
NPN Darlington Power Silicon Transistor

Qualified per MIL-PRF-19500/502

Qualified Levels:
JAN, JANTX, and
JANTXV

DESCRIPTION

This high speed NPN transistor is rated at 12 amps and is military qualified up to a JANTXV level. This TO-204AA isolated package features a 180 degree lead orientation.

Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- JEDEC registered 2N6058 and 2N6059
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/502
- RoHS compliant versions available (commercial grade only)

TO-204AA (TO-3) Package

APPLICATIONS / BENEFITS

- Military, space and other high reliability applications
- High frequency response
- TO-204AA case with isolated terminals

MAXIMUM RATINGS @ $T_C = +25^\circ\text{C}$ unless otherwise noted

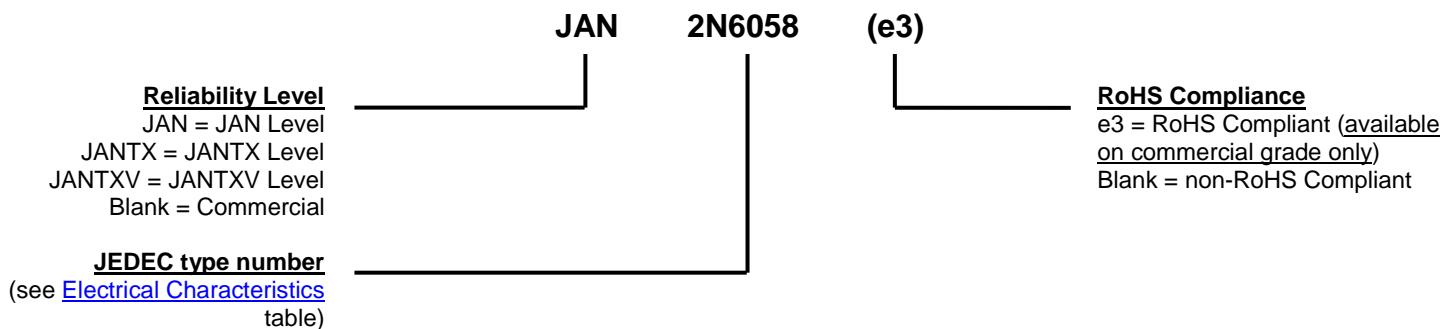
Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-55 to +175	$^\circ\text{C}$
Thermal Resistance Junction-to-Case	R_{EJC}	1.0	$^\circ\text{C}/\text{W}$
Collector Current	I_C	12	A
Collector-Emitter Voltage	V_{CEO}	80	V
		100	
Collector-Base Voltage	V_{CBO}	80	V
		100	
Emitter-Base Voltage	V_{EBO}	5	V
Total Power Dissipation	P_T	150	W
@ $T_C = +25^\circ\text{C}$ ⁽¹⁾		75	
@ $T_C = +100^\circ\text{C}$			

Notes: 1. Derate linearly 1.0 W/ $^\circ\text{C}$ above $T_C > +25^\circ\text{C}$.

MSC – Lawrence

6 Lake Street,
Lawrence, MA 01841
1-800-446-1158
(978) 620-2600
Fax: (978) 689-0803

MSC – Ireland


Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Industry standard TO-204AD (TO-3), hermetically sealed, 0.040 inch diameter pins.
- FINISH: Solder dipped tin-lead over nickel plated alloy 52 or RoHS compliant matte-tin plating. Solderable per MIL-STD-750 method 2026.
- POLARITY: NPN (see [schematic](#))
- MOUNTING HARDWARE: Consult factory for optional insulator and sheet metal screws
- WEIGHT: Approximately 15 grams
- See [package dimensions](#) on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS

Symbol	Definition
I_B	Base current: The value of the dc current into the base terminal.
I_C	Collector current: The value of the dc current into the collector terminal.
I_E	Emitter current: The value of the dc current into the emitter terminal.
T_C	Case temperature: The temperature measured at a specified location on the case of a device.
V_{CB}	Collector-base voltage: The dc voltage between the collector and the base.
V_{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.
V_{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.
V_{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.
V_{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.
V_{EB}	Emitter-base voltage: The dc voltage between the emitter and the base.
V_{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.

ELECTRICAL CHARACTERISTICS @ $T_A = +25^\circ\text{C}$ unless otherwise noted

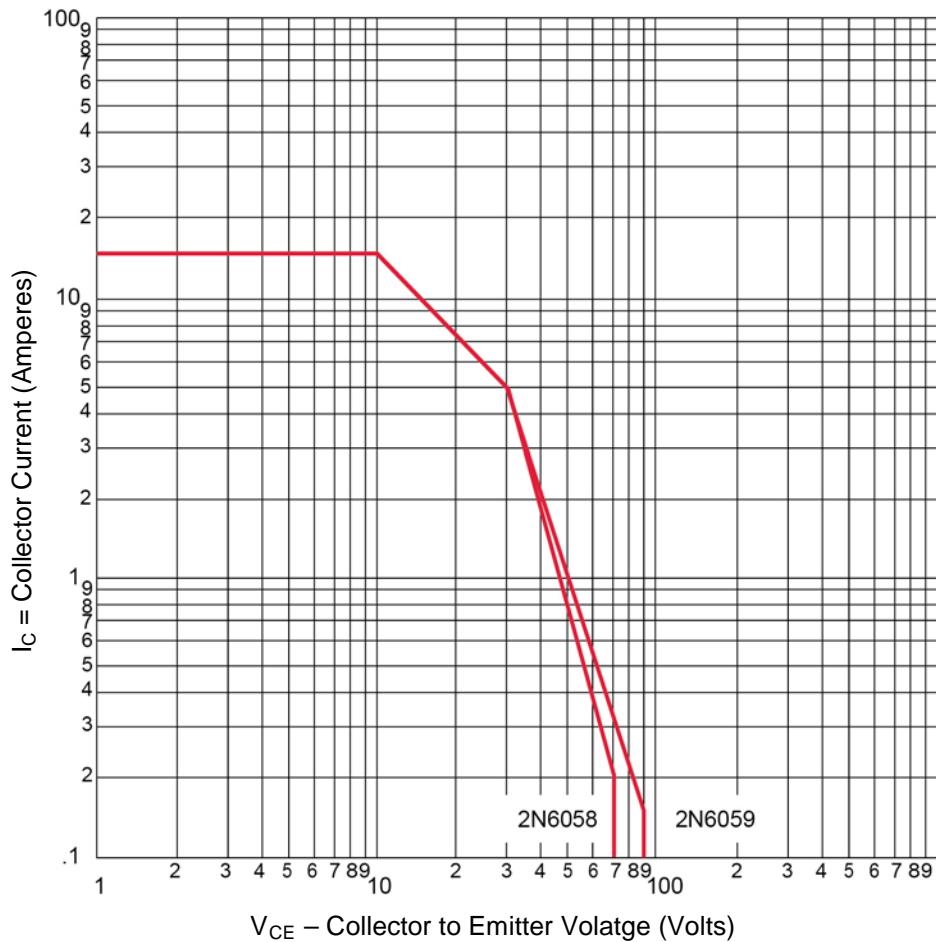
Characteristics	Symbol	Min.	Max.	Unit
-----------------	--------	------	------	------

OFF CHARACTERISTICS

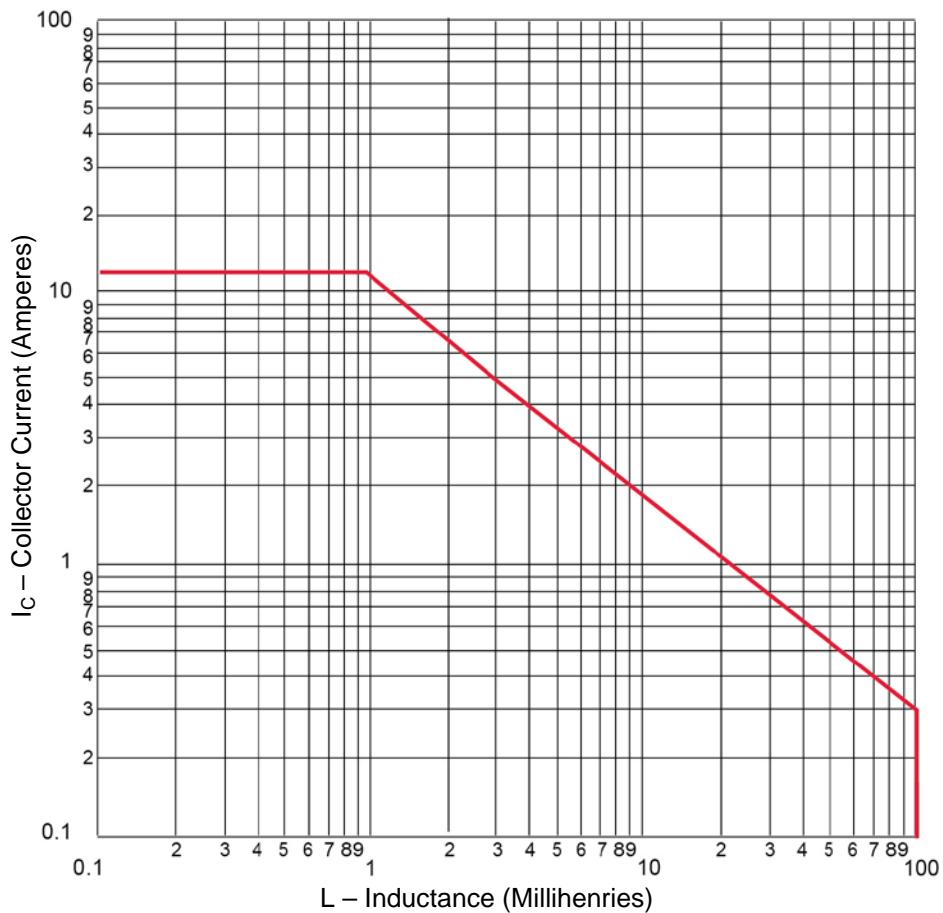
Collector-Emitter Breakdown Voltage $I_C = 100 \text{ mA}$	2N6058 2N6059	V(BR)CEO	80 100		V
Collector-Emitter Cutoff Current $V_{CE} = 40 \text{ V}$ $V_{CE} = 50 \text{ V}$	2N6058 2N6059	I_{CEO}		1.0 1.0	mA
Collector-Emitter Cutoff Current $V_{CE} = 80 \text{ V}, V_{EB} = 1.5 \text{ V}$ $V_{CE} = 150 \text{ V}, V_{EB} = 1.5 \text{ V}$	2N6058 2N6059	I_{CEX}		10 10	μA
Emitter-Base Cutoff Current $V_{EB} = 5.0 \text{ V}$		I_{EBO}		2.0	mA

ON CHARACTERISTICS

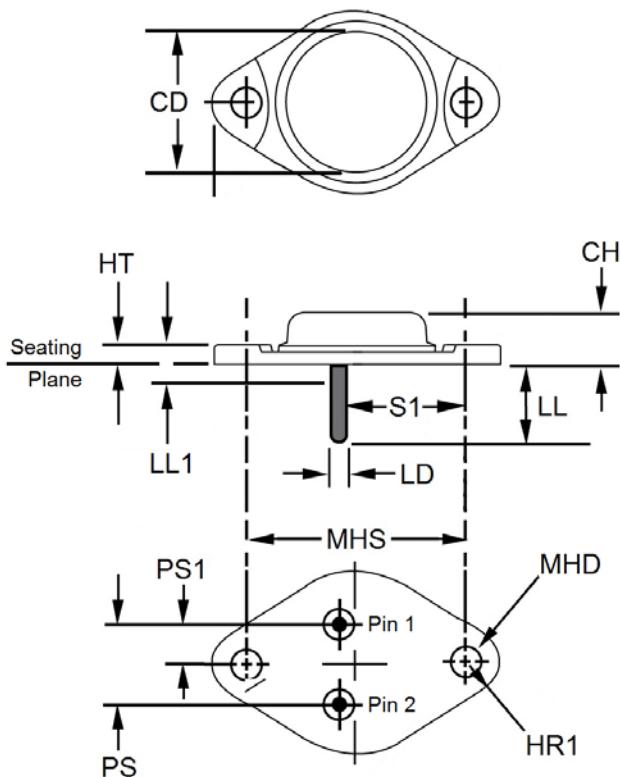
Forward-Current Transfer Ratio $I_C = 1.0 \text{ A}, V_{CE} = 3.0 \text{ V}$ $I_C = 6.0 \text{ A}, V_{CE} = 3.0 \text{ V}$ $I_C = 12 \text{ A}, V_{CE} = 3.0 \text{ V}$	h_{FE}	1,000 1,000 150	18,000	
Collector-Emitter Saturation Voltage $I_C = 12 \text{ A}, I_B = 120 \text{ mA}$ $I_C = 6.0 \text{ A}, I_B = 24 \text{ mA}$	$V_{CE}(\text{sat})$		3.0 2.0	V
Base-Emitter Saturation Voltage $I_C = 12 \text{ A}, I_B = 120 \text{ mA}$	$V_{BE}(\text{sat})$		4.0	V
Base-Emitter Voltage Non-saturated $V_{CE} = 3.0 \text{ V}, I_C = 6 \text{ A}$	V_{BE}		2.8	V


DYNAMIC CHARACTERISTICS

Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 5 \text{ A}, V_{CE} = 3.0 \text{ V}, f = 1 \text{ kHz}$	h_{fe}	1,000		
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 5 \text{ A}, V_{CE} = 3.0 \text{ V}, f = 1 \text{ MHz}$	$ h_{fel} $	10	250	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 100 \text{ kHz} \leq f \leq 1 \text{ MHz}$	C_{obo}		300	pF


ELECTRICAL CHARACTERISTICS @ $T_C = 25^\circ\text{C}$ unless otherwise noted. (continued)**SWITCHING CHARACTERISTICS**

Turn-On Time $V_{CC} = 30\text{ V}$, $I_C = 5\text{ A}$; $I_{B1} = 20\text{ mA}$	t_{on}		2.0	μs
Turn-Off Time $V_{CC} = 30\text{ V}$, $I_C = 5\text{ A}$; $I_{B1} = 20\text{ mA}$	t_{off}		10	μs

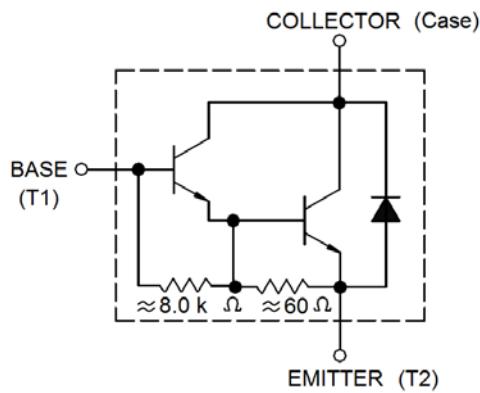

SAFE OPERATING AREA (See figures 1 and 2 and [MIL-STD-750, Test Method 3053](#))**DC Tests** $T_C = +25^\circ\text{C}, +10^\circ\text{C}, -0^\circ\text{C}$, $t \geq 1\text{ second}$, 1 Cycle**Test 1** $V_{CE} = 12.5\text{ V}$, $I_C = 12\text{ A}$ **Test 2** $V_{CE} = 30\text{ V}$, $I_C = 5\text{ A}$ **Test 3** $V_{CE} = 70\text{ V}$, $I_C = 200\text{ mA}$ (2N6058) $V_{CE} = 90\text{ V}$, $I_C = 155\text{ mA}$ (2N6059)

SAFE OPERATING AREA

FIGURE 1
Maximum Safe Operating Area
(continuous dc)

SAFE OPERATING AREA (continued)

FIGURE 2
Safe Operating Area For Switching Between Saturation And Cutoff
(unclamped inductive load)


PACKAGE DIMENSIONS

Ltr	Dimensions				Notes	
	Inches		Millimeters			
	Min	Max	Min	Max		
CD	-	0.875	-	22.23		
CH	0.250	0.328	6.35	8.33		
HR	0.495	0.525	12.57	13.34		
HR1	0.131	0.188	3.33	4.78	3	
HT	0.060	0.135	1.52	3.43		
LD	0.038	0.043	0.97	1.09	4, 5	
LL	0.312	0.500	7.92	12.70	4	
LL1	-	0.050	-	1.27	4, 5	
MHD	0.151	0.161	3.84	4.09	6	
MHS	1.177	1.197	29.90	30.40		
PS	0.420	0.440	10.67	11.18	7, 8	
PS1	0.205	0.225	5.21	5.72	7, 4, 8	
S1	0.655	0.675	16.64	17.15	7	
T1	Emitter					
T2	Base					
Case	Collector					

NOTES:

1. Dimensions are in inches. Millimeters are given for information only.
2. Body contour is optional within zone defined by dimension CD.
3. At both ends
4. Both terminals
5. Dimension LD applies between dimension L1 and LL. Lead diameter shall not exceed twice dimension LD within dimension L1. Diameter is uncontrolled in dimension L1.
6. Two holes
7. These dimensions shall be measured at points 0.050 inch (1.27 mm) to 0.055 inch (1.40 mm) below the seating plane. When gauge is not used, measurement shall be made at seating plane.
8. The seating plane of the header shall be flat within 0.001 inch (0.03 mm) concave to 0.004 inch (0.10 mm) convex inside a 0.930 inch (23.62 mm) diameter circle on the center of the header and flat within 0.001 inch (0.03 mm) concave to 0.006 inch (0.15 mm) convex overall.
9. The collector shall be electrically connected to the case.
10. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

See schematic on next page

SCHEMATIC