

- **Voltage-Controlled Oscillator (VCO) Section:**
 - Complete Oscillator Using Only One External Bias Resistor (R_{BIAS})
 - Lock Frequency:**
 - 22 MHz to 50 MHz ($V_{DD} = 5 \text{ V} \pm 5\%$, $T_A = -20^\circ\text{C} \text{ to } 75^\circ\text{C}$, $\times 1$ Output)
 - 11 MHz to 25 MHz ($V_{DD} = 5 \text{ V} \pm 5\%$, $T_A = -20^\circ\text{C} \text{ to } 75^\circ\text{C}$, $\times 1/2$ Output)
 - Output Frequency . . . $\times 1$ and $\times 1/2$ Selectable**
- **Phase-Frequency Detector (PFD) Section:**
 - High Speed, Edge-Triggered Detector With Internal Charge Pump
- Independent VCO, PFD Power-Down Mode
- Thin Small-Outline Package (14 terminal)
- CMOS Technology
- Typical Applications:
 - Frequency Synthesis
 - Modulation/Demodulation
 - Fractional Frequency Division
- Application Report Available†
- CMOS Input Logic Level

description

The TLC2932I is designed for phase-locked-loop (PLL) systems and is composed of a voltage-controlled oscillator (VCO) and an edge-triggered type phase frequency detector (PFD). The oscillation frequency range of the VCO is set by an external bias resistor (R_{BIAS}). The VCO has a 1/2 frequency divider at the output stage. The high speed PFD with internal charge pump detects the phase difference between the reference frequency input and signal frequency input from the external counter. Both the VCO and the PFD have inhibit functions, which can be used as a power-down mode. Due to the TLC2932I high speed and stable oscillation capability, the TLC2932I is suitable for use as a high-performance PLL.

functional block diagram

AVAILABLE OPTIONS

TA	PACKAGE
	SMALL OUTLINE (PW)
$-20^\circ\text{C} \text{ to } 75^\circ\text{C}$	TLC2932IPWLE

† TLC2932 Phase-Locked-Loop Building Block With Analog Voltage-Controlled Oscillator and Phase Frequency Detector (SLAA011).

PRODUCTION DATA Information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL2932I HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B - SEPTEMBER 1994 - REVISED MARCH 1995

Terminal Functions

TERMINAL NAME	NO.	I/O	DESCRIPTION
FIN-A	4	I	Input reference frequency $f_{(REF\ IN)}$ is applied to FIN-A.
FIN-B	5	I	Input for VCO external counter output frequency $f_{(FIN\ -B)}$. FIN-B is nominally provided from the external counter, see functional block diagram.
LOGIC GND	7		GND for the internal logic.
LOGIC V _{DD}	1		Power supply for the internal logic. This power supply should be separate from VCO V _{DD} to reduce cross-coupling between supplies.
NC	8		No internal connection.
PFD INHIBIT	9	I	PFD inhibit control. When PFD INHIBIT is high, PFD output is in the high-impedance state, see Table 3.
PFD OUT	6	O	PFD output. When the PFD INHIBIT is high, PFD output is in the high-impedance state.
BIAS	13	I	Bias supply. An external resistor (R _{BIAS}) between VCO V _{DD} and BIAS supplies bias for adjusting the oscillation frequency range.
SELECT	2	I	VCO output frequency select. When SELECT is high, the VCO output frequency is $\times 1/2$ and when low, the output frequency is $\times 1$, see Table 1.
VCO IN	12	I	VCO control voltage input. Nominally the external loop filter output connects to VCO IN to control VCO oscillation frequency.
VCO INHIBIT	10	I	VCO inhibit control. When VCO INHIBIT is high, VCO OUT is low (see Table 2).
VCO GND	11		GND for VCO.
VCO OUT	3	O	VCO output. When the VCO INHIBIT is high, VCO output is low.
VCO V _{DD}	14		Power supply for VCO. This power supply should be separated from LOGIC V _{DD} to reduce cross-coupling between supplies.

detailed description

VCO oscillation frequency

The VCO oscillation frequency is determined by an external resistor (R_{BIAS}) connected between the VCO V_{DD} and the BIAS terminals. The oscillation frequency and range depends on this resistor value. The bias resistor value for the minimum temperature coefficient is nominally 3.3 k Ω with 3-V V_{DD} and nominally 2.2 k Ω with 5-V V_{DD}. For the lock frequency range refer to the recommended operating conditions. Figure 1 shows the typical frequency variation and VCO control voltage.

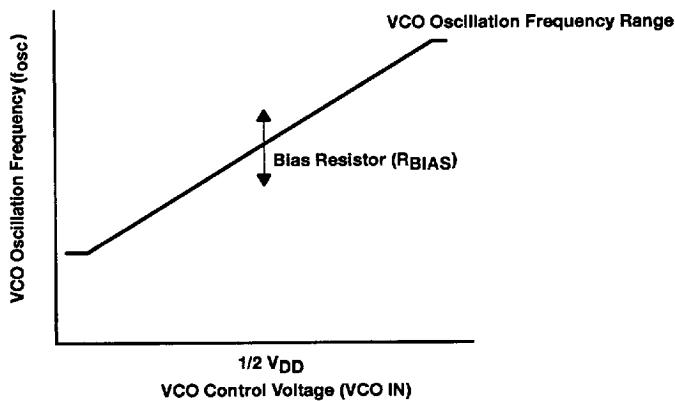


Figure 1. VCO Oscillation Frequency

8961724 0097360 408

 **TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VCO output frequency 1/2 divider

The TLC2932I SELECT terminal can select between the f_{osc} and $1/2 f_{osc}$ VCO output frequencies as shown in Table 1. The $1/2 f_{osc}$ output should be used for minimum VCO output jitter.

Table 1. VCO Output 1/2 Divider Function

SELECT	VCO OUTPUT
Low	f_{osc}
High	$1/2 f_{osc}$

VCO Inhibit function

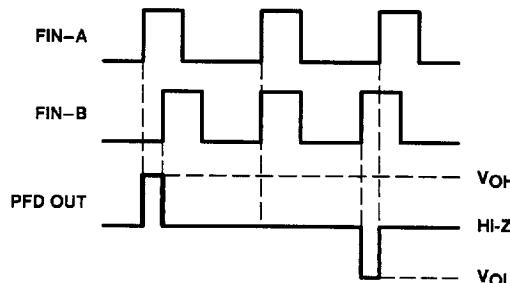

The VCO has an externally controlled inhibit function which inhibits the VCO output. A high level on the VCO INHIBIT terminal stops the VCO oscillation and powers down the VCO. The output maintains a low level during the power-down mode, refer to Table 2.

Table 2. VCO Inhibit Function

VCO INHIBIT	VCO OSCILLATOR	VCO OUTPUT	$I_{DD(VCO)}$
Low	Active	Active	Normal
High	Stopped	Low level	Power Down

PFD operation

The PFD is a high-speed, edge-triggered detector with an internal charge pump. The PFD detects the phase difference between two frequency inputs supplied to FIN-A and FIN-B as shown in Figure 2. Nominally the reference is supplied to FIN-A, and the frequency from the external counter output is fed to FIN-B. For clock recovery PLL systems, other types of phase detectors should be used.

Figure 2. PFD Function Timing Chart**PFD output control**

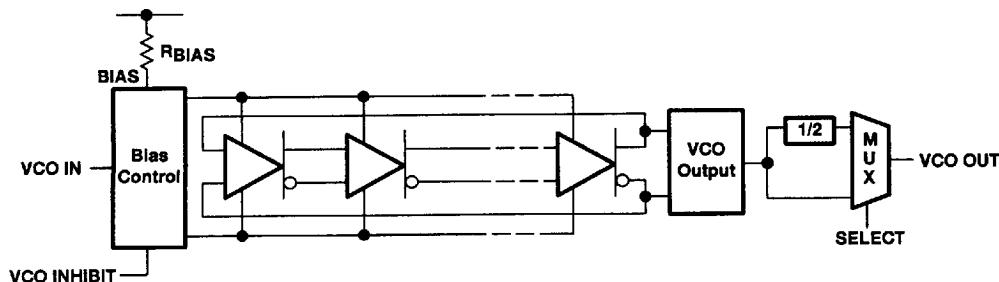
A high level on the PFD INHIBIT terminal places the PFD output in the high-impedance state and the PFD stops phase detection as shown in Table 3. A high level on the PFD INHIBIT terminal also can be used as the power-down mode for the PFD.

Table 3. VCO Output Control Function

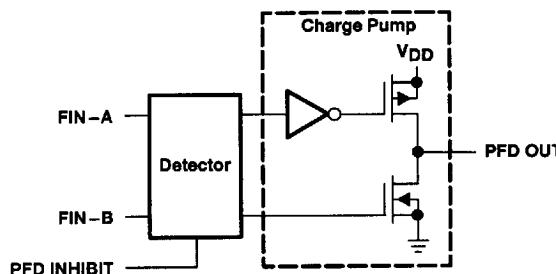
PFD INHIBIT	DETECTION	PFD OUTPUT	$I_{DD(PFD)}$
Low	Active	Active	Normal
High	Stop	Hi-Z	Power Down

8961724 0097361 344

**TEXAS
INSTRUMENTS**


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2932I HIGH-PERFORMANCE PHASE-LOCKED LOOP


SLAS097B - SEPTEMBER 1994 - REVISED MARCH 1995

schematics

VCO block schematic

PFD block schematic

absolute maximum ratings[†]

Supply voltage (each supply), V_{DD} (see Note 1)	7 V
Input voltage range (each input), V_I (see Note 1)	-0.5 V to $V_{DD} + 0.5$ V
Input current (each input), I_I	± 20 mA
Output current (each output), I_O	± 20 mA
Continuous total dissipation, at (or below) $T_A = 25^\circ\text{C}$	700 mW
Operating free-air temperature range, T_A	-20°C to 75°C
Storage temperature range, T_{STG}	-65°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to network GND.

2. For operation above 25°C free-air temperature, derate linearly at the rate of 5.6 mW/°C.

8961724 0097362 280

 **TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

recommended operating conditions

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, V_{DD} (each supply, see Note 3)	$V_{DD} = 3\text{ V}$	2.85	3	3.15	V
	$V_{DD} = 5\text{ V}$	4.75	5	5.25	
Input voltage, V_I (inputs except VCO IN)		0	V_{DD}		V
Output current, I_O (each output)		0	± 2		mA
VCO control voltage at VCO IN		0.9	V_{DD}		V
Lock frequency ($\times 1$ output)	$V_{DD} = 3\text{ V}$	14	21		MHz
	$V_{DD} = 5\text{ V}$	22	50		
Lock frequency ($\times 1/2$ output)	$V_{DD} = 3\text{ V}$	7	10.5		MHz
	$V_{DD} = 5\text{ V}$	11	25		
Bias resistor, R_{BIAS}	$V_{DD} = 3\text{ V}$	2.2	3.3	4.3	$\text{k}\Omega$
	$V_{DD} = 5\text{ V}$	1.5	2.2	3.3	

NOTE 3: It is recommended that the logic supply terminal (LOGIC V_{DD}) and the VCO supply terminal (VCO V_{DD}) should be at the same voltage and separated from each other.

electrical characteristics over recommended operating free-air temperature range, $V_{DD} = 3\text{ V}$ (unless otherwise noted)

VCO section

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -2\text{ mA}$	2.4			V
V_{OL}	Low-level output voltage	$I_{OL} = 2\text{ mA}$		0.3		V
V_{IT}	Input threshold voltage at SELECT, VCO INHIBIT		0.9	1.5	2.1	V
I_I	Input current at SELECT, VCO INHIBIT	$V_I = V_{DD}$ or GND		± 1		μA
$Z_I(\text{VCO IN})$	Input impedance	$\text{VCO IN} = 1/2 V_{DD}$	10			$\text{M}\Omega$
$I_{DD(\text{INH})}$	VCO supply current (inhibit)	See Note 4	0.01	1		μA
$I_{DD(\text{VCO})}$	VCO supply current	See Note 5	5	15		mA

NOTES: 4. Current into VCO V_{DD} , when VCO INHIBIT = V_{DD} , PFD is inhibited.

5. Current into VCO V_{DD} , when VCO IN = $1/2 V_{DD}$, $R_{BIAS} = 3.3\text{ k}\Omega$, VCO INHIBIT = GND, and PFD is inhibited.

PFD section

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -2\text{ mA}$	2.7			V
V_{OL}	Low-level output voltage	$I_{OL} = 2\text{ mA}$		0.2		V
I_{OZ}	High-impedance-state output current	$\text{PFD INHIBIT} = \text{high}$, $V_I = V_{DD}$ or GND		± 1		μA
V_{IH}	High-level input voltage at FIN-A, FIN-B		2.7			V
V_{IL}	Low-level input voltage at FIN-A, FIN-B			0.5		V
V_{IT}	Input threshold voltage at PFD INHIBIT		0.9	1.5	2.1	V
C_I	Input capacitance at FIN-A, FIN-B		5			pF
Z_I	Input impedance at FIN-A, FIN-B		10			$\text{M}\Omega$
$I_{DD(Z)}$	High-impedance-state PFD supply current	See Note 6	0.01	1		μA
$I_{DD(\text{PFD})}$	PFD supply current	See Note 7	0.1	1.5		mA

NOTES: 6. Current into LOGIC V_{DD} , when FIN-A, FIN-B = GND, PFD INHIBIT = V_{DD} , no load, and VCO OUT is inhibited.

7. Current into LOGIC V_{DD} , when FIN-A, FIN-B = 1 MHz ($V_I(\text{PP}) = 3\text{ V}$, rectangular wave), NC = GND, no load, and VCO OUT is inhibited.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL2932I HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B – SEPTEMBER 1994 – REVISED MARCH 1995

operating characteristics over recommended operating free-air temperature range, $V_{DD} = 3$ V (unless otherwise noted)

VCO section

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{osc} Operating oscillation frequency	$R_{BIAS} = 3.3\text{ k}\Omega$, VCO IN = $1/2 V_{DD}$	15	19	23	MHz
$t_s(f_{osc})$ Time to stable oscillation (see Note 8)	Measured from VCO INHIBIT↓		10		μs
t_r Rise time	$C_L = 15\text{ pF}$, See Figure 3		7	14	ns
	$C_L = 50\text{ pF}$, See Figure 3		14		
t_f Fall time	$C_L = 15\text{ pF}$, See Figure 3		6	12	ns
	$C_L = 50\text{ pF}$, See Figure 3		10		
Duty cycle at VCO OUT	$R_{BIAS} = 3.3\text{ k}\Omega$, VCO IN = $1/2 V_{DD}$	45%	50%	55%	
$\alpha(f_{osc})$ Temperature coefficient of oscillation frequency	$R_{BIAS} = 3.3\text{ k}\Omega$, VCO IN = $1/2 V_{DD}$, $T_A = -20^\circ\text{C}$ to 75°C		0.04		%/°C
$k_{SVS}(f_{osc})$ Supply voltage coefficient of oscillation frequency	$R_{BIAS} = 3.3\text{ k}\Omega$, VCO IN = 1.5 V, $V_{DD} = 2.85\text{ V}$ to 3.15 V		0.02		%/mV
Jitter absolute (see Note 9)	$R_{BIAS} = 3.3\text{ k}\Omega$		100		ps

NOTES: 8. The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.

9. The LPF circuit is shown in Figure 28 with calculated values listed in Table 7. Jitter performance is highly dependent on circuit layout and external device characteristics. The jitter specification was made with a carefully designed PCB with no device socket.

PFD section

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{max} Maximum operating frequency		20			MHz
t_{PLZ} PFD output disable time from low level	See Figures 4 and 5 and Table 4		21	50	ns
t_{PHZ} PFD output disable time from high level			23	50	
t_{PZL} PFD output enable time to low level			11	30	ns
t_{PZH} PFD output enable time to high level			10	30	
t_r Rise time	$C_L = 15\text{ pF}$, See Figure 4		2.3	10	ns
t_f Fall time	$C_L = 15\text{ pF}$, See Figure 4		2.1	10	ns

8961724 0097364 053

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, $V_{DD} = 5$ V (unless otherwise noted)

VCO section

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -2$ mA	4			V
V_{OL}	Low-level output voltage	$I_{OL} = 2$ mA			0.5	V
V_{IT}	Input threshold voltage at SELECT, VCO INHIBIT		1.5	2.5	3.5	V
I_i	Input current at SELECT, VCO INHIBIT	$V_i = V_{DD}$ or GND			± 1	μA
$Z_i(VCO\ IN)$	Input impedance	$VCO\ IN = 1/2\ V_{DD}$		10		$M\Omega$
$I_{DD(INH)}$	VCO supply current (inhibit)	See Note 4		0.01	1	μA
$I_{DD(VCO)}$	VCO supply current	See Note 5	15	35		mA

NOTES: 4. Current into VCO V_{DD} , when VCO INHIBIT = V_{DD} , and PFD is inhibited.

5. Current into VCO V_{DD} , when VCO IN = 1/2 V_{DD} , $R_{BIAS} = 3.3$ k Ω , VCO INHIBIT = GND, and PFD is inhibited.

PFD section

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = 2$ mA	4.5			V
V_{OL}	Low-level output voltage	$I_{OL} = 2$ mA			0.2	V
I_{OZ}	High-impedance-state output current	PFD INHIBIT = high, $V_i = V_{DD}$ or GND			± 1	μA
V_{IH}	High-level input voltage at FIN-A, FIN-B			4.5		V
V_{IL}	Low-level input voltage at FIN-A, FIN-B				1	V
V_{IT}	Input threshold voltage at PFD INHIBIT		1.5	2.5	3.5	V
C_i	Input capacitance at FIN-A, FIN-B			5		pF
Z_i	Input impedance at FIN-A, FIN-B			10		$M\Omega$
$I_{DD(Z)}$	High-impedance-state PFD supply current	See Note 6		0.01	1	μA
$I_{DD(PFD)}$	PFD supply current	See Note 7		0.15	3	mA

NOTES: 6. Current into LOGIC V_{DD} , when FIN-A, FIN-B = GND, PFD INHIBIT = V_{DD} , no load, and VCO OUT is inhibited.

7. Current into LOGIC V_{DD} , when FIN-A, FIN-B = 1 MHz ($V_i(PP) = 5$ V, rectangular wave), PFD INHIBIT = GND, no load, and VCO OUT is inhibited.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2932I

HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B – SEPTEMBER 1994 – REVISED MARCH 1995

operating characteristics over recommended operating free-air temperature range, $V_{DD} = 5$ V (unless otherwise noted)

VCO section

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{osc} Operating oscillation frequency	$R_{BIAS} = 2.2$ k Ω , VCO IN = 1/2 V_{DD}	30	41	52	MHz
$t_{s(fosc)}$ Time to stable oscillation (see Note 8)	Measured from VCO INHIBIT \downarrow		10		μ s
t_r Rise time	$C_L = 15$ pF, See Figure 3	5.5	10		ns
	$C_L = 50$ pF, See Figure 3	8			
t_f Fall time	$C_L = 15$ pF, See Figure 3	5	10		ns
	$C_L = 50$ pF, See Figure 3	6			
Duty cycle at VCO OUT	$R_{BIAS} = 2.2$ k Ω , VCO IN = 1/2 V_{DD}	45%	50%	55%	
$\alpha(fosc)$ Temperature coefficient of oscillation frequency	$R_{BIAS} = 2.2$ k Ω , VCO IN = 1/2 V_{DD} , $T_A = -20^\circ\text{C}$ to 75°C		0.06		%/ $^\circ\text{C}$
$k_{SVS}(fosc)$ Supply voltage coefficient of oscillation frequency	$R_{BIAS} = 2.2$ k Ω , VCO IN = 2.5 V, $V_{DD} = 4.75$ V to 5.25 V	0.006			%/mV
Jitter absolute (see Note 9)	$R_{BIAS} = 2.2$ k Ω	100			ps

NOTES: 8: The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.

9: The LPF circuit is shown in Figure 28 with calculated values listed in Table 7. Jitter performance is highly dependent on circuit layout and external device characteristics. The jitter specification was made with a carefully designed PCB with no device socket.

PFD section

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{max} Maximum operating frequency		40			MHz
t_{PLZ} PFD output disable time from low level	See Figures 4 and 5 and Table 4	21	40		ns
t_{PHZ} PFD output disable time from high level		20	40		
t_{PZL} PFD output enable time to low level		7.3	20		
t_{PZH} PFD output enable time to high level		6.5	20		
t_r Rise time	$C_L = 15$ pF, See Figure 4	2.3	10		ns
t_f Fall time		1.7	10		

8961724 0097366 926

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

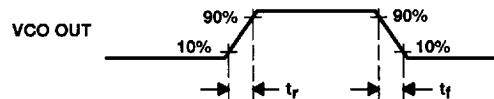
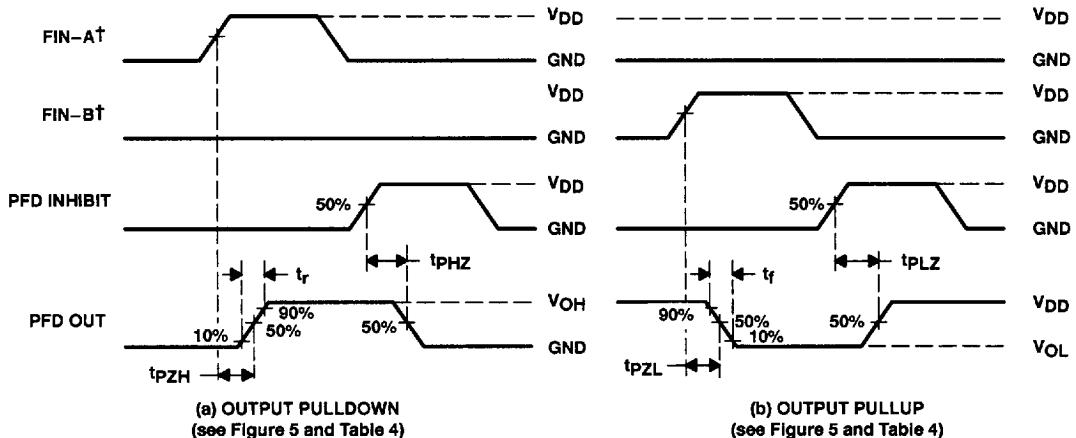



Figure 3. VCO Output Voltage Waveform

(a) OUTPUT PULLDOWN
(see Figure 5 and Table 4)(b) OUTPUT PULLUP
(see Figure 5 and Table 4)

† FIN-A and FIN-B are for reference phase only, not for timing.

Figure 4. PFD Output Voltage Waveform

8961724 0097367 862

 TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-27

TL2932I HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B - SEPTEMBER 1994 - REVISED MARCH 1995

PARAMETER MEASUREMENT INFORMATION

Table 4. PFD Output Test Conditions

PARAMETER	R _L	C _L	S ₁	S ₂
t _{PZH}	1 k Ω	15 pF	Open	Close
t _{PHZ}			Close	Open
t _r				
t _{PZL}				
t _{PLZ}				
t _f				

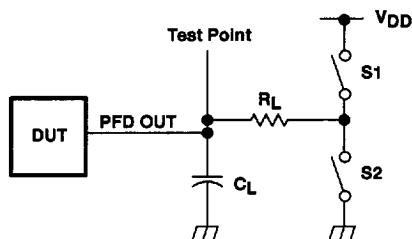


Figure 5. PFD Output Test Conditions

TYPICAL CHARACTERISTICS

VCO OSCILLATION FREQUENCY
vs
VCO CONTROL VOLTAGE

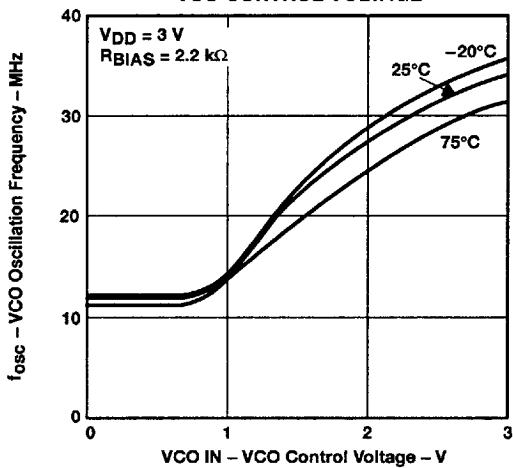


Figure 6

VCO OSCILLATION FREQUENCY
vs
VCO CONTROL VOLTAGE

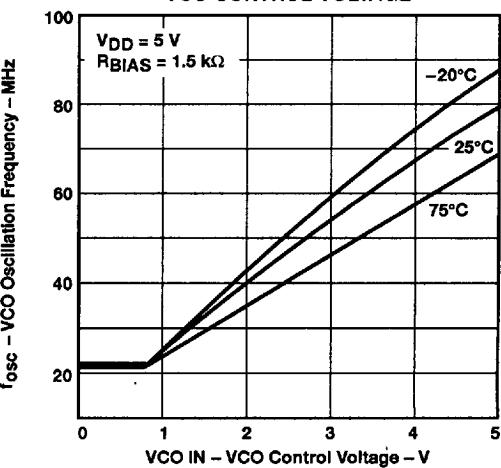


Figure 7

8961724 0097368 719

TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

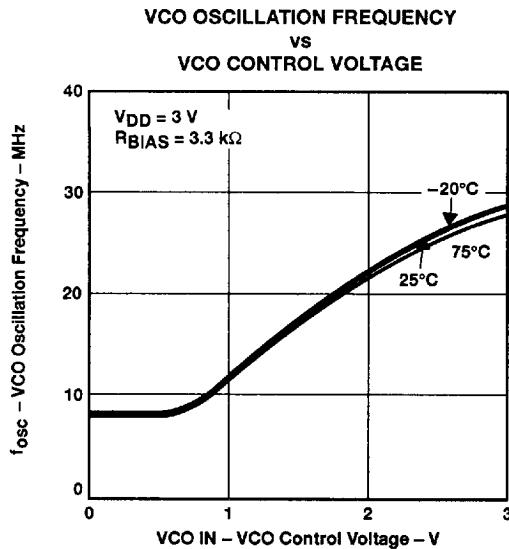


Figure 8

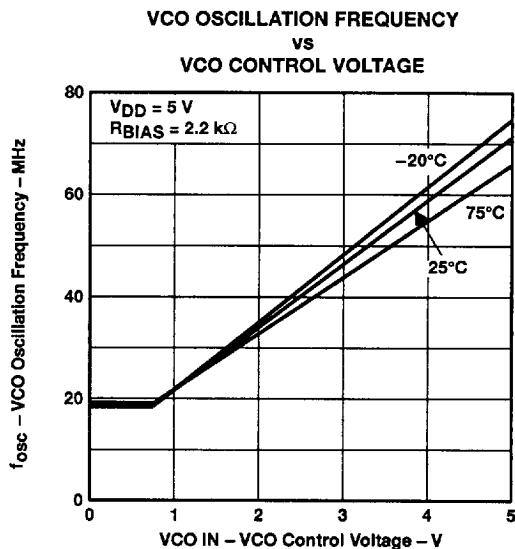


Figure 9

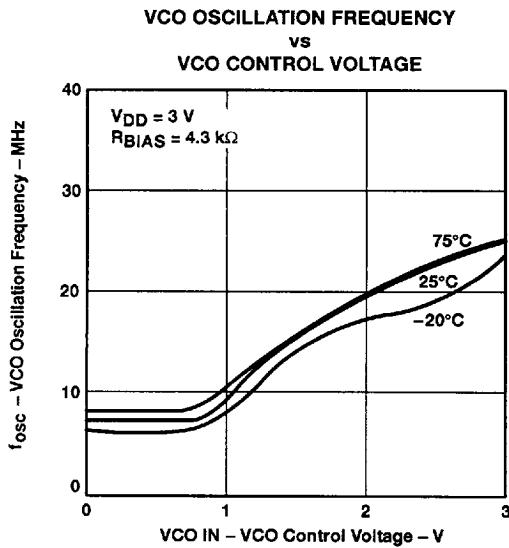


Figure 10

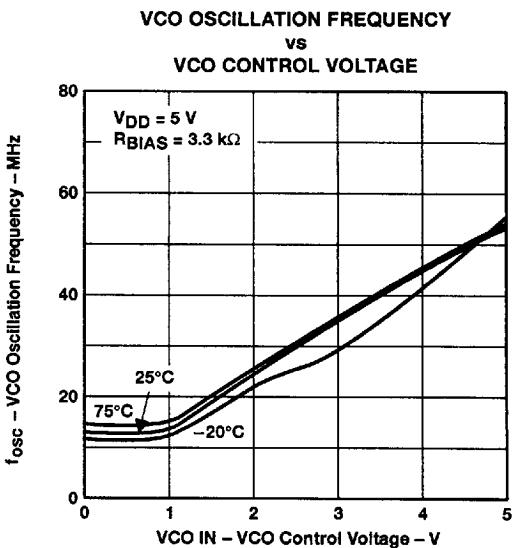


Figure 11

8961724 0097369 635

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75268

5-29

TLC2932I
HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B - SEPTEMBER 1994 - REVISED MARCH 1995

TYPICAL CHARACTERISTICS

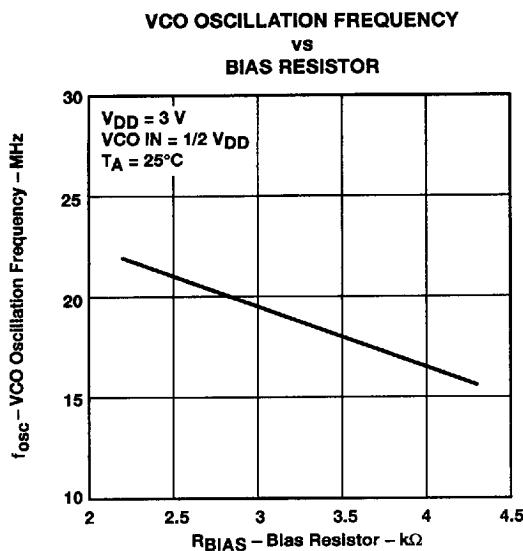


Figure 12

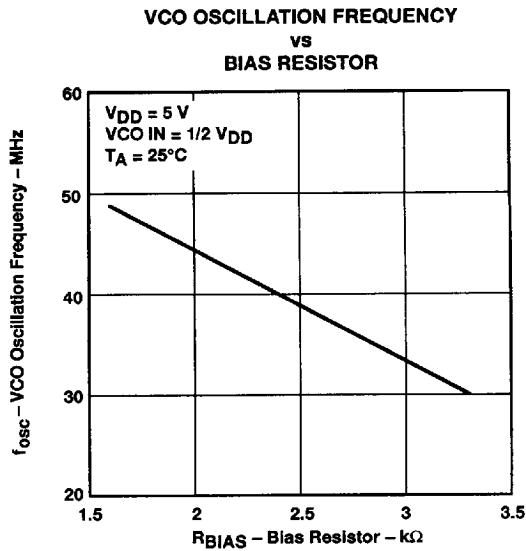


Figure 13

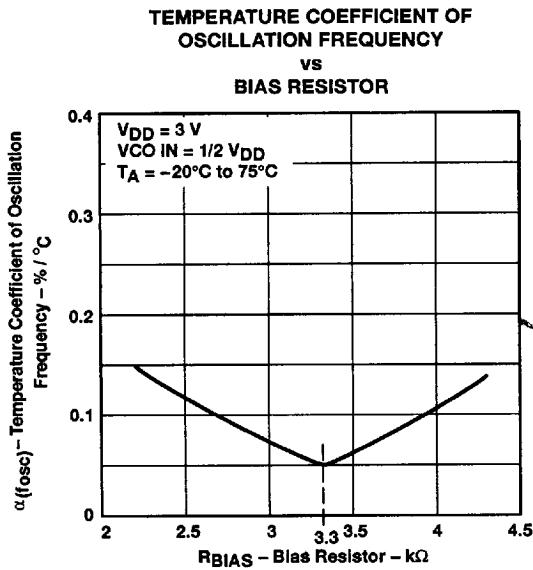


Figure 14

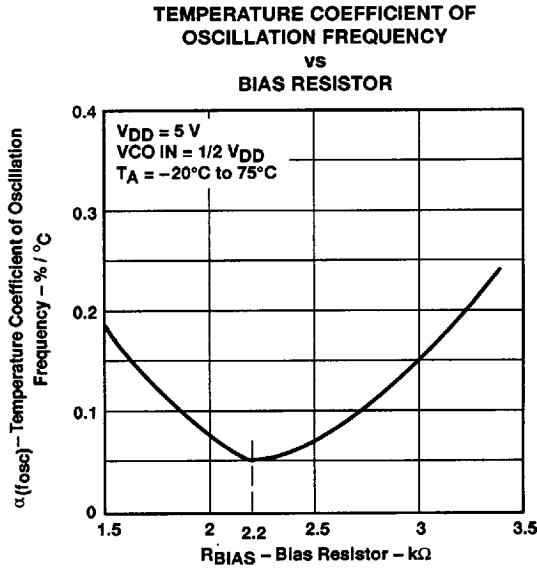


Figure 15

8961724 0097370 357

TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 16

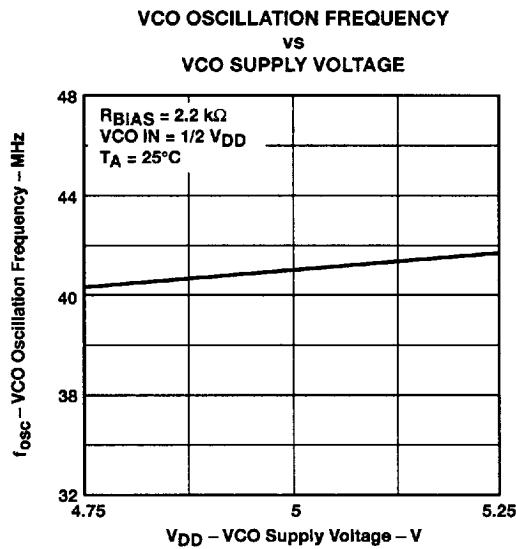


Figure 17

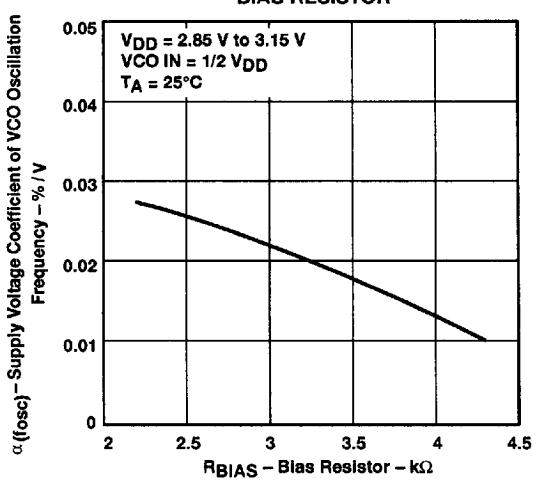


Figure 18

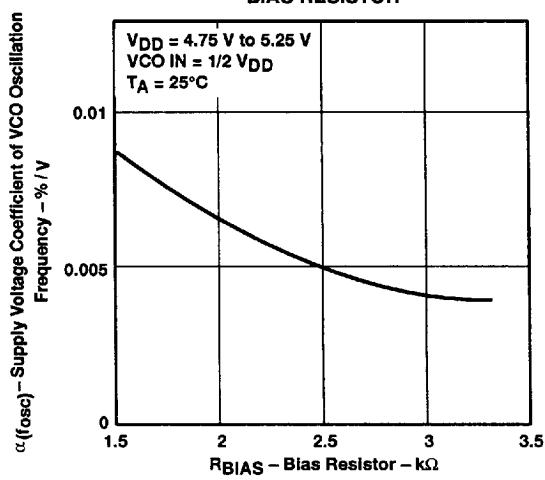


Figure 19

■ 8961724 0097371 293 ■

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2932I HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B - SEPTEMBER 1994 - REVISED MARCH 1995

APPLICATION INFORMATION

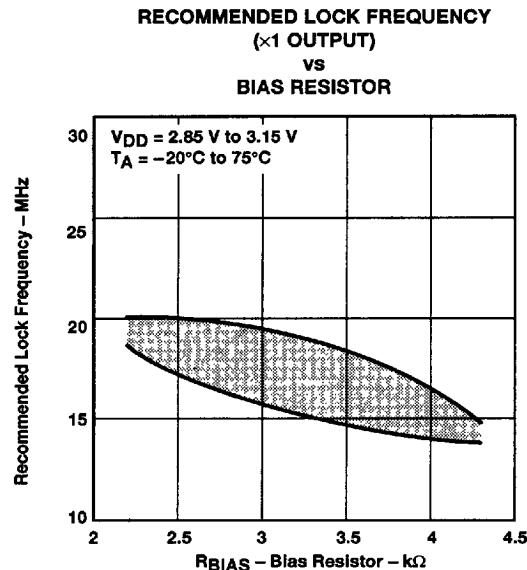


Figure 20

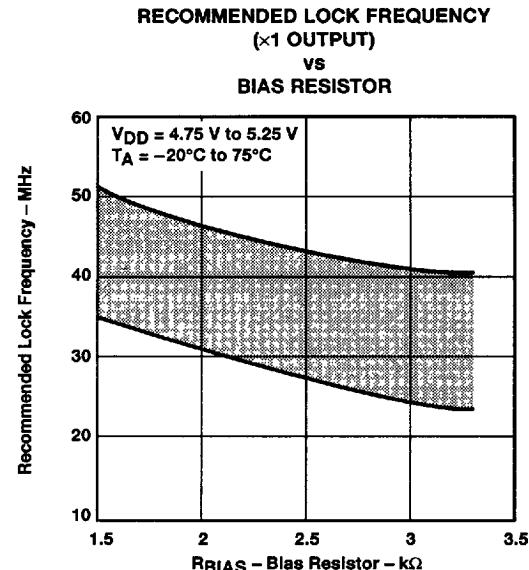


Figure 21

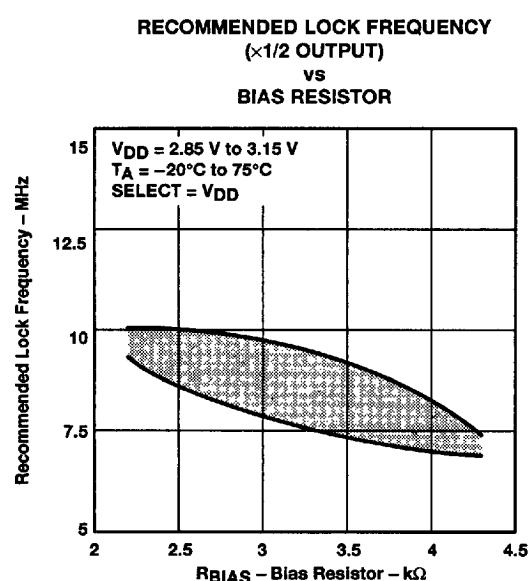


Figure 22

Figure 23

■ 8961724 0097372 12T

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

gain of VCO and PFD

Figure 24 is a block diagram of the PLL. The countdown N value depends on the input frequency and the desired VCO output frequency according to the system application requirements. The K_p and K_V values are obtained from the operating characteristics of the device as shown in Figure 24. K_p is defined from the phase detector V_{OL} and V_{OH} specifications and the equation shown in Figure 24(c). K_V is defined from Figures 8, 9, 10, and 11 as shown in Figure 24(c).

The parameters for the block diagram with the units are as follows:

K_V : VCO gain (rad/s/V)

K_p : PFD gain (V/rad)

K_f : LPF gain (V/V)

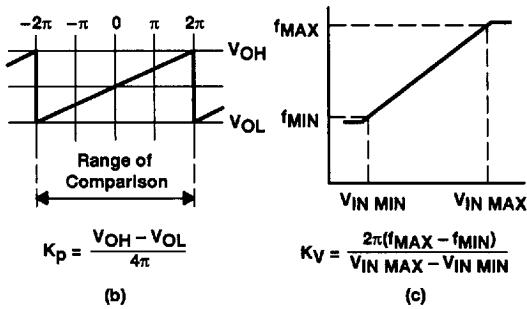
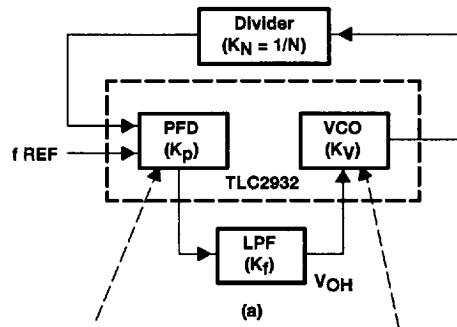
K_N : count down divider gain (1/N)

external counter

When a large N counter is required by the application, there is a possibility that the PLL response becomes slow due to the counter response delay time. In the case of a high frequency application, the counter delay time should be accounted for in the overall PLL design.

 R_{BIAS}

The external bias resistor sets the VCO center frequency with $1/2 V_{DD}$ applied to the VCO IN terminal. However, for optimum temperature performance, a resistor value of $3.3 \text{ k}\Omega$ with a 3-V supply and a resistor value of $2.5 \text{ k}\Omega$ for a 5-V supply is recommended. For the most accurate results, a metal-film resistor is the better choice but a carbon-composition resistor can be used with excellent results also. A $0.22 \mu\text{F}$ capacitor should be connected from the BIAS terminal to ground as close to the device terminals as possible.



hold-in range

From the technical literature, the maximum hold-in range for an input frequency step for the three types of filter configurations shown in Figure 25 is as follows:

$$\Delta\omega_H \approx 0.8 (K_p) (K_V) (K_f(\infty))$$

Where

$K_f(\infty)$ = the filter transfer function value at $\omega = \infty$

$$K_p = \frac{V_{OH} - V_{OL}}{4\pi}$$

$$K_V = \frac{2\pi(f_{MAX} - f_{MIN})}{V_{IN\ MAX} - V_{IN\ MIN}}$$

(b)

(c)

Figure 24. Example of a PLL Block Diagram

■ 8961724 0097373 066 ■

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL2932I HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B – SEPTEMBER 1994 – REVISED MARCH 1995

APPLICATION INFORMATION

low-pass-filter (LPF) configurations

Many excellent references are available that include detailed design information about LPFs and should be consulted for additional information. Lag-lead filters or active filters are often used. Examples of LPFs are shown in Figure 25. When the active filter of Figure 25(c) is used, the reference should be applied to FIN-B because of the amplifier inversion. Also, in practical filter implementations, C_f is used as additional filtering at the VCO input. The value of C_f should be equal to or less than one tenth the value of C .

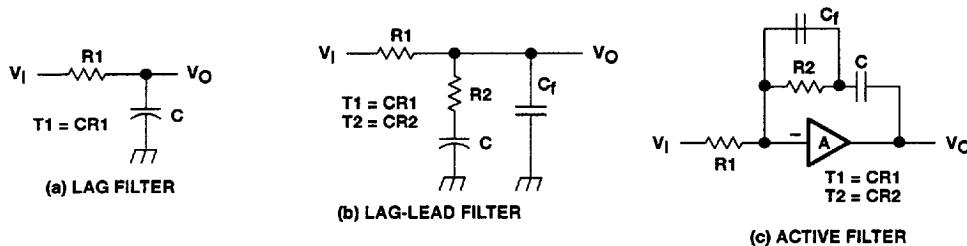


Figure 25. LPF Examples for PLL

the passive filter

The transfer function for the low-pass filter shown in Figure 25(b) is

$$\frac{V_O}{V_{IN}} = \frac{1 + s \cdot T_2}{1 + s \cdot (T_1 + T_2)}$$

Where

$$T_1 = R_1 \cdot C_f \text{ and } T_2 = R_2 \cdot C_f$$

Using this filter makes the closed loop PLL system a second order type 1 system. The response curves of this system to a unit step are shown in Figure 27.

the active filter

When using the active integrator shown in Figure 25(c), the phase detector inputs must be reversed since the integrator adds an additional inversion. Therefore, the input reference frequency should be applied to the FIN-B terminal and the output of the VCO divider should be applied to the input reference terminal, FIN-A.

The transfer function for the active filter shown in Figure 25(c) is:

$$F(s) = \frac{1 + s \cdot R_2 \cdot C}{s \cdot R_1 \cdot C}$$

Using this filter makes the closed loop PLL system a second-order type 2 system. The response curves of this system to a unit step are shown in Figure 27.

8961724 0097374 TT2

 **TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

basic design example

The following design example presupposes that the input reference frequency and the required frequency of the VCO are within the respective ranges of the device.

Assume the loop has to have a 100 μ s settling time (t_s) with a countdown $N = 8$. Using the Type 1, second order response curves of Figure 26, a value of 4.5 radians is selected for $\omega_n t_s$ with a damping factor of 0.7. This selection gives a good combination for settling time, accuracy, and loop gain margin. The initial parameters are summarized in Table 5. The loop constants, K_V and K_p , are calculated from the data sheet specifications and Table 6 shows these values.

The natural loop frequency is calculated as follows:

Since

$$\omega_n t_s = 4.5$$

Then

$$\omega_n = \frac{4.5}{100 \mu\text{s}} = 45 \text{ k-radians/sec}$$

Table 5. Design Parameters

PARAMETER	SYMBOL	VALUE	UNITS
Division factor	N	8	
Lockup time	t	100	μ s
Radian value to selected lockup time	$\omega_n t$	4.5	rad
Damping factor	ζ	0.7	

Table 6. Device Specifications

PARAMETER	SYMBOL	VALUE	UNITS
VCO gain		76.6	Mrad/V/s
f _{MAX}		50	MHz
f _{MIN}	K_V	20	MHz
V _{IN} MAX		5	V
V _{IN} MIN		0.9	V
PFD gain	K_p	0.342357	V/rad

Table 7. Calculated Values

PARAMETER	SYMBOL	VALUE	UNITS
Natural angular frequency	ω_n	45000	rad/sec
$K = (K_V \cdot K_p)/N$		3.277	Mrad/sec
Lag-lead filter			
Calculated value	R1	15870	Ω
Nearest standard value		16000	
Calculated value	R2	308	Ω
Nearest standard value		300	
Selected value	C1	1	μ F

8961724 0097375 939

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2932I HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B - SEPTEMBER 1994 - REVISED MARCH 1995

APPLICATION INFORMATION

Using the low-pass filter in Figure 25(b) and divider ratio N, the transfer function for phase and frequency are shown in equations 1 and 2. Note that the transfer function for phase differs from the transfer function for frequency by only the divider value N. The difference arises from the fact that the feedback for phase is unity while the feedback for frequency is 1/N.

Hence, transfer function of Figure 24 (a) for phase is

$$\frac{\Phi_2(s)}{\Phi_1(s)} = \frac{K_p \cdot K_V}{N \cdot (T_1 + T_2)} \left[\frac{1 + s \cdot T_2}{s^2 + s \cdot \left[1 + \frac{K_p \cdot K_V \cdot T_2}{N \cdot (T_1 + T_2)} \right] + \frac{K_p \cdot K_V}{N \cdot (T_1 + T_2)}} \right] \quad (1)$$

and the transfer function for frequency is

$$\frac{F_{OUT}(s)}{F_{REF}(s)} = \frac{K_p \cdot K_V}{(T_1 + T_2)} \left[\frac{1 + s \cdot T_2}{s^2 + s \cdot \left[1 + \frac{K_p \cdot K_V \cdot T_2}{N \cdot (T_1 + T_2)} \right] + \frac{K_p \cdot K_V}{N \cdot (T_1 + T_2)}} \right] \quad (2)$$

The standard two pole denominator is $D = s^2 + 2\zeta\omega_n s + \omega_n^2$ and comparing the coefficients of the denominator of equation (1) and (2) with the standard two pole denominator gives the following results.

$$\omega_n = \sqrt{\frac{K_p \cdot K_V}{N \cdot (T_1 + T_2)}}$$

Solving for $T_1 + T_2$

$$T_1 + T_2 = \frac{K_p \cdot K_V}{N \cdot \omega_n^2} \quad (3)$$

and by using this value for $T_1 + T_2$ in equation (3) the damping factor is

$$\zeta = \frac{\omega_n}{2} \cdot \left(T_2 + \frac{N}{K_p \cdot K_V} \right)$$

solving for T_2

$$T_2 = \frac{2\zeta}{\omega} - \frac{N}{K_p \cdot K_V}$$

then by substituting for T_2 in equation (3)

$$T_1 = \frac{K_V \cdot K_p}{N \cdot \omega_n^2} - \frac{2\zeta}{\omega_n} + \frac{N}{K_p \cdot K_V}$$

■ 8961724 0097376 875 ■

 **TEXAS
INSTRUMENTS**
POST OFFICE BOX 656303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

From the circuit constants and the initial design parameters then

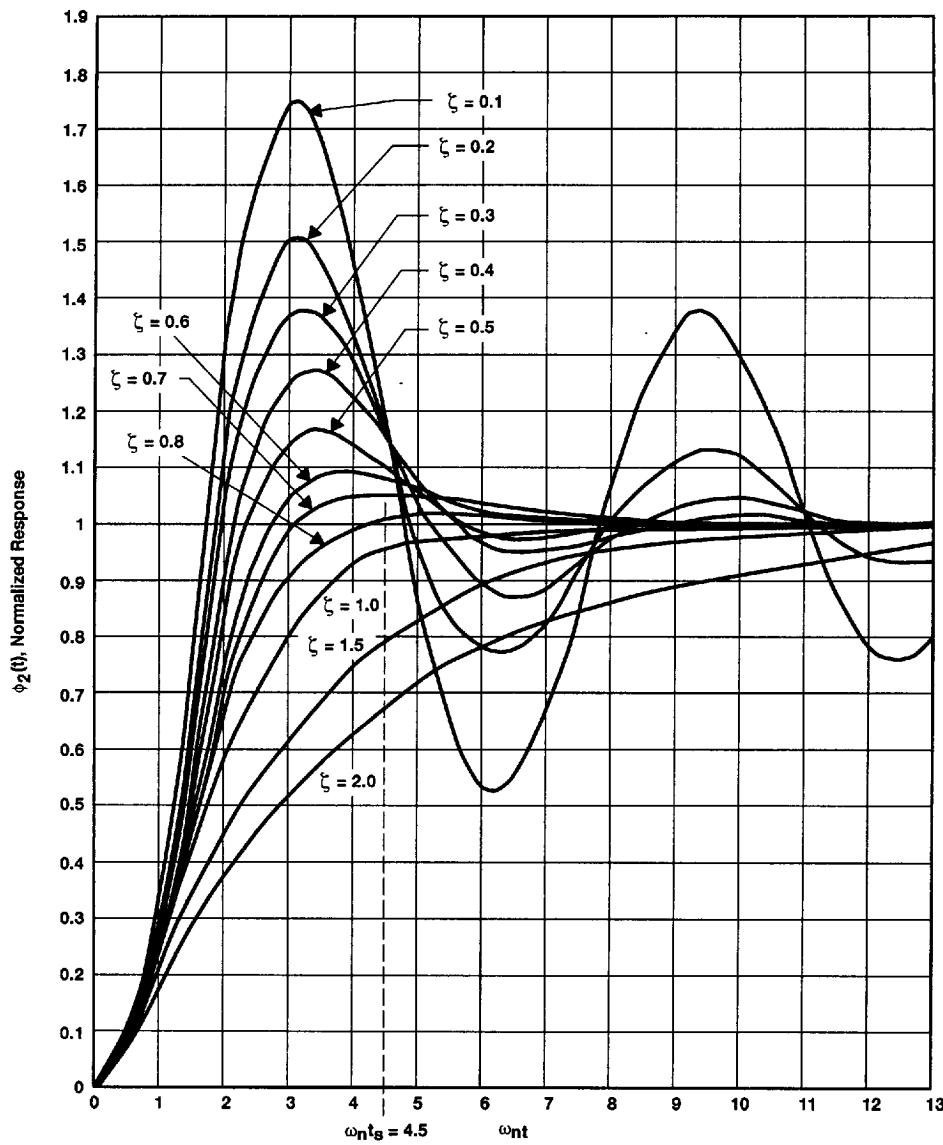
$$R2 = \left[\frac{2 \zeta}{\omega_n} - \frac{N}{K_p \cdot K_V} \right] \frac{1}{C_f}$$

$$R1 = \left[\frac{K_p \cdot K_V}{\omega_n^2 \cdot N} - \frac{2 \zeta}{\omega_n} + \frac{N}{K_p \cdot K_V} \right] \frac{1}{C_f}$$

The capacitor, C_f , is usually chosen between 1 μ F and 0.1 μ F to allow for reasonable resistor values and physical capacitor size. In this example, C_f is chosen to be 1 μ F and the corresponding R1 and R2 calculated values are listed in Table 7.

8961724 0097377 701

 **TEXAS
INSTRUMENTS**


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-37

TLC2932I
HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B – SEPTEMBER 1994 – REVISED MARCH 1995

APPLICATION INFORMATION

Figure 26. Type 1 Second Order Step Response

8961724 0097378 648

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-38

APPLICATION INFORMATION

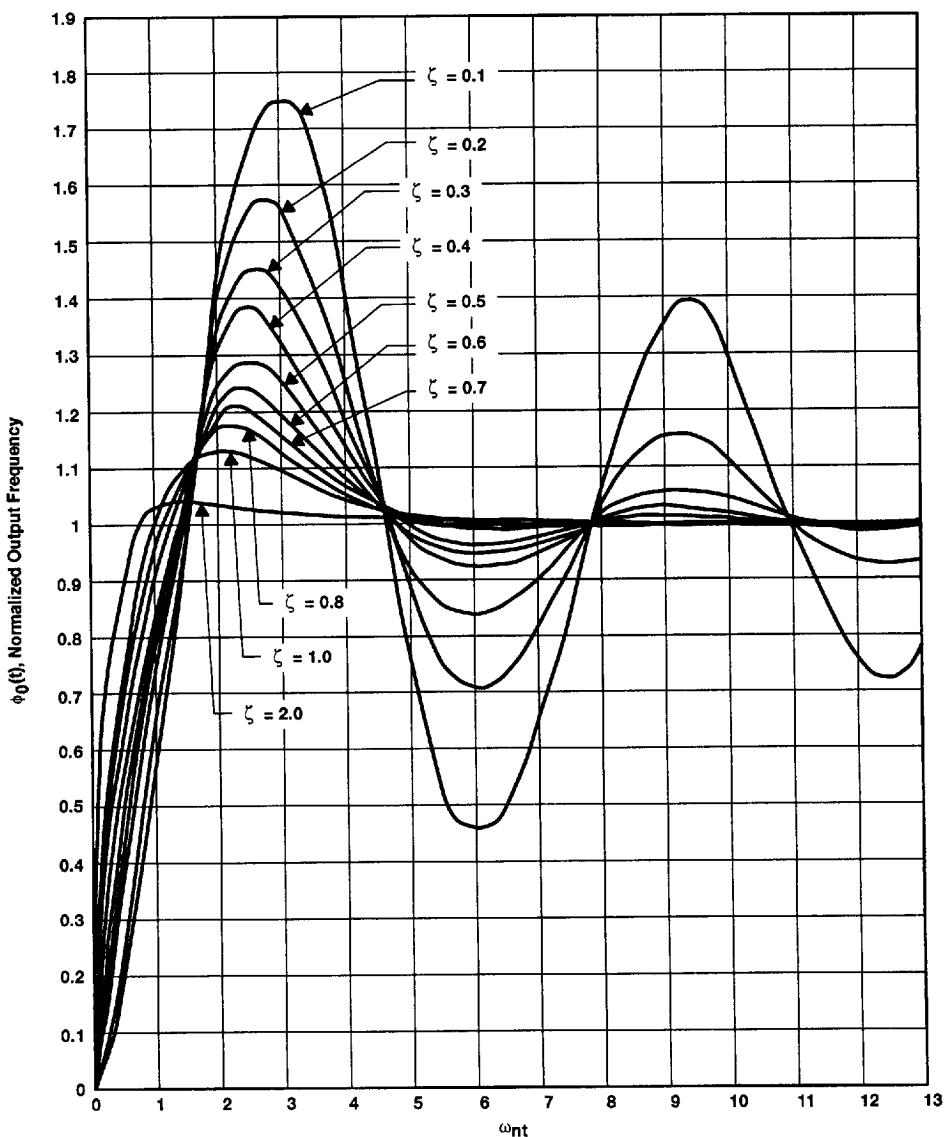
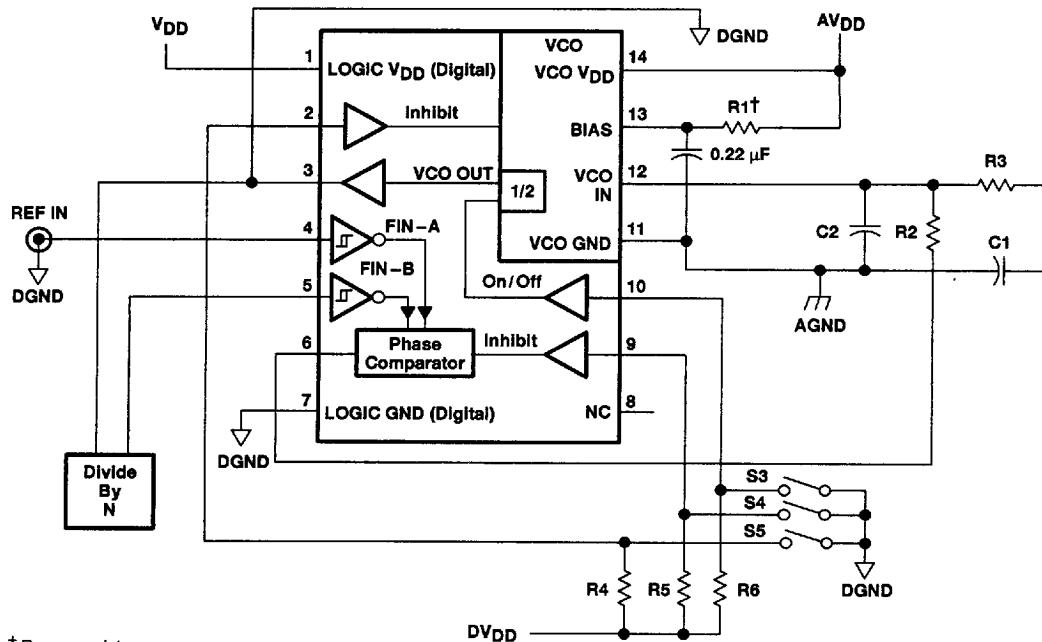


Figure 27. Type 2 Second Order Step Response

8961724 0097379 584

TEXAS
INSTRUMENTS


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-39

TLC2932I HIGH-PERFORMANCE PHASE-LOCKED LOOP

SLAS097B – SEPTEMBER 1994 – REVISED MARCH 1995

APPLICATION INFORMATION

† R_{BIAS} resistor

Figure 28. Evaluation and Operation Schematic

PCB layout considerations

The TLC2932I contains a high frequency analog oscillator; therefore, very careful breadboarding and printed-circuit-board (PCB) layout is required for evaluation.

- The following design recommendations benefit the TLC2932I user:
 - External analog and digital circuitry should be physically separated and shielded as much as possible to reduce system noise.
 - RF breadboarding or RF PCB techniques should be used throughout the evaluation and production process.
 - Wide ground leads or a ground plane should be used on the PCB layouts to minimize parasitic inductance and resistance. The ground plane is the better choice for noise reduction.
 - **LOGIC V_{DD}** and **VCO V_{DD}** should be separate PCB traces and connected to the best filtered supply point available in the system to minimize supply cross-coupling.
 - **VCO V_{DD}** to **GND** and **LOGIC V_{DD}** to **GND** should be decoupled with a $0.1\text{-}\mu\text{F}$ capacitor placed as close as possible to the appropriate device terminals.
 - The no-connection (NC) terminal on the package should be connected to **GND**.

8961724 0097380 2T6

 **TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265