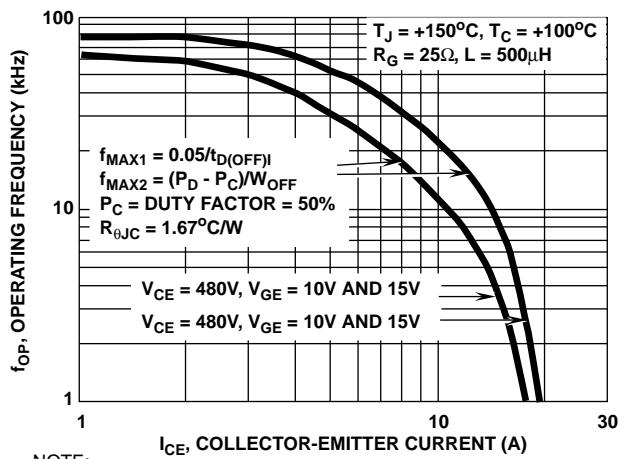


FIGURE 10. OPERATING FREQUENCY vs COLLECTOR-EMITTER CURRENT AND VOLTAGE

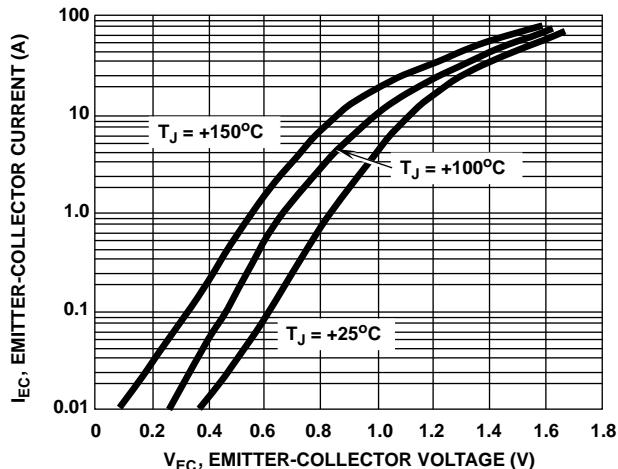


FIGURE 11. TYPICAL DIODE Emitter-TO-COLLECTOR VOLTAGE

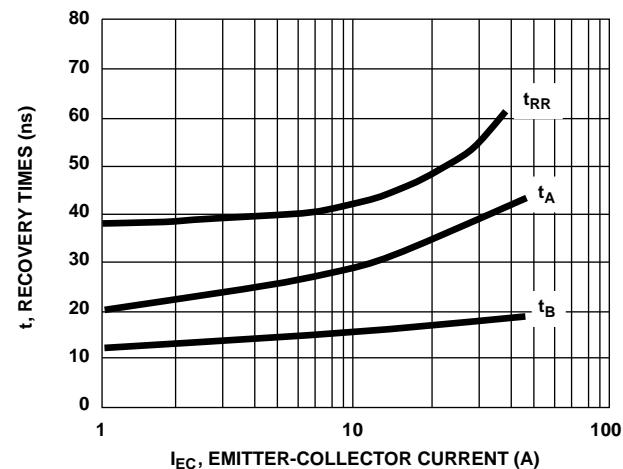


FIGURE 12. TYPICAL tRR, tA, tB vs FORWARD CURRENT

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

f_{MAX1} is defined by $f_{MAX1} = 0.05/t_{D(OFF)}$. $t_{D(OFF)}$ (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device turn-off delay can establish an additional

frequency limiting condition for an application other than T_{JMAX} . $t_{D(OFF)}$ is important when controlling output ripple under a lightly loaded condition.

f_{MAX2} is defined by $f_{MAX2} = (P_D - P_C)/W_{OFF}$. The allowable dissipation (P_D) is defined by $P_D = (T_{JMAX} - T_C)/R_{θJC}$. The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 10) so that the conduction losses (P_C) can be approximated by $P_C = (V_{CE} \times I_{CE})/2$. W_{OFF} is defined as the sum of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero ($I_{CE} - 0A$).

The switching power loss (Figure 10) is defined as $f_{MAX1} \times W_{OFF}$. Turn on switching losses are not included because they can be greatly influenced by external circuit conditions and components.