

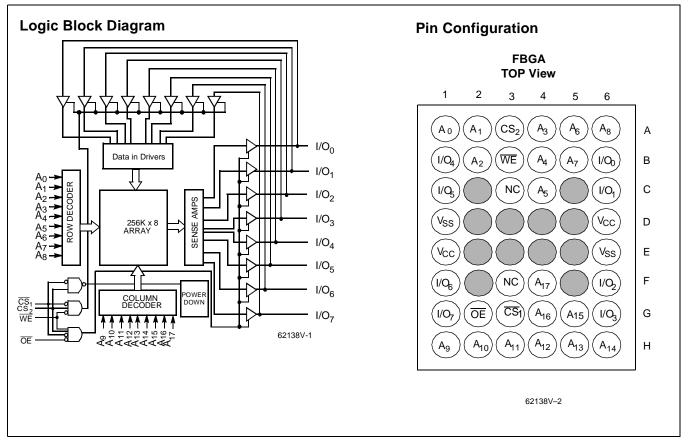
256K x 8 Static RAM

Features

- · Low voltage range:
 - -2.7-3.6V
- Ultra-low active power
- · Low standby power
- Easy memory expansion with $\overline{\text{CS}}_1/\text{CS}_2$ and $\overline{\text{OE}}$ features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

The CY62138V is a high-performance CMOS static RAM organized as 262,144 words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that reduces power con-


sumption by 99% when addresses are not toggling. The device can be put into standby mode when deselected ($\overline{\text{CS}}_1$ HIGH or $\overline{\text{CS}}_2$ LOW).

Writing to the device is accomplished by taking Chip Enable One (\overline{CS}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable Two (CS_2) HIGH. Data on the eight I/O pins (I/O_0) through I/O_7) is then written into the location specified on the address pins (A_0) through A_{17} .

Reading from the device is accomplished by taking Chip Enable One (\overline{CS}_1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) and Chip Enable Two (CS_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CS}_1 HIGH or CS₂ LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CS}_1 LOW, CS₂ HIGH, and \overline{WE} LOW).

The CY62138V is available in a 36-ball FBGA.

More Battery Life and MoBL are trademarks of Cypress Semiconductor Corporation.

Maximum Ratings

DC Input Voltage ^[1]	-0.5V to V _{CC} + 0.5 V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62138V	Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio

						Power Dis	sipation (In	dustrial)
	V _{CC} Range			Operating (I _{cc})		Standby (I _{SB2})		
Product	V _{CC(min)}	V _{CC(typ)} ^[2]	V _{CC(max)}	Speed	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62138V	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	1 μΑ	15 μΑ

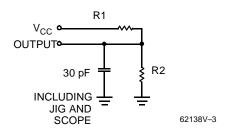
Electrical Characteristics Over the Operating Range

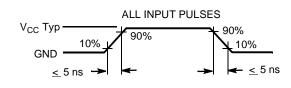
						CY62138\	CY62138V	
Parameter	Description	Test Condi	Test Conditions			Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	V _{CC} = 2.	.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.	.7V			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.$	6V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		V _{CC} = 2.	.7V	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	•		-1	<u>+</u> 1	+1	μΑ
I _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output Disabled			–1	+1	+1	μΑ
Icc	V _{CC} Operating Supply Current	$I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$, CMOS Levels	V _{CC} = 3.	6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels				1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:control_control} \begin{split} \overline{CE} & \geq V_{CC} - 0.3V, \\ V_{IN} & \geq V_{CC} - 0.3V \text{ or } \\ V_{IN} & \leq 0.3V, f = f_{MAX} \end{split}$					100	μА
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, $f = 0$	V _{CC} = 3.6V	LL		1	15	μА

Notes

- 1. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns.
- 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

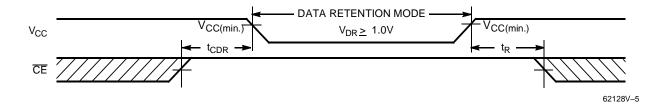

Note:

^{3.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

62138V-4

Equivalent to: THÉVENIN EQUIVALENT



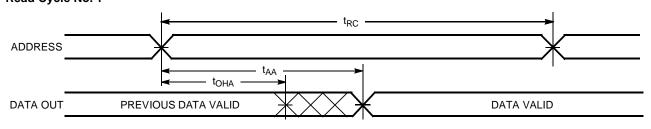
Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[4]		Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\begin{aligned} &V_{CC} = 1.0V\\ &CE \geq V_{CC} - 0.3V,\\ &V_{IN} \geq V_{CC} - 0.3V \text{ or }\\ &V_{IN} \leq 0.3V\\ &No \text{ input may exceed}\\ &V_{CC} + 0.3V \end{aligned}$	LL		0.1	5	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R	Operation Recovery Time			100			μs

Data Retention Waveform^[5]

- 4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. \overline{CE} is the combination of both \overline{CS}_1 and \overline{CS}_2 .

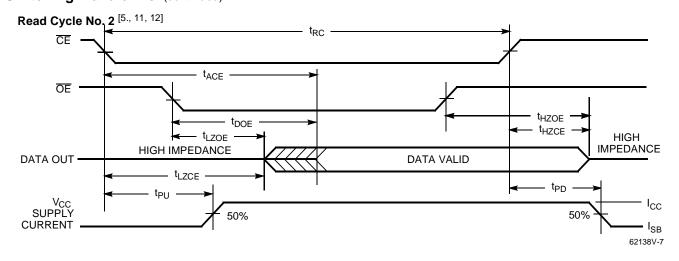


Switching Characteristics Over the Operating $Range^{[4]}$

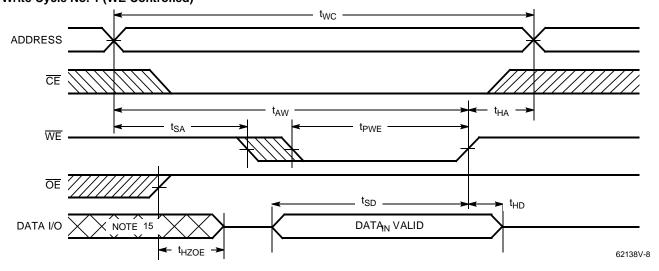
		70	ns	
Parameter	Description	Min.	Max.	Unit
READ CYCLE		-		
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
WRITE CYCLE ^[8, 9]				
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns

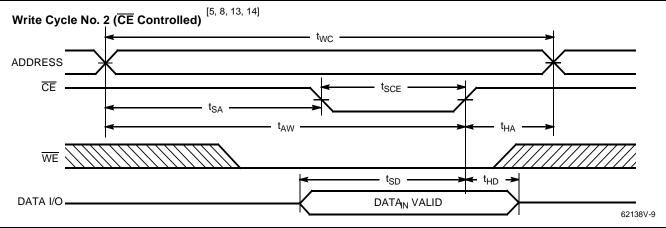
Switching Waveforms

Read Cycle No. 1^[10, 11]


C62138V-5

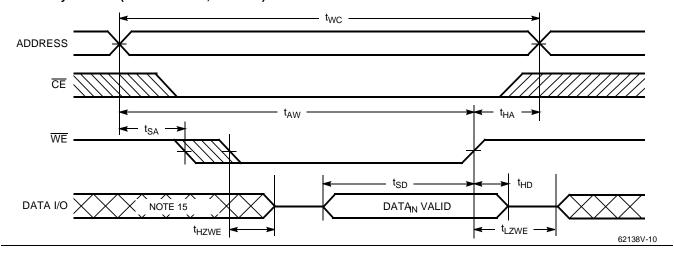
Notes:


- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
- 10. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 11. WE is HIGH for read cycle.

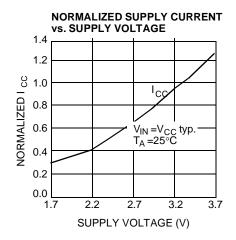


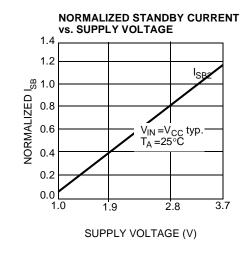
Switching Waveforms (continued)

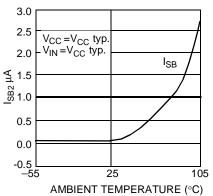
Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[5, 8, 13, 14]}$

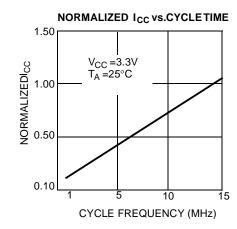


- Address valid prior to or coincident with \(\overline{CE}\) transition LOW.
 Data I/O is high impedance if \(\overline{OE} = V_{IH}\).
 If \(\overline{CE}\) goes HIGH simultaneously with \(\overline{WE}\) HIGH, the output remains in a high-impedance state During this period, the I/Os are in output state and input signals should not be applied.


Switching Waveforms (continued)


Write Cycle No. 3 (WE Controlled, OE LOW) [5, 9, 14]




Typical DC and AC Characteristics

STANDBY CURRENT vs. AMBIENT TEMPERATURE

Truth Table

CS ₁	CS ₂	WE	ŌĒ	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})

BOTTOM VIEW

Ø0.30±0.05(48X)

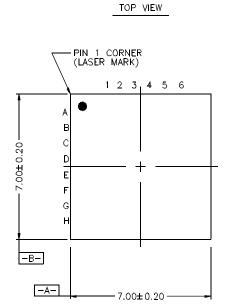
PIN 1 CORNER — (PATTEN ON SUBSTRATE)

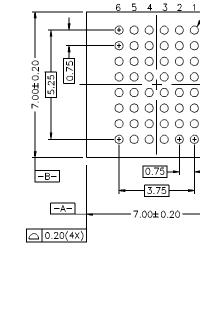
> В С

D

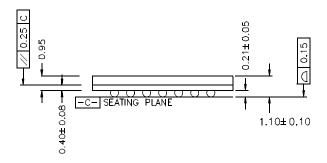
E

G


Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62138VLL-70BAI	BA48	48 Ball Fine Pitch BGA	Industrial

Document #: 38-00729-*B


Package Diagram

48-Ball (7.00 mm x 7.00 mm) FBGA BA48

ø0.25 (S

51-85096-A