MOS FET Relays G3VM-41GR4

New MOS FET Relays with Low Output Capacitance and ON Resistance ($C \times R = 10 pF \cdot \Omega$) in a 40-V Load Voltage, SOP Package.

- \bullet ON resistance of 2 Ω (typical) suppresses output signal attenuation.
- Leakage current of 1.0 nA max. (0.009 nA typ.) when relay is open.
- RoHS compliant

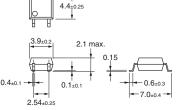
■ Application Examples

- Semiconductor inspection tools
- Measurement devices and Data loggers
- · Broadband systems

Note: The actual product is marked differently from the image shown

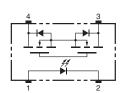
■ List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
		40 VAC	G3VM-41GR4	100	
	terminals		G3VM-41GR4(TR)		2,500

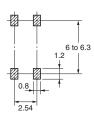

■ Dimensions

Note: All units are in millimeters unless otherwise indicated

G3VM-41GR4


Note: The actual product is marked differently from the image shown here.

Weight: 0.1 g


■ Terminal Arrangement/Internal Connections (Top View)

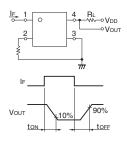
G3VM-41GR4

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-41GR4

■ Absolute Maximum Ratings (Ta = 25°C)

ltem		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}	1	А	100 μs pulses, 100 pps
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V _R	5	V	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V_{OFF}	40	V	
	Continuous load current	Io	250	mA	
	ON current reduction rate	Δ I _{ON} /°C	-2.5	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	T _j	125	°C	
	ric strength between input and (See note 1.)	V _{I-O}	1,500	V_{rms}	AC for 1 min
Operating temperature		T _a	-20 to +85	°C	With no icing or condensation
Storage temperature		T_{stg}	-55 to +125	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

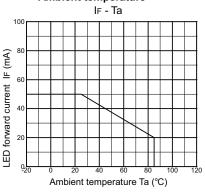

Note:

1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

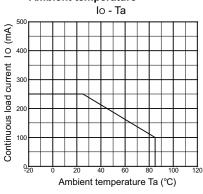
■ Electrical Characteristics (Ta = 25°C)

ltem		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input LED forward voltage		V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μΑ	V _R = 5 V
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}			4	mA	I _O = 100 mA
Output	Maximum resistance with output ON	R _{ON}		2.0	3.0	Ω	I _F = 5 mA, I _O = 250 mA, t < 1 s
	Current leakage when the relay is open	I _{LEAK}		0.009	1.0	nA	V _{OFF} = 30 V T _a = 50°C
	Capacity between terminals	C _{OFF}		5.0	7.0	pF	V = 0, f = 100 MHz, t < 1 s
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V
Insulation resistance		R _{I-O}	1,000			ΜΩ	$V_{I-O} = 500 \text{ VDC},$ $R_{oH} \le 60\%$
Turn-ON time		t _{ON}		0.055	0.5	ms	$I_F = 10 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.19	0.5	ms	V _{DD} = 20 V (See note 2.)

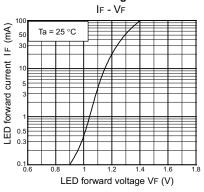
Note: 2. Turn-ON and Turn-OFF Times

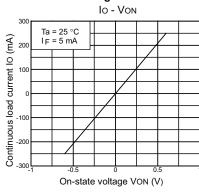

■ Recommended Operating Conditions

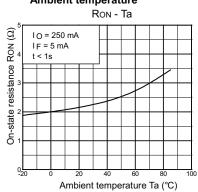
Use the G3VM under the following conditions so that the Relay will operate properly.

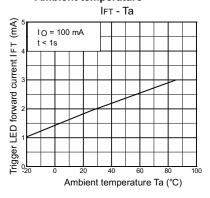

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			32	٧
Operating LED forward current	I _F	10		30	mA
Continuous load current (AC peak/DC)	Io			250	mA
Operating temperature	T _a	25		60	°C

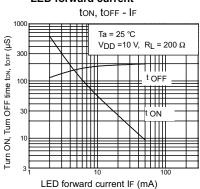
■ Engineering Data

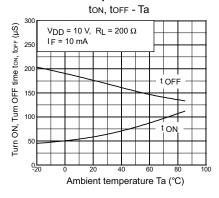

LED forward current vs. Ambient temperature

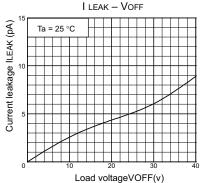

Continuous load current vs. Ambient temperature

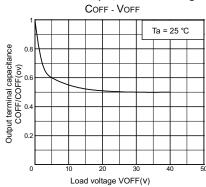

LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current


Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Load voltage

Output terminal capacitance COFF/COFF(ov) vs. Load voltage

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

Specifications subject to change without notice

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON **OMRON ELECTRONIC**

COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Printed in USA

MOS FET Relays **G3VM-41GR4**

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron:

G3VM-41GR4 G3VM-41GR4(TR)