

FEATURES

- Single-Chip and Single-Supply Interface for Two IBM PC/AT Serial Ports
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Always-Active Noninverting Receiver Output (ROUT2) Per Port
- Operates Up To 250 kbit/s
- Low Standby Current . . . 1 μ A Typical
- External Capacitors . . . $4 \times 0.22 \mu$ F
- Accepts 5-V Logic Input With 3.3-V Supply
- Allows for Flexible Power Down of Either Serial Port
- Serial-Mouse Driveability
- RS-232 Bus-Pin ESD Protection Exceeds ± 15 kV Using Human-Body Model (HBM)

APPLICATIONS

- Battery-Powered Systems
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

DESCRIPTION/ORDERING INFORMATION

The TRSF23243 consists of two ports, each containing three line drivers and five line receivers, and a dual charge-pump circuit with ± 15 -kV ESD protection pin to pin (serial-port connection pins, including GND). This device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. This combination of drivers and receivers matches that needed for two typical serial ports used in an IBM PC/AT, or compatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, this device includes an always-active noninverting output (ROUT2) per port, which allows applications using the ring indicator to transmit data while the device is powered down. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/ μ s driver output slew-rate.

ORDERING INFORMATION

T_A	PACKAGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	SSOP – DL	Tube of 25	TRSF23243CDL
		Reel of 1000	TRSF23243CDLR
–40°C to 85°C	TSSOP – DGG	Reel of 2000	TRSF23243CDGGR
	SSOP – DL	Tube of 25	TRSF23243IDL
		Reel of 1000	TRSF23243IDLR
	TSSOP – DGG	Reel of 2000	TRSF23243IDGGR

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

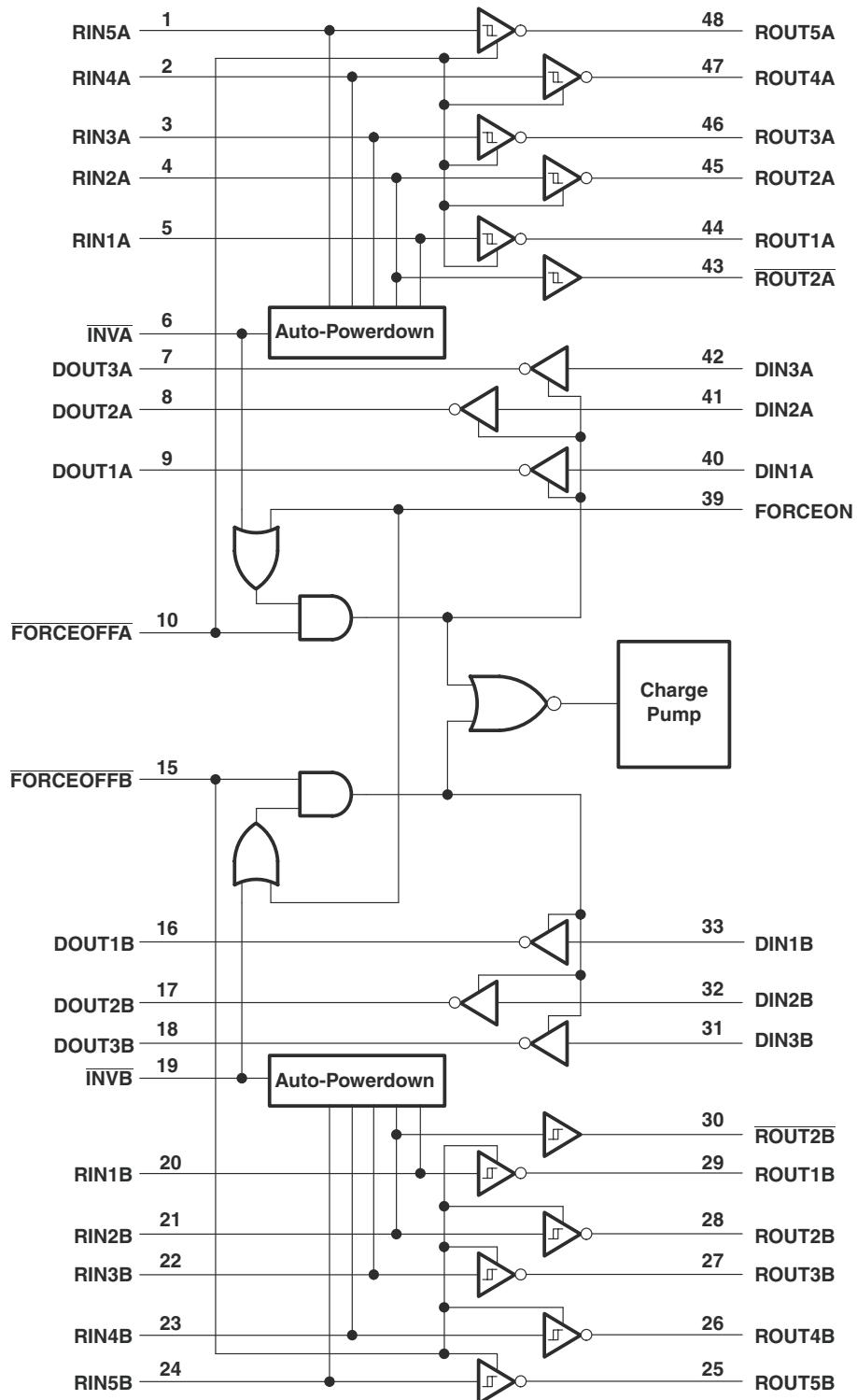
Flexible control options for power management are available when either or both serial ports are inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs of its respective port are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2) are shut off, and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur.

Auto-powerdown can be disabled when FORCEON and FORCEOFF are high and should be done when driving a serial mouse. With auto-powerdown enabled, the RS-232 port is activated automatically when a valid signal is applied to any respective receiver input. The INV output is used to notify the user if an RS-232 signal is present at any receiver input. INV is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30 μ s. INV is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. Refer to [Figure 5](#) for receiver input levels.

FUNCTION TABLES

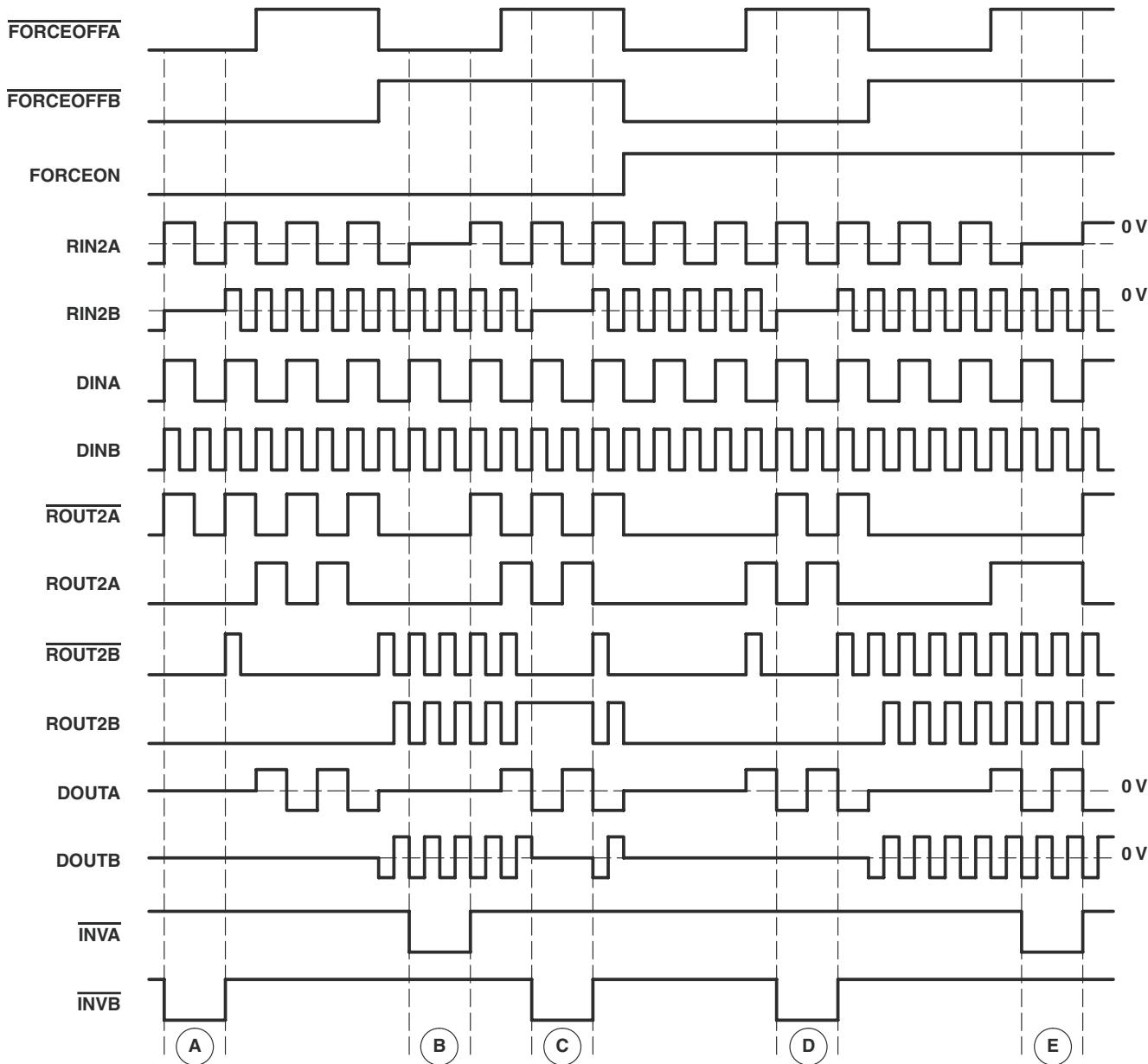
Each Driver⁽¹⁾
(Each Port)

INPUTS				OUTPUT DOUT	DRIVER STATUS
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL		
X	X	L	X	Z	Powered off
L	H	H	X	H	Normal operation with auto-powerdown disabled
H	H	H	X	L	
L	L	H	Yes	H	Normal operation with auto-powerdown enabled
H	L	H	Yes	L	
L	L	H	No	Z	Powered off by auto-powerdown feature
H	L	H	No	Z	


(1) H = high level, L = low level, X = irrelevant, Z = high impedance

Each Receiver⁽¹⁾
(Each Port)

INPUTS				OUTPUTS		RECEIVER STATUS
RIN2	RIN1, RIN3-RIN5	FORCEOFF	VALID RIN RS-232 LEVEL	ROUT2	ROUT	
L	X	L	X	L	Z	Powered off while ROUT2 is active
H	X	L	X	H	Z	
L	L	H	Yes	L	H	
L	H	H	Yes	L	L	Normal operation with auto-powerdown disabled/enabled
H	L	H	Yes	H	H	
H	H	H	Yes	H	L	
Open	Open	H	No	L	H	


(1) H = high level, L = low level, X = irrelevant,
Z = high impedance (off),
Open = input disconnected or connected driver off

LOGIC DIAGRAM (POSITIVE LOGIC)

Timing

Figure 1 shows how the two independent serial ports can be enabled or disabled. As shown by the logic states, depending on the FORCEOFF, FORCEON, and receiver input levels, either port can be powered down. Intermediate receiver input levels indicate a 0-V input. Also, it is assumed a pulldown resistor to ground is used for the receiver outputs. The INV pin goes low when its respective receiver input does not supply a valid RS-232 level. For simplicity, voltage levels, timing differences, and input/output edge rates are not shown.

- Ports A and B manually powered off.
- Port A manually powered off, port B in normal operation with auto-powerdown enabled.
- Port B powered off by auto-powerdown, port A in normal operation with auto-powerdown enabled.
- Port A in normal operation with auto-powerdown disabled, port B manually powered off.
- Ports A and B in normal operation with auto-powerdown disabled

Figure 1. Timing Diagram

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V_+	Positive-output supply voltage range ⁽²⁾		-0.3	7	V
V_-	Negative-output supply voltage range ⁽²⁾		0.3	-7	V
$V_+ - V_-$	Supply voltage difference ⁽²⁾			13	V
V_I	Input voltage range	Driver (FORCEOFF, FORCEON)	-0.3	6	V
		Receiver	-25	25	
V_O	Output voltage range	Driver	-13.2	13.2	V
		Receiver (INV)	-0.3	$V_{CC} + 0.3$	
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	DGG package		70	°C/W
		DL package		63	
T_J	Operating virtual junction temperature			150	°C
T_{stg}	Storage temperature range		-65	150	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages are with respect to network GND.
- (3) Maximum power dissipation is a function of T_J (max), θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(\max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

See [Figure 7](#)

			MIN	NOM	MAX	UNIT
Supply voltage			$V_{CC} = 3.3$ V	3	3.3	3.6
			$V_{CC} = 5$ V	4.5	5	5.5
V_{IH}	Driver and control high-level input voltage	DIN, FORCEOFF, FORCEON	$V_{CC} = 3.3$ V	2		V
			$V_{CC} = 5$ V	2.4		
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON			0.8	V
V_I	Driver and control input voltage	DIN, FORCEOFF, FORCEON		0	5.5	V
	Receiver input voltage			-25	25	
T_A	Operating free-air temperature	TRSF23243C	0	70		°C
		TRSF23243I	-40	85		

- (1) Test conditions are $C1-C4 = 0.1 \mu\text{F}$ at $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $C1 = 0.047 \mu\text{F}$, $C2-C4 = 0.33 \mu\text{F}$ at $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see [Figure 7](#))

PARAMETER		TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I_I	Input leakage current	FORCEOFF, FORCEON		± 0.01	± 1	μA
I_{CC}	Supply current ($T_A = 25^\circ\text{C}$)	Auto-powerdown disabled	No load, FORCEOFF and FORCEON at V_{CC}		0.6	2
		Powered off	No load, FORCEOFF at GND		1	20
	Auto-powerdown enabled	No load, FORCEOFF at V_{CC} , FORCEON at GND, All RIN are open or grounded			1	20

- (1) Test conditions are $C1-C4 = 0.1 \mu\text{F}$ at $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $C1 = 0.047 \mu\text{F}$, $C2-C4 = 0.33 \mu\text{F}$ at $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$.

- (2) All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^\circ\text{C}$.

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see [Figure 7](#))

PARAMETER	TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH} High-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to GND		5	5.4		V
V_{OL} Low-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to GND		-5	-5.4		V
V_O Output voltage (mouse driveability)	DIN1 = DIN2 = GND, DIN3 = V_{CC} , 3-k Ω to GND at DOUT3, DOUT1 = DOUT2 = -2.5 mA		±5			V
I_{IH} High-level input current	$V_I = V_{CC}$			±0.01	±1	μA
I_{IL} Low-level input current	V_I at GND			±0.01	±1	μA
I_{OS} Short-circuit output current ⁽³⁾	$V_{CC} = 3.6 \text{ V}$	$V_O = 0 \text{ V}$		±35	±60	mA
	$V_{CC} = 5.5 \text{ V}$	$V_O = 0 \text{ V}$				
r_o Output resistance	V_{CC} , V_+ , and $V_- = 0 \text{ V}$, $V_O = \pm 2 \text{ V}$		300	10M		Ω
I_{OZ} Output leakage current	$\text{FORCEOFF} = \text{GND}$,	$V_O = \pm 12 \text{ V}$, $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		±25	±25	μA
		$V_O = \pm 10 \text{ V}$, $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$				

(1) Test conditions are $C1-C4 = 0.1 \mu\text{F}$ at $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $C1 = 0.047 \mu\text{F}$, $C2-C4 = 0.33 \mu\text{F}$ at $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$.

(2) All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^\circ\text{C}$.

(3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see [Figure 7](#))

PARAMETER	TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
Maximum data rate	$R_L = 3 \text{ k}\Omega$, One DOUT switching	$C_L = 1000 \text{ pF}$, See Figure 2	250			kbit/s
$t_{sk(p)}$ Pulse skew ⁽³⁾	$C_L = 150 \text{ pF to } 2500 \text{ pF}$,	$R_L = 3 \text{ k}\Omega$ to $7 \text{ k}\Omega$, See Figure 2		100		ns
SR(tr) Slew rate, transition region (see Figure 2)	$V_{CC} = 3.3 \text{ V}$, $R_L = 3 \text{ k}\Omega$ to $7 \text{ k}\Omega$	$C_L = 150 \text{ pF to } 1000 \text{ pF}$	6	30		V/ μs
		$C_L = 150 \text{ pF to } 2500 \text{ pF}$	4	30		

(1) Test conditions are $C1-C4 = 0.1 \mu\text{F}$ at $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $C1 = 0.047 \mu\text{F}$, $C2-C4 = 0.33 \mu\text{F}$ at $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$.

(2) All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^\circ\text{C}$.

(3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see [Figure 7](#))

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH} High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} = 0.6$	$V_{CC} = 0.1$		V
V_{OL} Low-level output voltage	$I_{OL} = 1.6 \text{ mA}$			0.4	V
V_{IT+} Positive-going input threshold voltage	$V_{CC} = 3.3 \text{ V}$			1.6	2.4
	$V_{CC} = 5 \text{ V}$			1.9	2.4
V_{IT-} Negative-going input threshold voltage	$V_{CC} = 3.3 \text{ V}$	0.6	1.1		V
	$V_{CC} = 5 \text{ V}$	0.8	1.4		
V_{hys} Input hysteresis ($V_{IT+} - V_{IT-}$)			0.5		V
I_{OZ} Output leakage current (except $\overline{ROUT2B}$)	$\text{FORCEOFF} = 0 \text{ V}$		± 0.05	± 10	μA
r_i Input resistance	$V_I = \pm 3 \text{ V} \text{ to } \pm 25 \text{ V}$	3	5	7	$\text{k}\Omega$

(1) Test conditions are $C1-C4 = 0.22 \mu\text{F}$ at $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $C1 = 0.047 \mu\text{F}$, $C2-C4 = 0.33 \mu\text{F}$ at $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$.

(2) All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^\circ\text{C}$.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see [Figure 3](#))

PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t_{PLH} Propagation delay time, low- to high-level output	$C_L = 150 \text{ pF}$, See Figure 4	150	ns
t_{PHL} Propagation delay time, high- to low-level output	$C_L = 150 \text{ pF}$, See Figure 4	150	ns
t_{en} Output enable time	$C_L = 150 \text{ pF}$, See Figure 5	200	ns
t_{dis} Output disable time	$C_L = 150 \text{ pF}$, See Figure 5	200	ns
$t_{sk(p)}$ Pulse skew ⁽³⁾	See Figure 4	50	ns

(1) Test conditions are $C1-C4 = 0.22 \mu\text{F}$ at $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $C1 = 0.047 \mu\text{F}$, $C2-C4 = 0.33 \mu\text{F}$ at $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$.

(2) All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^\circ\text{C}$.

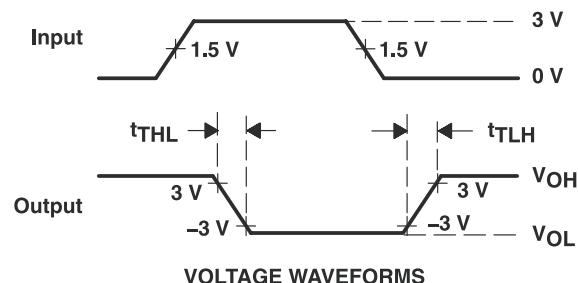
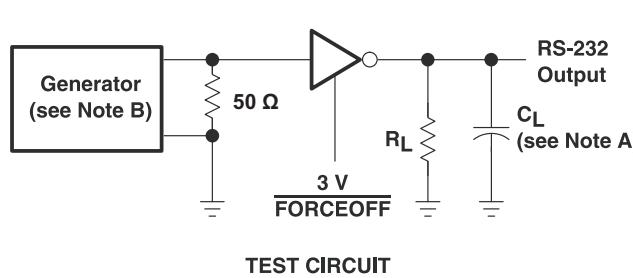
(3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

AUTO-POWERDOWN SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see [Figure 6](#))

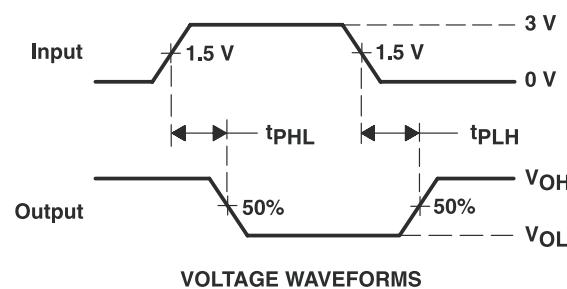
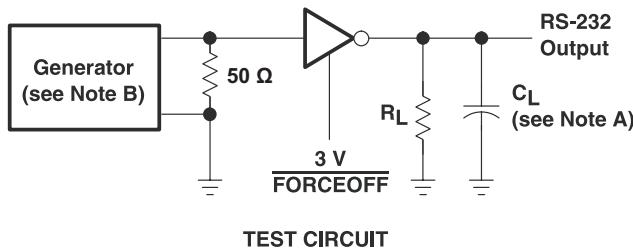
PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$V_{T+(valid)}$	Receiver input threshold for \overline{INV} high-level output voltage FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$		2.7	V
$V_{T(valid)}$	Receiver input threshold for \overline{INV} high-level output voltage FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-2.7		V
$V_{T(invalid)}$	Receiver input threshold for \overline{INV} low-level output voltage FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-0.3	0.3	V
V_{OH}	\overline{INV} high-level output voltage $I_{OH} = -1 \text{ mA}$, $\overline{FORCEOFF} = V_{CC}$	$V_{CC} - 0.6$		V
V_{OL}	\overline{INV} low-level output voltage $I_{OL} = 1.6 \text{ mA}$, $\overline{FORCEOFF} = V_{CC}$		0.4	V



Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see [Figure 6](#))

PARAMETER	TYP ⁽¹⁾	UNIT
t_{valid} Propagation delay time, low- to high-level output	1	μs
$t_{invalid}$ Propagation delay time, high- to low-level output	30	μs
t_{en} Supply enable time	100	μs

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^\circ\text{C}$.



PARAMETER MEASUREMENT INFORMATION

$$SR(tr) = \frac{6 V}{t_{THL} \text{ or } t_{TLH}}$$

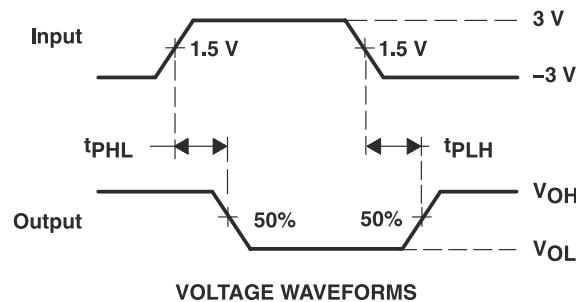
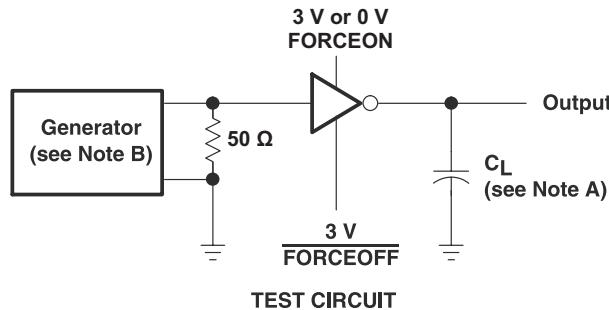
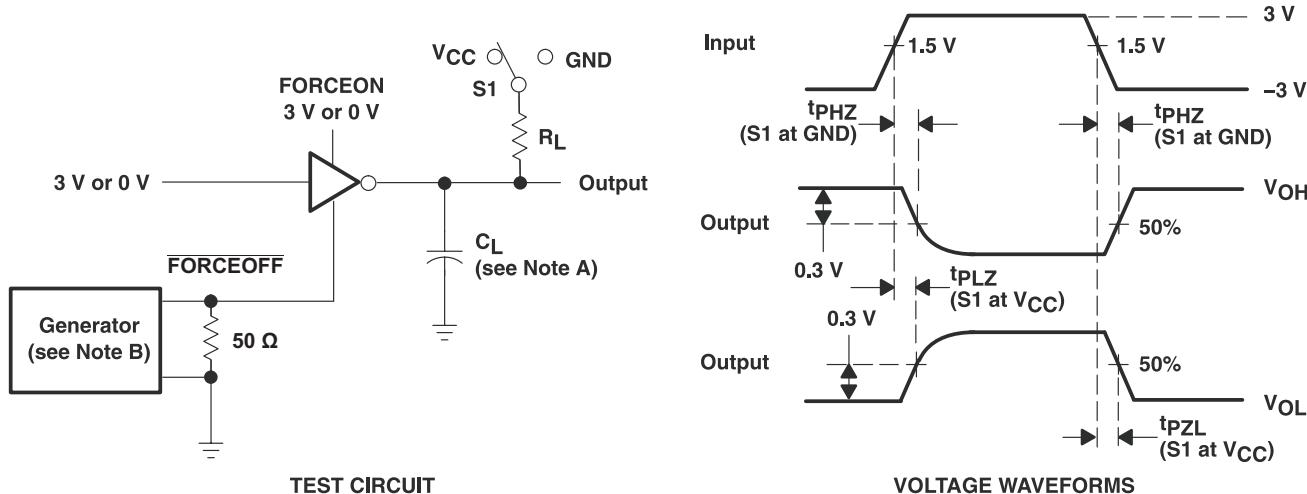


- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbytes/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$.

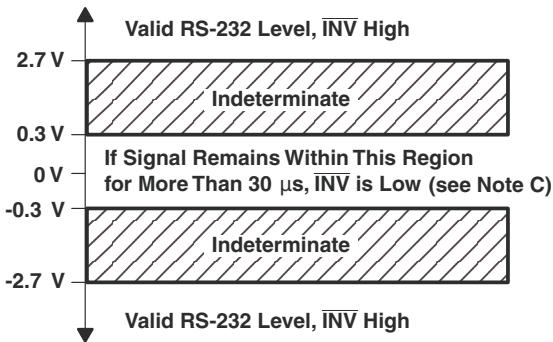
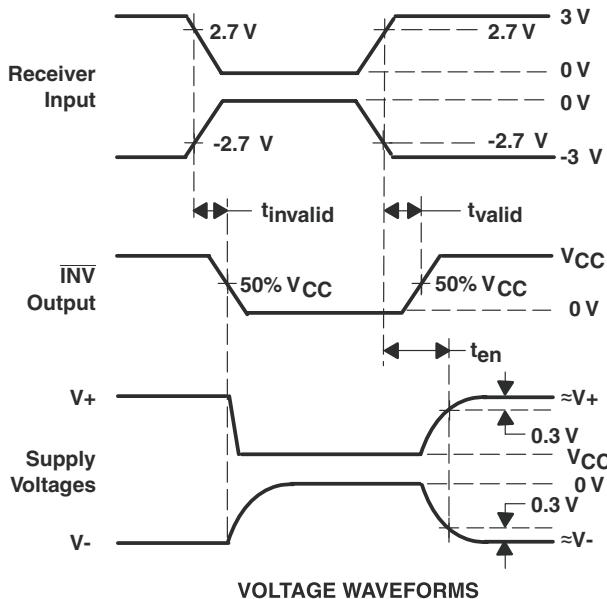
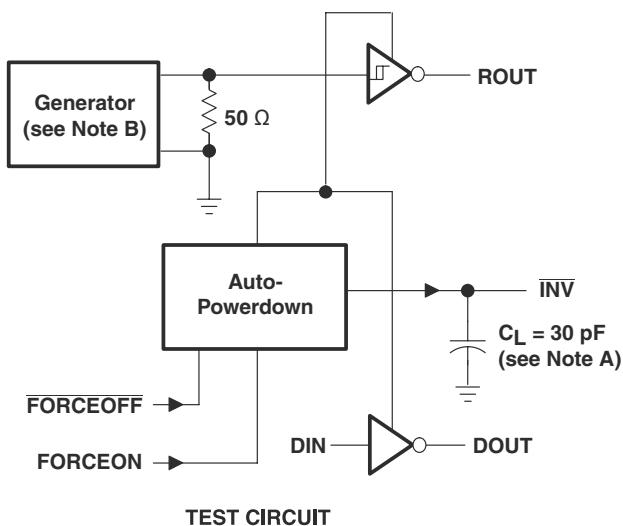
Figure 2. Driver Slew Rate

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbytes/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$.


Figure 3. Driver Pulse Skew

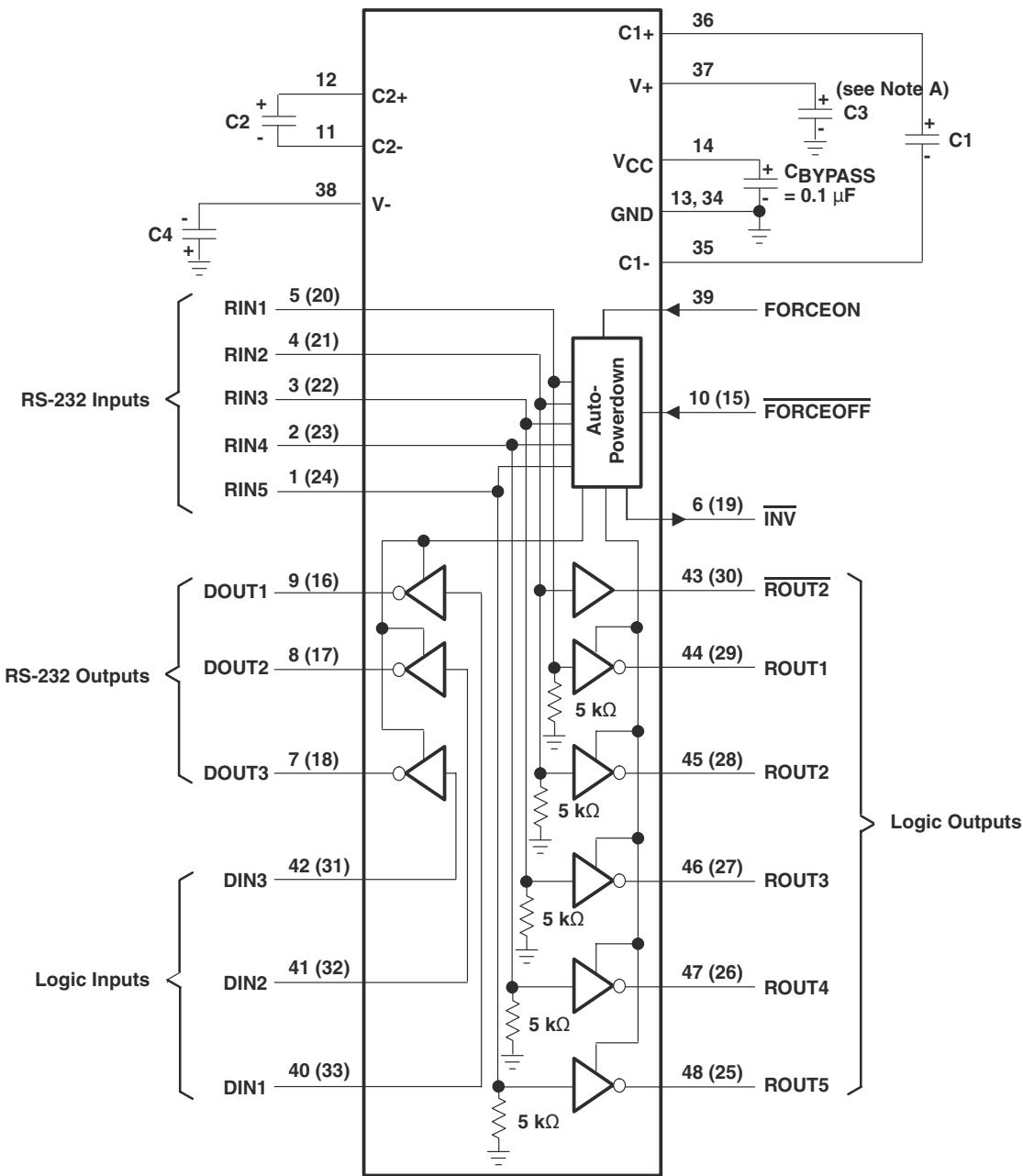
- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbytes/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$.

Figure 4. Receiver Propagation Delay Times




PARAMETER MEASUREMENT INFORMATION (continued)

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbits/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 5. Receiver Enable and Disable Times


PARAMETER MEASUREMENT INFORMATION (continued)

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbits/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$.

Figure 6. INV Propagation Delay Times and Supply Enabling Times

APPLICATION INFORMATION

V_{CC} vs CAPACITOR VALUES

V _{CC}	C1	C2, C3, and C4
3.3 V \pm 0.3 V	0.22 μ F	0.22 μ F
5 V \pm 0.5 V	0.047 μ F	0.33 μ F
3 V to 5.5 V	0.22 μ F	1 μ F

- A. C3 can be connected to V_{CC} or GND.
- B. Resistor values shown are nominal.
- C. Numbers in parentheses are for B section.

Figure 7. Typical Operating Circuit and Capacitor Values

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TRSF23243CDGG	ACTIVE	TSSOP	DGG	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243CDGGG4	ACTIVE	TSSOP	DGG	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243CDGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TRSF23243CDGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TRSF23243CDL	ACTIVE	SSOP	DL	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243CDLG4	ACTIVE	SSOP	DL	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243CDLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TRSF23243CDLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TRSF23243IDGG	ACTIVE	TSSOP	DGG	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243IDGGG4	ACTIVE	TSSOP	DGG	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243IDGGR	ACTIVE	TSSOP	DGG	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243IDGGRG4	ACTIVE	TSSOP	DGG	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243IDL	ACTIVE	SSOP	DL	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243IDLG4	ACTIVE	SSOP	DL	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243IDLRL	ACTIVE	SSOP	DL	48		TBD	Call TI	Call TI	Purchase Samples
TRSF23243IDLRG4	ACTIVE	SSOP	DL	48		TBD	Call TI	Call TI	Purchase Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

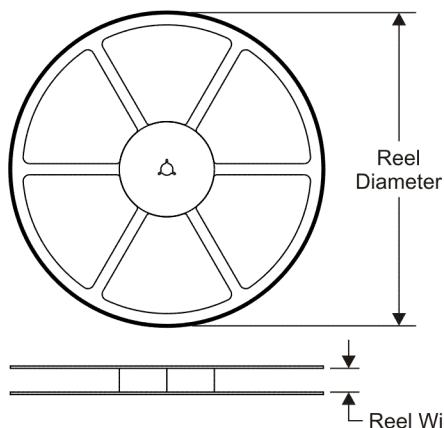
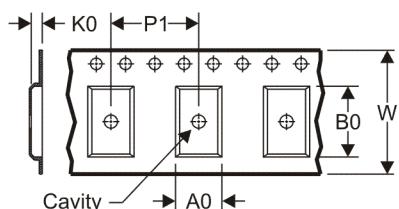
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

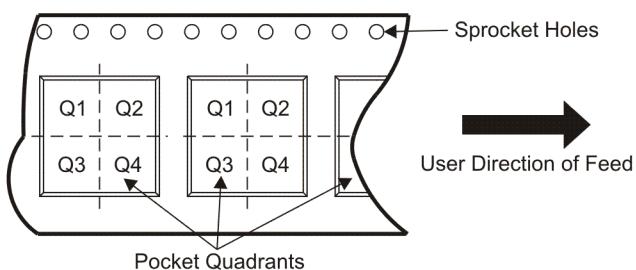
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

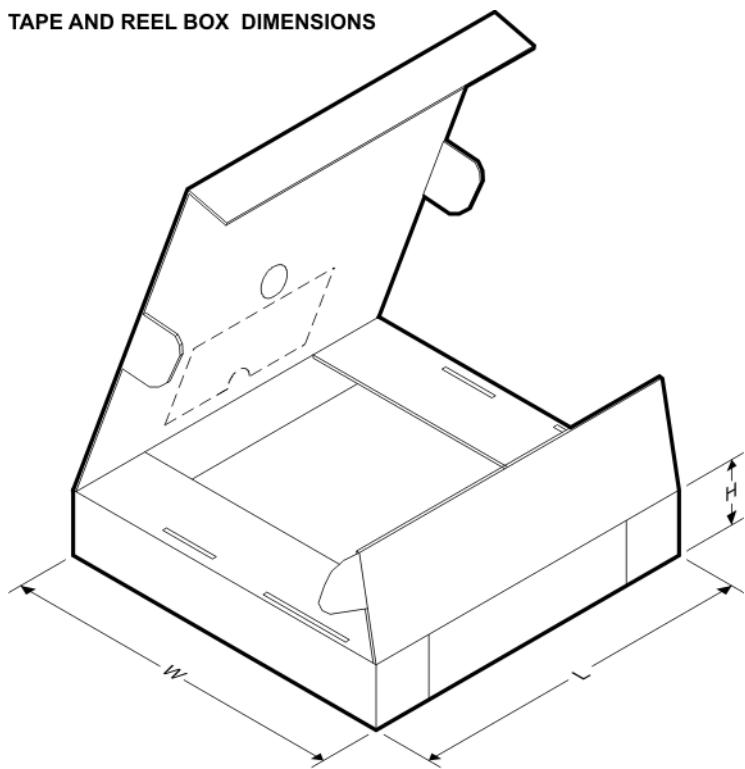


Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(³) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

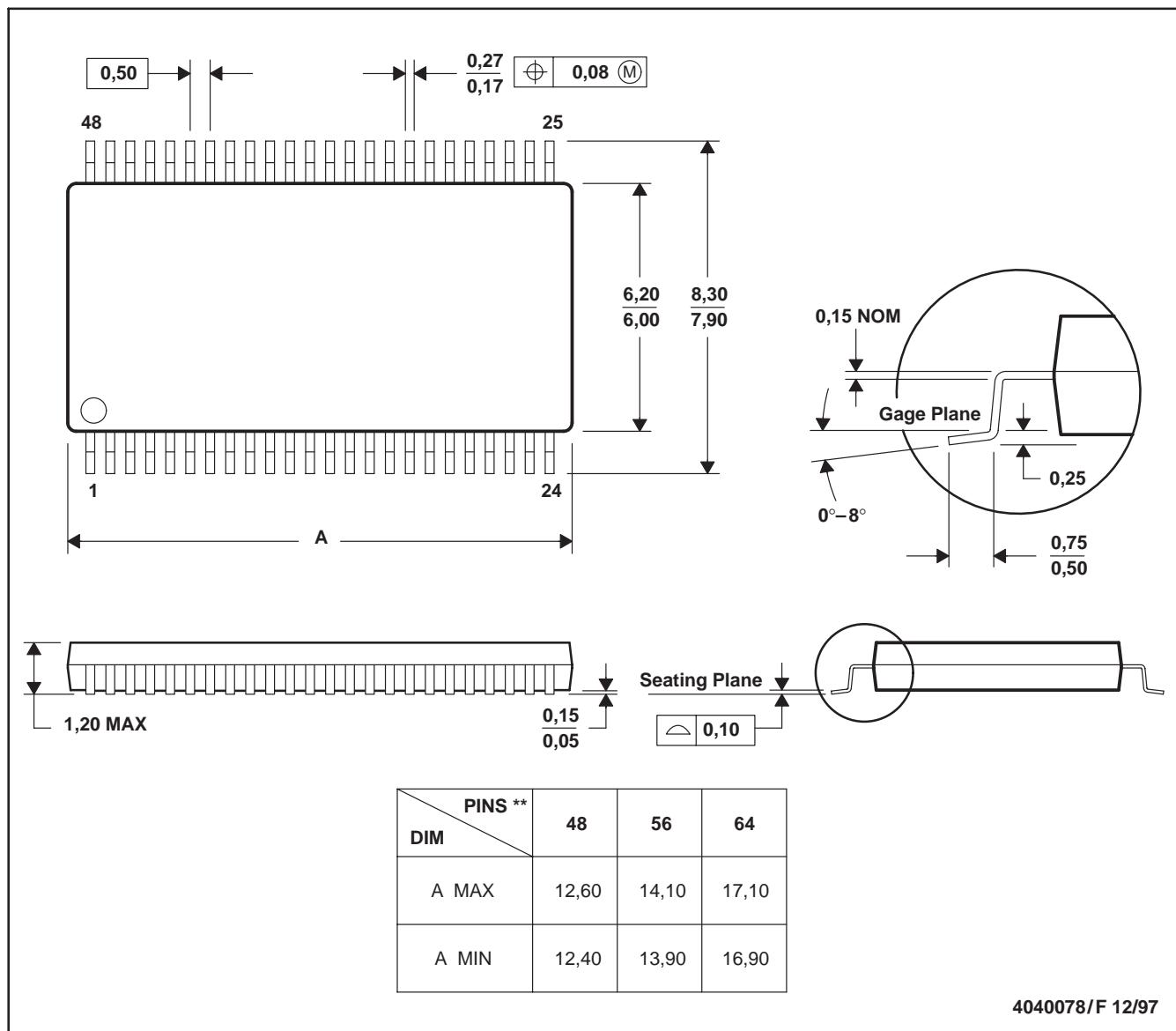
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRSF23243CDGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
TRSF23243CDLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRSF23243CDGGR	TSSOP	DGG	48	2000	346.0	346.0	41.0
TRSF23243CDLR	SSOP	DL	48	1000	346.0	346.0	49.0

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold protrusion not to exceed 0,15.
 D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps