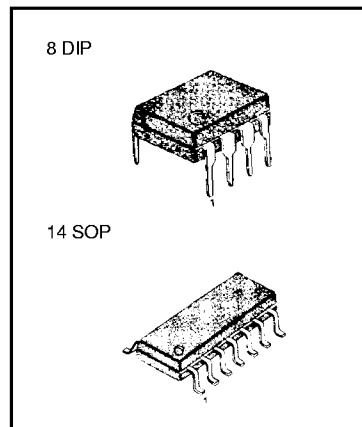


KA3842B/3B/4B/5B

SMPS CONTROLLER

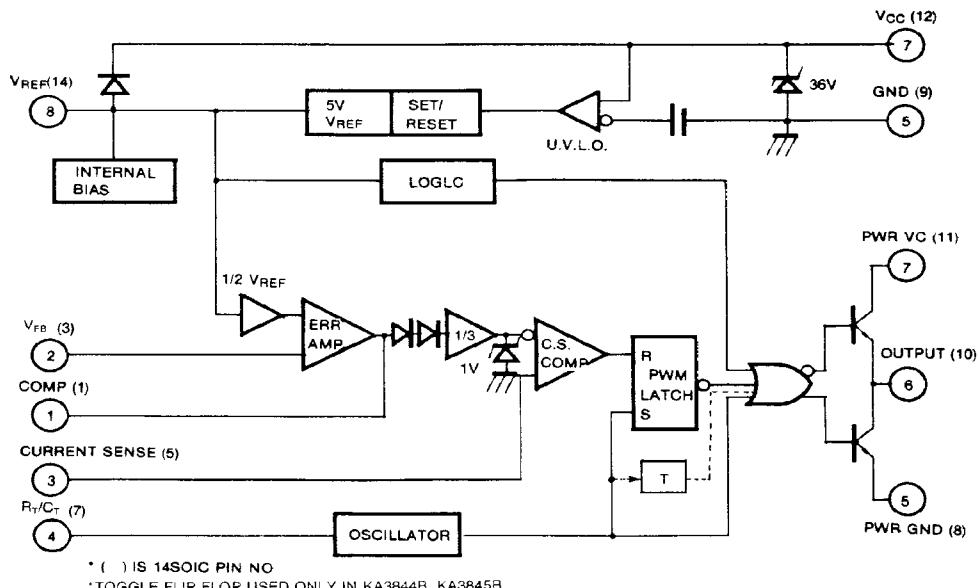
CURRENT-MODE PWM CONTROLLERS


The KA3842B/3B/4B/5B are fixed frequency current-mode PWM controller. They are specially designed for Off - Line and DC-to-DC converter applications with minimal external components. These integrated circuits feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totempole output. Ideally suited for driving a power MOSFET.

Protection circuitry includes built in under-voltage lockout and current limiting.

The KA3842B and KA3844B have UVLO thresholds of 16V (on) and 10V (off). The KA3843B and KA3845B are 8.5V (on) and 7.9V (off). The KA3842B and KA3843B can operate within 100% duty cycle. The KA3844B and KA3845B can operate with 50% duty cycle.

FEATURES


- Low Start Up Current
- Maximum Duty Clamp
- U/V Lockout With Hysteresis
- Operating Frequency Up To 500KHz

ORDERING INFORMATION

Device	Package	Operating Temperature
KA384XB	8 DIP	0 ~ +70°C
KA384XBD	14 SOP	0 ~ +70°C

BLOCK DIAGRAM

KA3842B/3B/4B/5B**SMPS CONTROLLER****ABSOLUTE MAXIMUM RATINGS**

Characteristic	Symbol	Value	Unit
Supply Voltage	V_{CC}	30	V
Output Current	I_O	± 1	A
Analog Inputs (Pin 2.3)	$V_{(ANA)}$	-0.3 to 6.3	V
Error Amp Output Sink Current	$I_{SINK(EA)}$	10	mA
Power Dissipation ($T_A = 25^\circ C$)	P_D	1	W

ELECTRICAL CHARACTERISTICS(* $V_{CC}=15V$, $R_T=10K\Omega$, $C_T=3.3nF$, $T_A = 0^\circ C$ to $+70^\circ C$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Typ	Max	Unit
REFERENCE SECTION						
Reference Output Voltage	V_{REF}	$T_J = 25^\circ C$, $I_{REF} = 1mA$	4.90	5.00	5.10	V
Line Regulation	ΔV_{REF}	$12V \leq V_{CC} \leq 25V$		6	20	mV
Load Regulation	ΔV_{REF}	$1mA \leq I_{REF} \leq 20mA$		6	25	mV
Short Circuit Output Current	I_{SC}	$T_A = 25^\circ C$		-100	-180	mA
OSCILLATOR SECTION						
Oscillation Frequency	f	$T_J = 25^\circ C$	47	52	57	KHz
Frequency Change with Voltage	$\Delta f/\Delta V_{CC}$	$12V \leq V_{CC} \leq 25V$		0.05	1	%
Oscillator Amplitude	$V_{(osc)}$			1.6		V _{P,P}
ERROR AMPLIFIER SECTION						
Input Bias Current	I_{BIAS}			-0.1	-2	μA
Input Voltage	$V_{I(E>A)}$	$V_1 = 2.5V$	2.42	2.50	2.58	V
Open Loop Voltage Gain	G_{VO}	$2V \leq V_O \leq 4V$	65	90		dB
Power Supply Rejection Ratio	PSRR	$12V \leq V_{CC} \leq 25V$	60	70		dB
Output Sink Current	I_{SINK}	$V_2 = 2.7V$, $V_1 = 1.1V$	2	7		mA
Output Source Current	I_{SOURCE}	$V_2 = 2.3V$, $V_1 = 5V$	-0.6	-1.0		mA
High Output Voltage	V_{OH}	$V_2 = 2.3V$, $R_L = 15K\Omega$ to GND	5	6		V
Low Output Voltage	V_{OL}	$V_2 = 2.7V$, $R_L = 15K\Omega$ to Pin 8		0.8	1.1	V
CURRENT SENSE SECTION						
Gain	G_V	(Note 1 & 2)	2.85	3	3.15	V/V
Maximum Input Signal	$V_{I(MAX)}$	$V_1 = 5V$ (Note 1)	0.9	1	1.1	V
Power Supply Rejection Ratio	PSRR	$12V \leq V_{CC} \leq 25V$ (Note 1)		70		dB
Input Bias Current	I_{BIAS}			-3	-10	μA

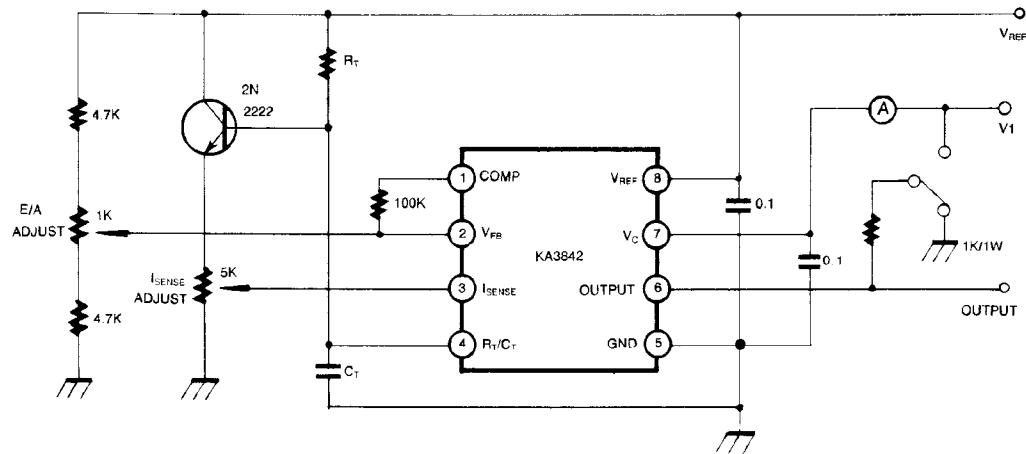
ELECTRICAL CHARACTERISTICS (Continued)(* $V_{CC}=15V$, $R_T=10K\Omega$, $C_T=3.3nF$, $T_A=0^\circ C$ to $+70^\circ C$ unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Typ	Max	Unit
OUTPUT SECTION						
Low Output Voltage	V_{OL}	$I_{SINK} = 20mA$		0.08	0.4	V
		$I_{SINK} = 200mA$		1.4	2.2	V
High Output Voltage	V_{OH}	$I_{SOURCE} = 20mA$	13	13.5		V
		$I_{SOURCE} = 200mA$	12	13.0		V
Rise Time	t_R	$T_J = 25^\circ C$, $C_L = 1nF$ (Note 3)		45	150	nS
Fall Time	t_F	$T_J = 25^\circ C$, $C_L = 1nF$ (Note 3)		35	150	nS
UNDER-VOLTAGE LOCKOUT SECTION						
Start Threshold	$V_{TH(ST)}$	KA3842B/44B	14.5	16.0	17.5	V
		KA3843B/45B	7.8	8.4	9.0	V
Min. Operating Voltage	$V_{OPR(MIN)}$	KA3842B/44B	8.5	10.0	11.5	V
(After Turn On)		KA3843B/45BG	7.0	7.6	8.2	V
PWM SECTION						
Max. Duty Cycle	$D_{(max)}$	KA3842B/43B	95	97	100	%
		KA3844B/45B	47	48	50	%
Min. Duty Cycle	$D_{(MIN)}$				0	%
TOTAL STANDBY CURRENT						
Start-Up Current	I_{ST}			0.45	1	mA
Operating Supply Current	$I_{CC(OPR)}$	$V_3=V_2=ON$		14	17	mA
Zener Voltage	V_Z	$I_{CC} = 25mA$	30	38		V

* Adjust V_{CC} above the start threshold before setting at 15V

Note 1. Parameter measured at trip point of latch

2. Gain defined as: $A = \frac{V_7 - V_1}{V_3 - V_1}$


$$A = \frac{V_7 - V_1}{V_3 - V_1}; 0 \leq V_3 \leq 0.8V$$

3. These parameters, although guaranteed, are not 100% tested in production.

KA3842B/3B/4B/5B

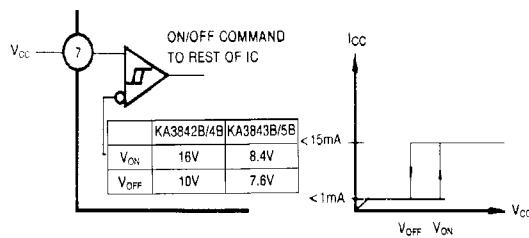

SMPS CONTROLLER

Fig. 1 Open Loop Test Circuit

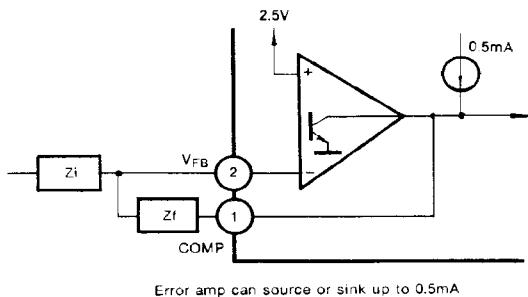

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and $5\text{ k}\Omega$ potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

Fig. 2 Under Voltage Lockout

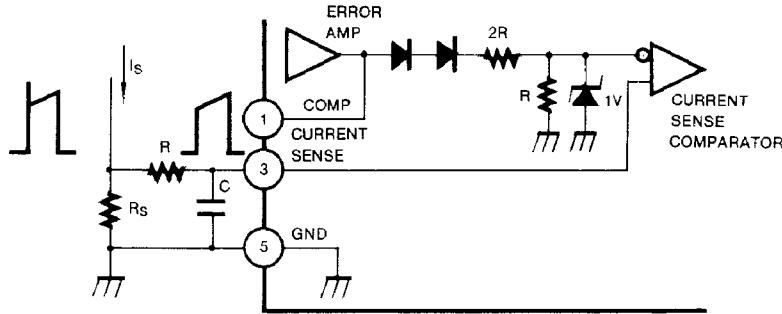
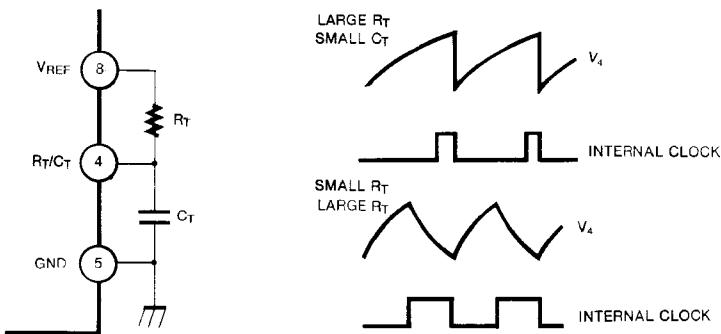

During Under-Voltage Lock-Out, the output driver is biased to a high impedance state. Pin 6 should be shunted to ground with a bleeder resistor to prevent activating the power switch with output leakage current.

Fig. 3 Error Amp Configuration

FAIRCHILD
SEMICONDUCTOR™

Fig. 4 Current Sense Circuit



Peak current (I_S) is determined by the formula:

$$I_{S(\text{MAX})} = \frac{1.0\text{V}}{R_S}$$

A small RC filter may be required to suppress switch transients.

Fig. 5 Oscillator Waveforms and Maximum Duty Cycle

Oscillator timing capacitor, C_T , is charged by V_{REF} through R_T , and discharged by an internal current source. During the discharge time, the internal clock signal blanks the output to the low state. Selection of R_T and C_T therefore determines both oscillator frequency and maximum duty cycle. Charge and discharge times are determined by the formulas:

$$t_C = 0.55 R_T C_T$$

$$t_D = R_T C_T \ln \left(\frac{0.0063 R_T - 2.7}{0.0063 R_T - 4} \right)$$

Frequency, then, is: $f = (t_C + t_D)^{-1}$

$$\text{For } R_T > 5\text{K}\Omega, f = \frac{1.8}{R_T C_T}$$

KA3842B/3B/4B/5B

SMPS CONTROLLER

Fig. 6 Oscillator Dead Time & Frequency
DEADTIME vs CT (RT>5K)

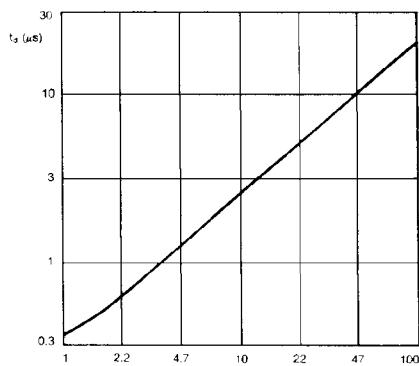


Fig. 7 Timing Resistance vs Frequency

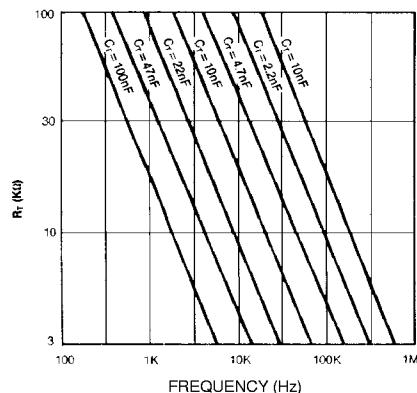
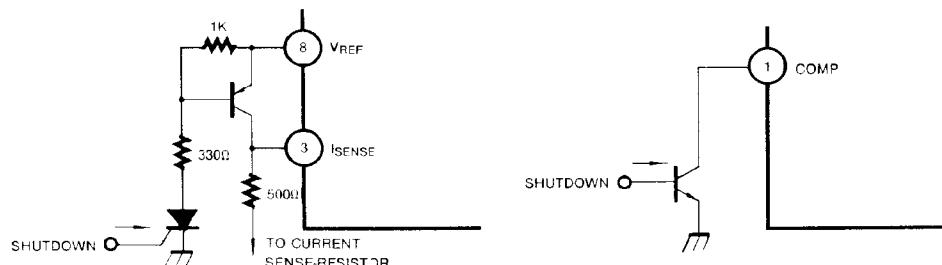
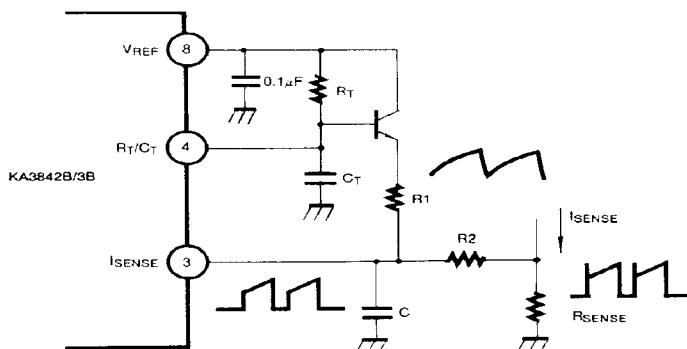




Fig. 8 Shutdown Techniques

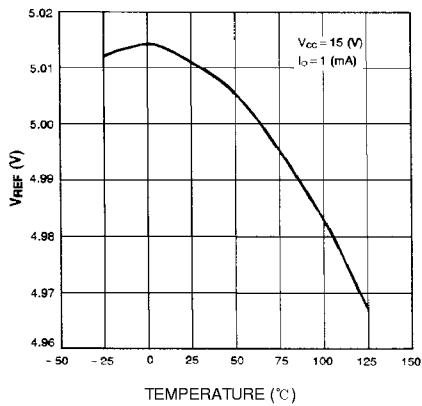
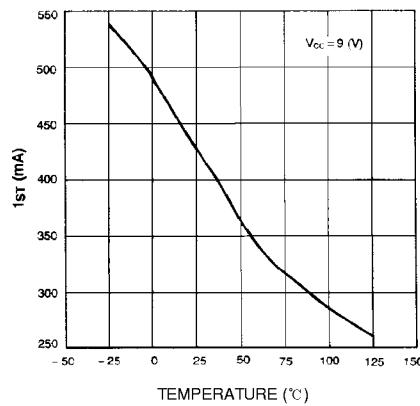
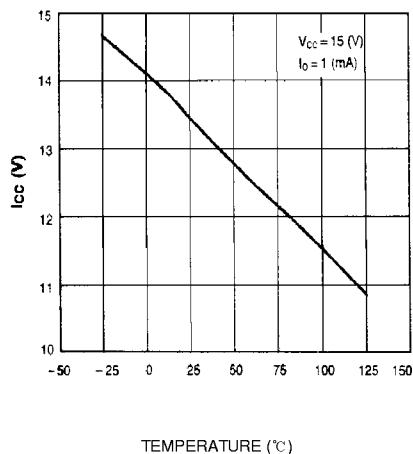


Shutdown of the KA3842B can be accomplished by two methods; either raise pin 3 above 1V or pull pin 1 below a voltage two diode drops above ground. Either method causes the output of the PWM comparator to be high (refer to block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown condition at pins 1 and/or 3 is removed. In one example, an externally latched shutdown may be accomplished by adding an SOR which will be reset by cycling V_{oc} below the lower UVLO threshold. At this point the reference turns off, allowing the SCR to reset.

Fig. 9 Slope Compensation



A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converters requiring duty cycles over 50%.

Note that capacitor C, forms a filter with R₂ to suppress the leading edge switch spikes.

Fig. 10 TEMPERATURE DRIFT (Vref)
KA3842BFig. 11 TEMPERATURE DRIFT (1st)
KA3B42B

TEMP
ERAT
URE
(°C)
TEMP
ERAT
URE
(°C)

Fig. 12 TEMPERATURE DRIFT (Icc)
KA3842B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	ISOPLANARTM	UHC™
CoolFET™	MICROWIRE™	VCX™
CROSSVOLT™	POPTM	
E ² CMOS™	PowerTrench™	
FACT™	QSTM	
FACT Quiet Series™	Quiet Series™	
FAST®	SuperSOT™-3	
FASTR™	SuperSOT™-6	
GTO™	SuperSOT™-8	
HiSeC™	TinyLogic™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.