
- Improved Speed and Package Replacement for the SN75LBC976
- Designed to Operate at up to 20 Million Data Transfers per Second (Fast-20 SCSI)
- Nine Differential Channels for the Data and Control Paths of the Small Computer Systems Interface (SCSI) and Intelligent Peripheral Interface (IPI)
- SN75976A Packaged in Shrink Small-Outline Package with 25-Mil Terminal Pitch (DL) and Thin Shrink Small-Outline Package with 20-Mil Terminal Pitch (DGG)
- SN55976A Packaged in a 56-Pin Ceramic Flat Pack (WD)
- Two Skew Limits Available
- ESD Protection on Bus Terminals Exceeds 12 kV
- Low Disabled Supply Current 8 mA Typ
- Thermal Shutdown Protection
- Positive- and Negative-Current Limiting
- Power-Up/Down Glitch Protection

#### description

The SN75976A is an improved replacement for the industry's first 9-channel RS-485 transceiver — the SN75LBC976. The A version offers improved switching performance, a smaller package, and higher ESD protection. The SN75976A is offered in two versions. The '976A2 skew limits of 4 ns for the differential drivers and 5 ns for the differential receivers complies with the recommended skew budget of the Fast-20 SCSI standard for data transfer rates up to 20 million transfers per second. The '976A1 supports the Fast SCSI skew budget for 10 million transfers per second. The skew limit ensures that the propagation delay times, not only from channel-to-channel but from device-to-device, are closely matched for the tight skew budgets associated with high-speed parallel data buses.

The patented thermal enhancements made to the 56-pin shrink small-outline package (SSOP) of the SN75976 have been applied to the new, thin shrink, small-outline package (TSSOP). The TSSOP package offers even less board area requirements than the SSOP while reducing the package height to 1 mm. This provides more board area and allows component mounting to both sides of the printed circuit boards for low-profile, space-restricted applications such as small form-factor hard disk drives.

SN75976A DGG or DL  
SN55976A WD  
(TOP VIEW)



Terminals 13 through 17 and 40 through 44 are connected together to the package lead frame and signal ground.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## description (continued)

In addition to speed improvements, the '976A can withstand electrostatic discharges exceeding 12 kV using the human-body model, and 600 V using the machine model of MIL-PRF-38535, Method 3015.7 on the RS-485 I/O terminals. This is six times the industry standard and provides protection from the noise that can be coupled into external cables. The other terminals of the device can withstand discharges exceeding 4 kV and 400 V respectively.

Each of the nine channels of the '976A typically meet or exceed the requirements of EIA RS-485 (1983) and ISO 8482-1987/TIA TR30.2 referenced by American National Standard of Information (ANSI) Systems, X3.131-1994 (SCSI-2) standard, X2.277-1996 (Fast-20 Parallel Interface), and the Intelligent Peripheral Interface Physical Layer-ANSI X3.129-1986 standard.

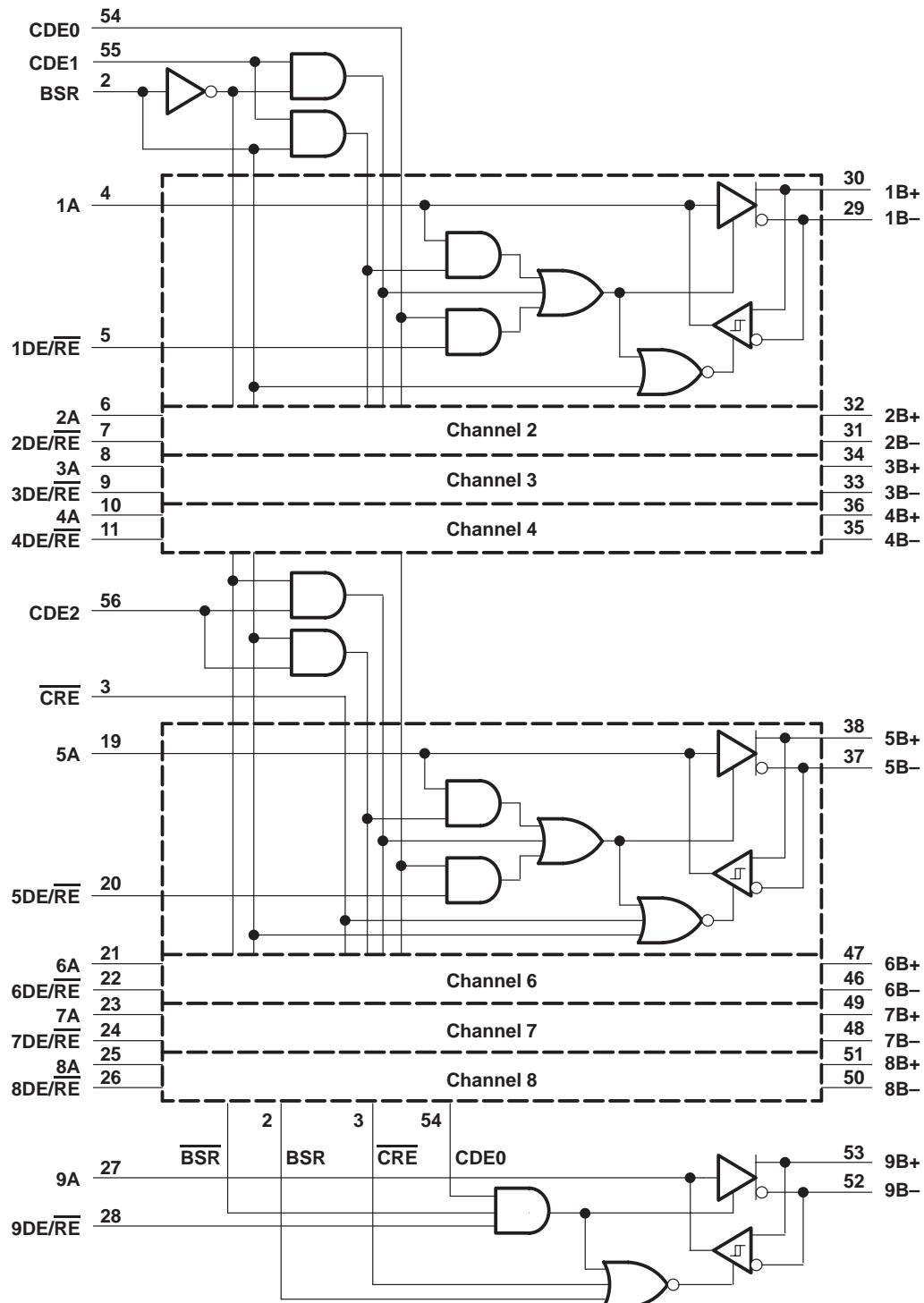
The SN75976A is characterized for operation over an ambient air temperature range of 0°C to 70°C. The SN55976A is characterized for operation over an ambient air temperature range of –55°C to 125°C.

### AVAILABLE OPTIONS

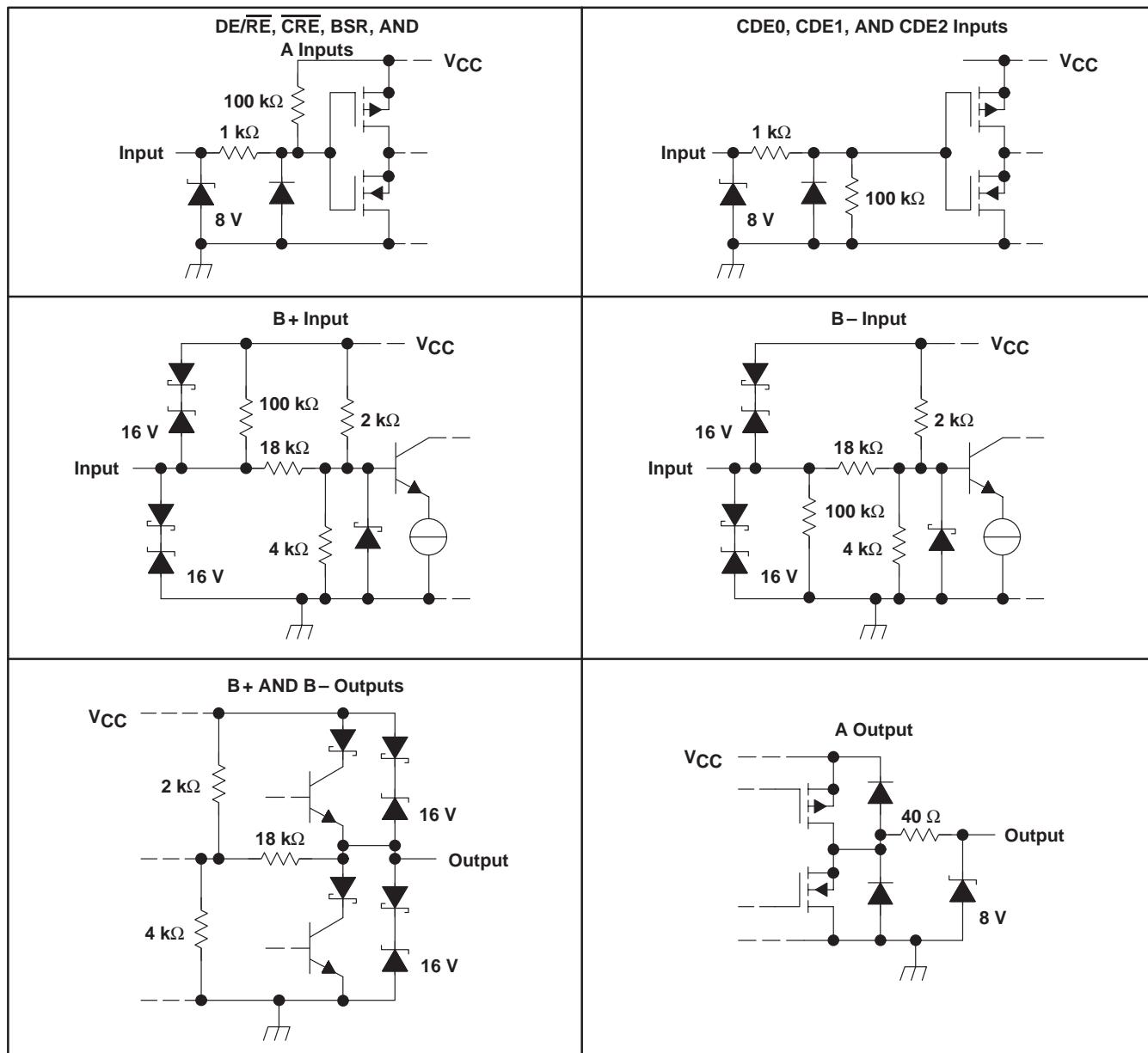
| TA             | Skew Limit<br>(ns) |          | PACKAGE <sup>†</sup>          |                             |                           |
|----------------|--------------------|----------|-------------------------------|-----------------------------|---------------------------|
|                | Driver             | Receiver | TSSOP<br>(DGG)                | SSOP<br>(DL)                | CERAMIC FLAT PACK<br>(WD) |
| 0°C to 70°C    | 8                  | 9        | SN75976A1DGG<br>SN75976A1DGGR | SN75976A1DL<br>SN75976A1DLR | —                         |
|                | 4                  | 5        | SN75976A2DGG<br>SN75976A2DGGR | SN75976A2DL<br>SN75976A2DLR | —                         |
| –55°C to 125°C | 8                  | 9        | —                             | —                           | SN55976A1WD               |
|                | 4                  | 5        | —                             | —                           | SN55976A2WD               |

<sup>†</sup> The R suffix indicates taped and reeled packages.

### Terminal Functions


| TERMINAL<br>NAME    | NO.                                         | Logic<br>Level | I/O   | Termination | DESCRIPTION                                                                                                                                                                                                     |
|---------------------|---------------------------------------------|----------------|-------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1A to 9A            | 4,6,8,10,<br>19,21,23,<br>25,27             | TTL            | I/O   | Pullup      | 1A to 9A carry data to and from the communication controller.                                                                                                                                                   |
| 1B- to 9B-          | 29,31,33,<br>35,37,,46,<br>48,50,52         | RS-485         | I/O   | Pulldown    | 1B- to 9B- are the inverted data signals of the balanced pair to/from the bus.                                                                                                                                  |
| 1B+ to 9B+          | 30,32,34,<br>36,38,47,<br>49,51,53          | RS-485         | I/O   | Pullup      | 1B+ to 9B+ are the noninverted data signals of the balanced pair to/from the bus.                                                                                                                               |
| BSR                 | 2                                           | TTL            | Input | Pullup      | BSR is the bit significant response. BSR disables receivers 1 through 8 and enables wired-OR drivers when BSR and DE/RE and CDE1 or CDE2 are high. Channel 9 is placed in a high-impedance state with BSR high. |
| CDE0                | 54                                          | TTL            | Input | Pulldown    | CDE0 is the common driver enable 0. Its input signal enables all drivers when CDE0 and 1DE/RE – 9DE/RE are high.                                                                                                |
| CDE1                | 55                                          | TTL            | Input | Pulldown    | CDE1 is the common driver enable 1. Its input signal enables drivers 1 to 4 when CDE1 is high and BSR is low.                                                                                                   |
| CDE2                | 56                                          | TTL            | Input | Pulldown    | CDE2 is the common driver enable 2. When CDE2 is high and BSR is low, drivers 5 to 8 are enabled.                                                                                                               |
| CRE                 | 3                                           | TTL            | Input | Pullup      | CRE is the common receiver enable. When high, CRE disables receiver channels 5 to 9.                                                                                                                            |
| 1DE/RE to<br>9DE/RE | 5,7,9,11,<br>20,22,24,<br>26,28             | TTL            | Input | Pullup      | 1DE/RE–9DE/RE are direction controls that transmit data to the bus when it and CDE0 are high. Data is received from the bus when 1DE/RE–9DE/RE and CRE and BSR are low and CDE1 and CDE2 are low.               |
| GND                 | 1,13,14,<br>15,16,17,<br>40,41,42,<br>43,44 | NA             | Power | NA          | GND is the circuit ground. All GND terminals except terminal 1 are physically tied to the die pad for improved thermal conductivity.†                                                                           |
| VCC                 | 12,18,39,<br>45                             | NA             | Power | NA          | Supply voltage                                                                                                                                                                                                  |

† Terminal 1 must be connected to signal ground for proper operation.


# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## logic diagram (positive logic)



schematics of inputs and outputs



# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

|                                                                         |                           |
|-------------------------------------------------------------------------|---------------------------|
| Supply voltage range, $V_{CC}$ (see Note 1) .....                       | –0.3 V to 6 V             |
| Bus voltage range .....                                                 | –10 V to 15 V             |
| Data I/O and control (A side) voltage range .....                       | –0.3 V to $V_{CC}$ +0.5 V |
| Electrostatic discharge: B side and GND, Class 3, A: (see Note 2) ..... | 12 kV                     |
| B side and GND, Class 3, B: (see Note 2) .....                          | 400 V                     |
| All terminals, Class 3, A: .....                                        | 4 kV                      |
| All terminals, Class 3, B: .....                                        | 400 V                     |
| Continuous total power dissipation (see Note 3) .....                   | internally limited        |
| Storage temperature range, $T_{STG}$ .....                              | –65°C to 150°C            |
| Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds .....      | 260°C                     |

<sup>†</sup> Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the GND terminals.

2. This absolute maximum rating is tested in accordance with MIL-PRF-38535, Method 3015.7.

3. The maximum operating junction temperature is internally limited. Use the Dissipation Rating Table to operate below this temperature.

DISSIPATION RATING TABLE

| PACKAGE | $T_A \leq 25^\circ C$ | OPERATING FACTOR <sup>‡</sup><br>ABOVE $T_A = 25^\circ C$ | $T_A = 70^\circ C$<br>POWER RATING | $T_A = 125^\circ C$<br>POWER RATING |
|---------|-----------------------|-----------------------------------------------------------|------------------------------------|-------------------------------------|
| DGG     | 2500 mW               | 20 mW/°C                                                  | 1600 mW                            | —                                   |
| DL      | 2500 mW               | 20 mW/°C                                                  | 1600 mW                            | —                                   |
| WD      | 1300 mW               | 10.5 mW/°C                                                | 827 mW                             | 250 mW                              |

<sup>‡</sup> This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

## package thermal characteristics

|                                                         |                                 | MIN | NOM  | MAX | UNIT |
|---------------------------------------------------------|---------------------------------|-----|------|-----|------|
| Junction-to-ambient thermal resistance, $R_{\theta JA}$ | DGG, board-mounted, no air flow |     | 50   |     | °C/W |
|                                                         | DL, board-mounted, no air flow  |     | 50   |     | °C/W |
| Junction-to-ambient thermal resistance, $R_{\theta JA}$ | WD                              |     | 95.4 |     | °C/W |
| Junction-to-case thermal resistance, $R_{\theta JC}$    | DGG                             |     | 27   |     | °C/W |
|                                                         | DL                              |     | 12   |     | °C/W |
| Junction-to-case thermal resistance, $R_{\theta JC}$    | WD                              |     | 5.67 |     | °C/W |
| Thermal-shutdown junction temperature, $T_{JS}$         |                                 |     | 165  |     | °C   |

**recommended operating conditions**

|                                                                                      |                  | MIN  | NOM | MAX  | UNIT |
|--------------------------------------------------------------------------------------|------------------|------|-----|------|------|
| Supply voltage, $V_{CC}$                                                             |                  | 4.75 | 5   | 5.25 | V    |
| High-level input voltage, $V_{IH}$                                                   | Except nB+, nB-† | 2    |     |      | V    |
| Low-level input voltage, $V_{IL}$                                                    | Except nB+, nB-† |      |     | 0.8  | V    |
| Voltage at any bus terminal (separately or common-mode), $V_O$ , $V_I$ , or $V_{IC}$ | nB+ or nB –      |      | 12  |      | V    |
|                                                                                      |                  |      | –7  |      | V    |
| High-level output current, $I_{OH}$                                                  | Driver           |      | –60 |      | mA   |
|                                                                                      | Receiver         |      | –8  |      | mA   |
| Low-level output current, $I_{OL}$                                                   | Driver           |      | 60  |      | mA   |
|                                                                                      | Receiver         |      | 8   |      | mA   |
| Operating case temperature, $T_C$                                                    | SN75976A         | 0    |     | 125  | °C   |
| Operating free-air temperature, $T_A$                                                | SN75976A         | 0    |     | 70   | °C   |
|                                                                                      | SN55976A         | –55  |     | 125  | °C   |

†  $n = 1 – 9$

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

**electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)**

| PARAMETER        | TEST CONDITIONS                                                                                               | SN55976A |                                         |      | SN75976A                                |      |      | UNIT |
|------------------|---------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|------|-----------------------------------------|------|------|------|
|                  |                                                                                                               | MIN      | TYP†                                    | MAX  | MIN                                     | TYP† | MAX  |      |
| V <sub>ODH</sub> | S1 to A, V <sub>T</sub> = 5 V, See Figure 1                                                                   | 0.7      |                                         |      | 1                                       | 1.8  |      | V    |
|                  | S1 to B, V <sub>T</sub> = 5 V, T <sub>C</sub> ≥ 25°C, See Figure 1                                            |          |                                         |      | 1                                       | 1.4  |      | V    |
|                  | S1 to B, See Figure 1 V <sub>T</sub> = 5 V,                                                                   | 0.7      |                                         |      | 0.8                                     |      |      | V    |
| V <sub>ODL</sub> | S1 to A, T <sub>C</sub> ≥ 25°C V <sub>T</sub> = 5 V, See Figure 1                                             | 0.7      | -1.4                                    |      | -1                                      | -1.4 |      | V    |
|                  | S1 to B, V <sub>T</sub> = 5 V, See Figure 1                                                                   | 0.7      | -1.8                                    |      | -1                                      | -1.8 |      | V    |
|                  | S1 to A, See Figure 1 V <sub>T</sub> = 5 V,                                                                   | -0.8     | -1.4                                    |      | -0.8                                    | -1.4 |      | V    |
| V <sub>OH</sub>  | A side, I <sub>OH</sub> = -8 mA V <sub>ID</sub> = 200 mV, See Figure 3                                        | 4        | 4.5                                     |      | 4                                       | 4.5  |      | V    |
|                  | B side, V <sub>T</sub> = 5 V, See Figure 1                                                                    |          | 3                                       |      | 3                                       |      |      | V    |
| V <sub>OL</sub>  | A side, I <sub>OH</sub> = 8 mA V <sub>ID</sub> = -200 mV, See Figure 3                                        | 0.6      | 0.8                                     |      | 0.6                                     | 0.8  |      | V    |
|                  | A side, V <sub>T</sub> = 5 V, See Figure 1                                                                    | 1        |                                         |      | 1                                       |      |      | V    |
| V <sub>IT+</sub> | Receiver positive-going differential input threshold voltage I <sub>OH</sub> = -8 mA, See Figure 3            |          |                                         | 0.2  |                                         |      | 0.2  | V    |
| V <sub>IT-</sub> | Receiver negative-going differential input threshold voltage I <sub>OL</sub> = 8 mA, See Figure 3             |          |                                         | -0.2 |                                         |      | -0.2 | V    |
| V <sub>hys</sub> | Receiver input hysteresis (V <sub>IT+</sub> - V <sub>IT-</sub> ) V <sub>CC</sub> = 5 V, T <sub>A</sub> = 25°C | 24       | 45                                      |      | 24                                      | 45   |      | mV   |
| I <sub>I</sub>   | V <sub>IH</sub> = 12 V, V <sub>CC</sub> = 5 V, Other input at 0 V                                             | 0.4      | 1                                       |      | 0.4                                     | 1    |      | mA   |
|                  | V <sub>IH</sub> = 12 V, V <sub>CC</sub> = 0, Other input at 0 V                                               | 0.5      | 1                                       |      | 0.5                                     | 1    |      | mA   |
|                  | V <sub>IH</sub> = -7 V, V <sub>CC</sub> = 5 V, Other input at 0 V                                             | -0.4     | -0.8                                    |      | -0.4                                    | -0.8 |      | mA   |
|                  | V <sub>IH</sub> = -7 V, V <sub>CC</sub> = 0, Other input at 0 V                                               | -0.3     | -0.8                                    |      | -0.3                                    | -0.8 |      | mA   |
| I <sub>IH</sub>  | A, BSR, DE/RE, and CRE, V <sub>IH</sub> = 2 V                                                                 |          | -100                                    |      |                                         | -100 |      | µA   |
|                  | CDE0, CDE1, and CDE2, V <sub>IH</sub> = 2 V                                                                   |          | 100                                     |      |                                         | 100  |      | µA   |
| I <sub>IL</sub>  | A, BSR, DE/RE, and CRE, V <sub>IL</sub> = 0.8 V                                                               |          | -100                                    |      |                                         | -100 |      | µA   |
|                  | CDE1, CDE1, and CDE2, V <sub>IL</sub> = 0.8 V                                                                 |          | 100                                     |      |                                         | 100  |      | µA   |
| I <sub>OS</sub>  | Short circuit output current nB+ or nB-                                                                       |          |                                         | ±260 |                                         |      | ±260 | mA   |
| I <sub>OZ</sub>  | A                                                                                                             |          | See I <sub>IH</sub> and I <sub>IL</sub> |      | See I <sub>IH</sub> and I <sub>IL</sub> |      |      |      |
|                  | nB+ or nB-                                                                                                    |          | See I <sub>I</sub>                      |      | See I <sub>I</sub>                      |      |      |      |
| I <sub>CC</sub>  | Disabled                                                                                                      |          |                                         | 10   |                                         | 10   |      | mA   |
|                  | All drivers enabled, no load                                                                                  |          |                                         | 60   |                                         | 60   |      | mA   |
|                  | All receivers enabled, no load                                                                                |          |                                         | 45   |                                         | 45   |      | mA   |
| C <sub>O</sub>   | Output capacitance nB+ or nB- to GND                                                                          |          | 18                                      |      | 18                                      | 25   |      | pF   |
| C <sub>pd</sub>  | Power dissipation capacitance (see Note 4) Receiver                                                           |          | 40                                      |      | 40                                      |      |      | pF   |
|                  | Driver                                                                                                        |          | 100                                     |      | 100                                     |      |      | pF   |

† All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.

NOTE 4: C<sub>pd</sub> determines the no-load dynamic supply current consumption, I<sub>S</sub> = C<sub>PD</sub> × V<sub>CC</sub> × f + I<sub>CC</sub>



POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**driver switching characteristics over recommended operating conditions (unless otherwise noted)**

| PARAMETER            | TEST CONDITIONS                                             | SN75976A                                      |      |      | UNIT |    |
|----------------------|-------------------------------------------------------------|-----------------------------------------------|------|------|------|----|
|                      |                                                             | MIN                                           | TYP† | MAX  |      |    |
| t <sub>pd</sub>      | '976A1                                                      |                                               | 2.5  | 13.5 | ns   |    |
|                      |                                                             | V <sub>CC</sub> = 5 V, T <sub>C</sub> = 25°C  | 3    | 11   | ns   |    |
|                      |                                                             | V <sub>CC</sub> = 5 V, T <sub>C</sub> = 100°C | 5    | 13   | ns   |    |
|                      | '976A2                                                      |                                               | 4.5  | 11.5 | ns   |    |
|                      |                                                             | V <sub>CC</sub> = 5 V, T <sub>C</sub> = 25°C  | 5    | 9    | ns   |    |
|                      |                                                             | V <sub>CC</sub> = 5 V, T <sub>C</sub> = 100°C | 7    | 11   | ns   |    |
| t <sub>sk(lim)</sub> | '976A1                                                      |                                               |      | 8    | ns   |    |
|                      |                                                             |                                               |      | 4    | ns   |    |
| t <sub>sk(p)</sub>   | Pulse skew,  t <sub>PHL</sub> – t <sub>PLH</sub>            |                                               |      | 4    | ns   |    |
| t <sub>f</sub>       | Fall time                                                   | S1 to B, See Figure 2                         |      | 4    | ns   |    |
| t <sub>r</sub>       | Rise time                                                   | See Figure 2                                  |      | 8    | ns   |    |
| t <sub>en</sub>      | Enable time, control inputs to active output                |                                               |      | 50   | ns   |    |
| t <sub>dis</sub>     | Disable time, control inputs to high-impedance output       |                                               |      | 100  | ns   |    |
| t <sub>PHZ</sub>     | Propagation delay time, high-level to high-impedance output | See Figures 5 and 6                           |      | 17   | 100  | ns |
| t <sub>PLZ</sub>     | Propagation delay time, low-level to high-impedance output  |                                               |      | 25   | 100  | ns |
| t <sub>PZH</sub>     | Propagation delay time, high-impedance to high-level output |                                               |      | 17   | 50   | ns |
| t <sub>PZL</sub>     | Propagation delay time, high-impedance to low-level output  |                                               |      | 17   | 50   | ns |

† All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.

NOTE 5: This parameter is applicable at one V<sub>CC</sub> and operating temperature within the recommended operating conditions and to any two devices.

**driver switching characteristics over recommended operating conditions (unless otherwise noted)**

| PARAMETER            | TEST CONDITIONS                                             | SN55976A                                     |      |      | UNIT |
|----------------------|-------------------------------------------------------------|----------------------------------------------|------|------|------|
|                      |                                                             | MIN                                          | TYP† | MAX  |      |
| t <sub>pd</sub>      | '976A1                                                      | V <sub>CC</sub> = 5 V, T <sub>A</sub> = 25°C |      | 15   | ns   |
|                      |                                                             | V <sub>CC</sub> = 5 V, T <sub>A</sub> = 25°C |      | 13.5 | ns   |
| t <sub>sk(lim)</sub> | '976A1                                                      |                                              |      | 8    | ns   |
|                      |                                                             |                                              |      | 4    | ns   |
| t <sub>sk(p)</sub>   | Pulse skew,  t <sub>PHL</sub> – t <sub>PLH</sub>            |                                              |      | 4    | ns   |
| t <sub>f</sub>       | Fall time                                                   | S1 to B, See Figure 2                        |      | 4    | ns   |
| t <sub>r</sub>       | Rise time                                                   | See Figure 2                                 |      | 8    | ns   |
| t <sub>en</sub>      | Enable time, control inputs to active output                |                                              |      | 60   | ns   |
| t <sub>dis</sub>     | Disable time, control inputs to high-impedance output       |                                              |      | 140  | ns   |
| t <sub>PHZ</sub>     | Propagation delay time, high-level to high-impedance output | See Figures 5 and 6                          |      | 120  | ns   |
| t <sub>PLZ</sub>     | Propagation delay time, low-level to high-impedance output  |                                              |      | 120  | ns   |
| t <sub>PZH</sub>     | Propagation delay time, high-impedance to high-level output |                                              |      | 60   | ns   |
| t <sub>PZL</sub>     | Propagation delay time, high-impedance to low-level output  |                                              |      | 60   | ns   |

† All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.

NOTE 5: This parameter is applicable at one V<sub>CC</sub> and operating temperature within the recommended operating conditions and to any two devices.

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

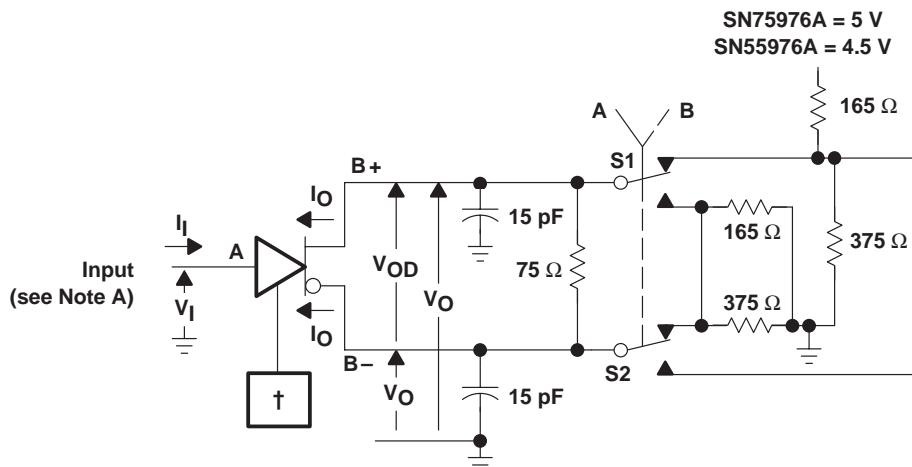
SLLS218B – MAY 1995 – REVISED MAY 1997

## receiver switching characteristics over recommended operating conditions (unless otherwise noted)

| PARAMETER                                                                                                | TEST CONDITIONS                                        | SN75976A |      |      | UNIT |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|------|------|------|
|                                                                                                          |                                                        | MIN      | TYP† | MAX  |      |
| t <sub>pd</sub><br>Propagation delay time, t <sub>PHL</sub> or t <sub>PLH</sub><br>(see Figures 3 and 4) | '976A1                                                 |          | 7.5  | 16.5 | ns   |
|                                                                                                          | '976A2<br>V <sub>CC</sub> = 5 V, T <sub>C</sub> = 25°C |          | 8.5  | 14.5 | ns   |
|                                                                                                          |                                                        |          | 8.6  | 13.6 | ns   |
|                                                                                                          | V <sub>CC</sub> = 5 V, T <sub>C</sub> = 100°C          |          | 9    | 14   | ns   |
| t <sub>sk(lim)</sub><br>Skew limit, maximum t <sub>pd</sub> – minimum t <sub>pd</sub><br>(see Note 5)    | '976A1                                                 |          |      | 9    | ns   |
|                                                                                                          | '976A2                                                 |          |      | 5    | ns   |
| t <sub>sk(p)</sub><br>Pulse skew,  t <sub>PHL</sub> – t <sub>PLH</sub>                                   |                                                        |          | 0.6  | 4    | ns   |
| t <sub>t</sub><br>Transition time (t <sub>r</sub> or t <sub>f</sub> )                                    | See Figure 4                                           |          | 2    |      | ns   |
| t <sub>en</sub><br>Enable time, control inputs to active output                                          |                                                        |          |      | 50   | ns   |
| t <sub>dis</sub><br>Disable time, control inputs to high-impedance output                                |                                                        |          |      | 60   | ns   |
| t <sub>PHZ</sub><br>Propagation delay time, high-level to high-impedance output                          | See Figures 7 and 8                                    |          |      | 60   | ns   |
| t <sub>PLZ</sub><br>Propagation delay time, low-level to high-impedance output                           |                                                        |          |      | 50   | ns   |
| t <sub>PZH</sub><br>Propagation delay time, high-impedance to high-level output                          |                                                        |          |      | 50   | ns   |
| t <sub>PZL</sub><br>Propagation delay time, high-impedance to low-level output                           |                                                        |          |      | 50   | ns   |

† All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.

NOTE 5. This parameter is applicable at one V<sub>CC</sub> and operating temperature within the recommended operating conditions and to any two devices.


## receiver switching characteristics over recommended operating conditions (unless otherwise noted)

| PARAMETER                                                                                                | TEST CONDITIONS                                        | SN55976A |      |     | UNIT |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|------|-----|------|
|                                                                                                          |                                                        | MIN      | TYP† | MAX |      |
| t <sub>pd</sub><br>Propagation delay time, t <sub>PHL</sub> or t <sub>PLH</sub><br>(see Figures 3 and 4) | '976A1<br>V <sub>CC</sub> = 5 V, T <sub>A</sub> = 25°C |          |      | 19  | ns   |
|                                                                                                          | '976A2<br>V <sub>CC</sub> = 5 V, T <sub>A</sub> = 25°C |          |      | 16  | ns   |
| t <sub>sk(lim)</sub><br>Skew limit, maximum t <sub>pd</sub> – minimum t <sub>pd</sub><br>(see Note 5)    | '976A1                                                 |          |      | 9   | ns   |
|                                                                                                          | '976A2                                                 |          |      | 5   | ns   |
| t <sub>sk(p)</sub><br>Pulse skew,  t <sub>PHL</sub> – t <sub>PLH</sub>                                   |                                                        |          | 0.6  | 4   | ns   |
| t <sub>t</sub><br>Transition time (t <sub>r</sub> or t <sub>f</sub> )                                    | See Figure 4                                           |          | 2    |     | ns   |
| t <sub>en</sub><br>Enable time, control inputs to active output                                          |                                                        |          |      | 70  | ns   |
| t <sub>dis</sub><br>Disable time, control inputs to high-impedance output                                |                                                        |          |      | 80  | ns   |
| t <sub>PHZ</sub><br>Propagation delay time, high-level to high-impedance output                          | See Figures 7 and 8                                    |          |      | 80  | ns   |
| t <sub>PLZ</sub><br>Propagation delay time, low-level to high-impedance output                           |                                                        |          |      | 70  | ns   |
| t <sub>PZH</sub><br>Propagation delay time, high-impedance to high-level output                          |                                                        |          |      | 70  | ns   |
| t <sub>PZL</sub><br>Propagation delay time, high-impedance to low-level output                           |                                                        |          |      | 70  | ns   |

† All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.

NOTE 5. This parameter is applicable at one V<sub>CC</sub> and operating temperature within the recommended operating conditions and to any two devices.

PARAMETER MEASUREMENT INFORMATION



† CDE0 and DE/RE are at 2 V, BSR is at 0.8 V and, for the SN75976A only, all others are open.

‡ For the SN75976A only, all nine drivers are enabled, similarly loaded, and switching.

Figure 1. Driver Test Circuit, Currents, and Voltages‡

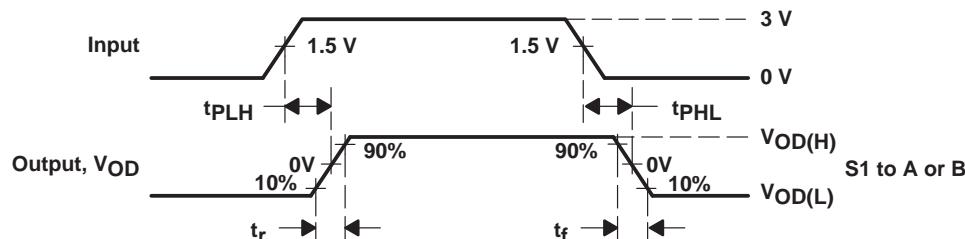
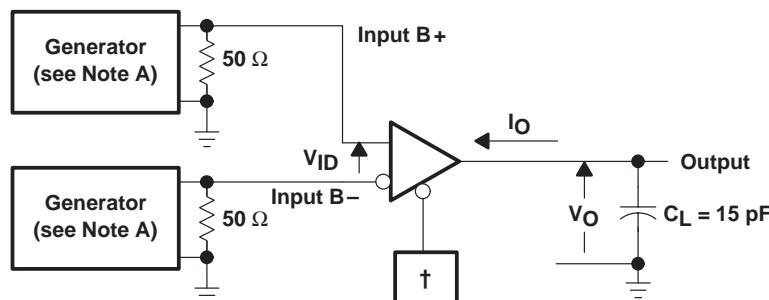




Figure 2. Driver Delay and Transition Time Test Waveforms



† CDE0, CDE1, CDE2, BSR, CRE, and DE/RE at 0.8 V

‡ For the SN75976A only, all nine receivers are enabled and switching.

Figure 3. Receiver Propagation Delay and Transition Time Test Circuit‡

NOTES:

- All input pulses are supplied by a generator having the following characteristics:  $t_r \leq 6$  ns,  $t_f \leq 6$  ns, PRR  $\leq 1$  MHz, duty cycle = 50%,  $Z_O = 50 \Omega$ .
- All resistances are in  $\Omega$  and  $\pm 5\%$ , unless otherwise indicated.
- All capacitances are in pF and  $\pm 10\%$ , unless otherwise indicated.
- All indicated voltages are  $\pm 10$  mV.

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## PARAMETER MEASUREMENT INFORMATION

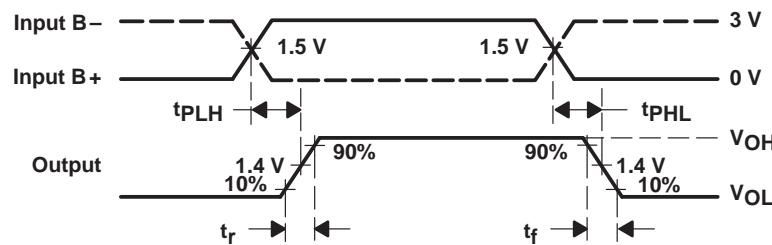
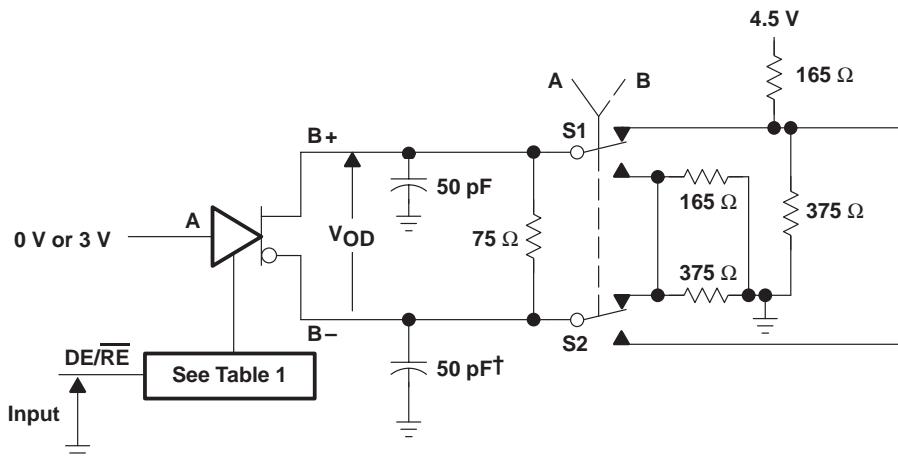




Figure 4. Receiver Delay and Transition Time Waveforms



† Includes probe and jig capacitance in two places.

Figure 5. Driver Enable and Disable Time Test Circuit

Table 1. Enabling For Driver Enable And Disable Time

| DRIVER | BSR | CDE0 | CDE1 | CDE2 | $\overline{CRE}$ |
|--------|-----|------|------|------|------------------|
| 1 – 8  | H   | H    | L    | L    | X                |
| 9      | L   | H    | H    | H    | H                |

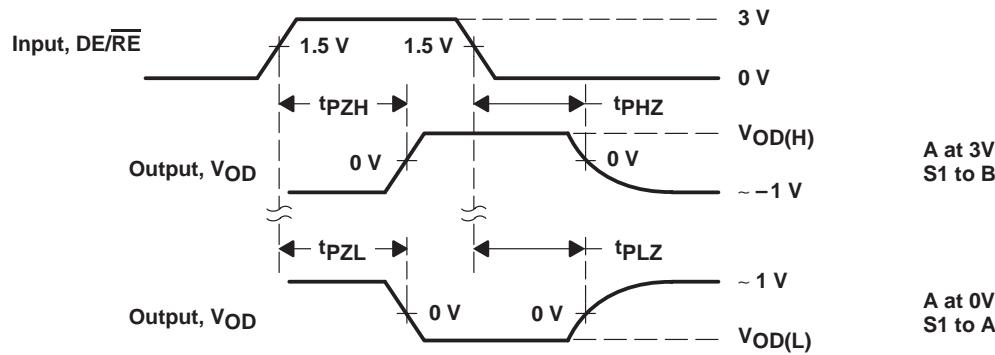
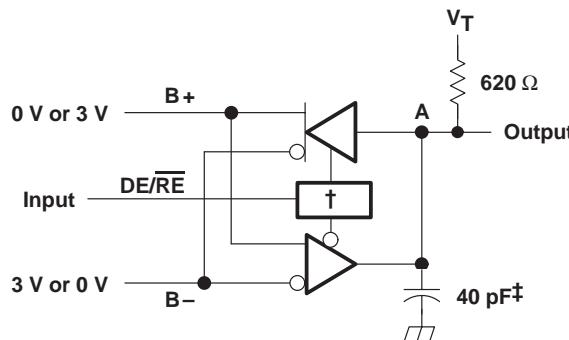




Figure 6. Driver Enable Time Waveforms

NOTES: A. All input pulses are supplied by a generator having the following characteristics:  $t_r \leq 6$  ns,  $t_f \leq 6$  ns, PRR  $\leq 1$  MHz, duty cycle = 50%,  $Z_O = 50 \Omega$ .  
 B. All resistances are in  $\Omega$  and  $\pm 5\%$ , unless otherwise indicated.  
 C. All capacitances are in pF and  $\pm 10\%$ , unless otherwise indicated.  
 D. All indicated voltages are  $\pm 10$  mV.

PARAMETER MEASUREMENT INFORMATION



† CDE0 is high, CDE1, CDE2, BSR, and  $\overline{CRE}$  are low and, for the SN75976A only, all others are open.

‡ Includes probe and jig capacitance.

Figure 7. Receiver Enable and Disable Time Test Circuit

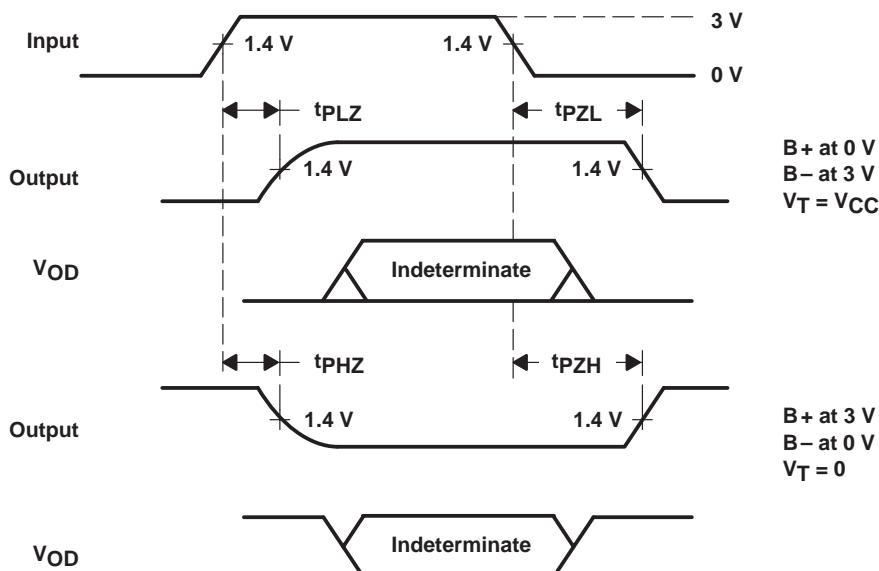



Figure 8. Receiver Enable and Disable Time Waveforms

NOTES: A. All input pulses are supplied by a generator having the following characteristics:  $t_f \leq 6$  ns,  $t_f \leq 6$  ns, PRR  $\leq 1$  MHz, duty cycle = 50%,  $Z_0 = 50 \Omega$ .  
 B. All resistances are in  $\Omega$  and  $\pm 5\%$ , unless otherwise indicated.  
 C. All capacitances are in pF and  $\pm 10\%$ , unless otherwise indicated.  
 D. All indicated voltages are  $\pm 10$  mV.

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## TYPICAL CHARACTERISTICS

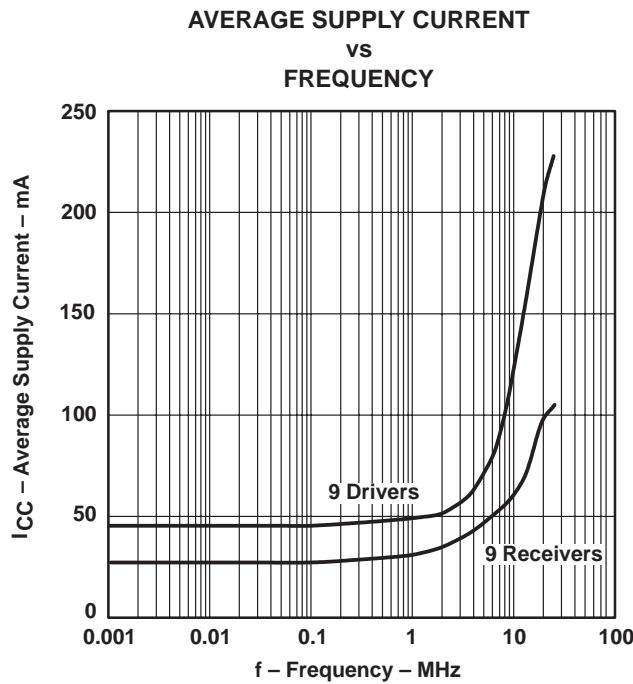



Figure 9

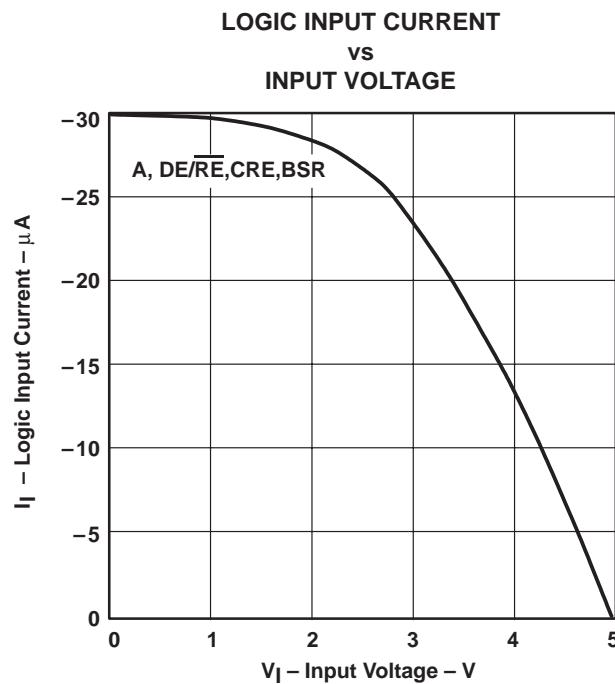



Figure 10

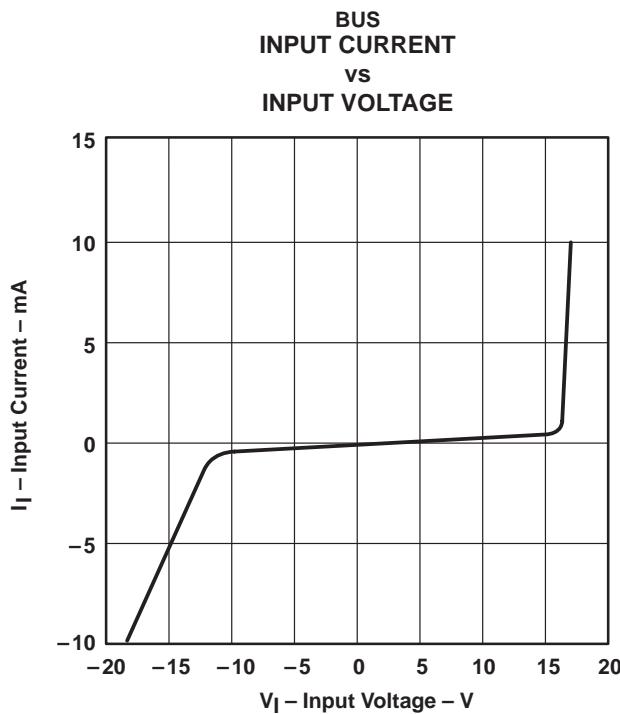



Figure 11

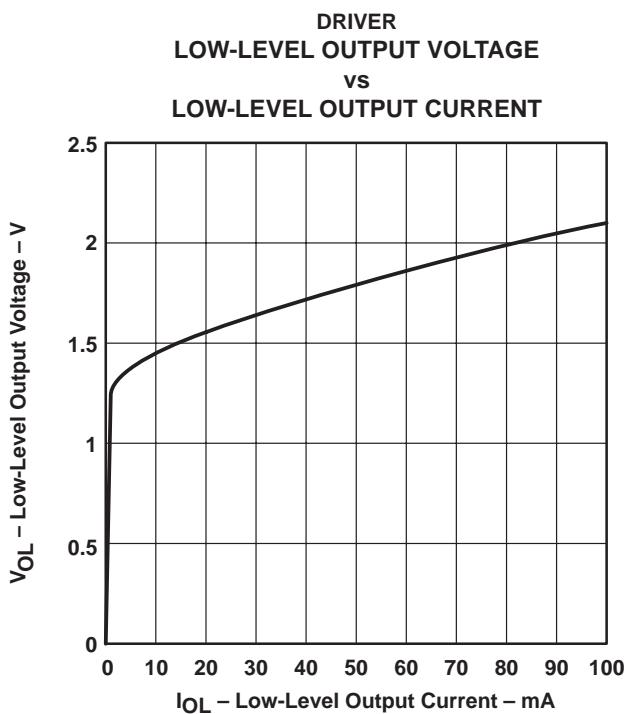



Figure 12

TYPICAL CHARACTERISTICS

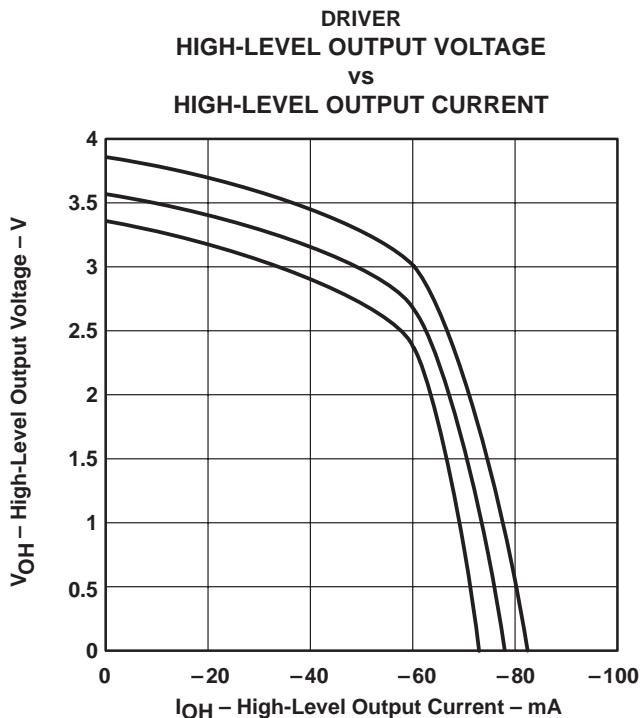



Figure 13

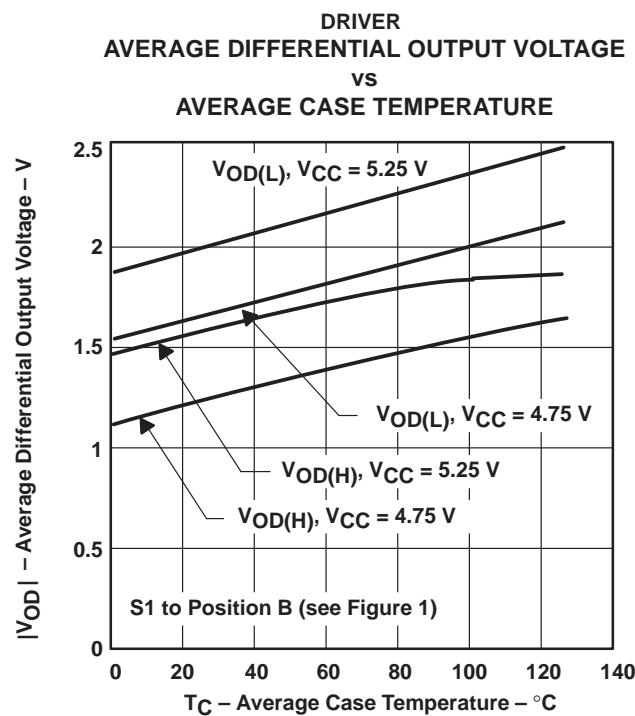



Figure 14




Figure 15

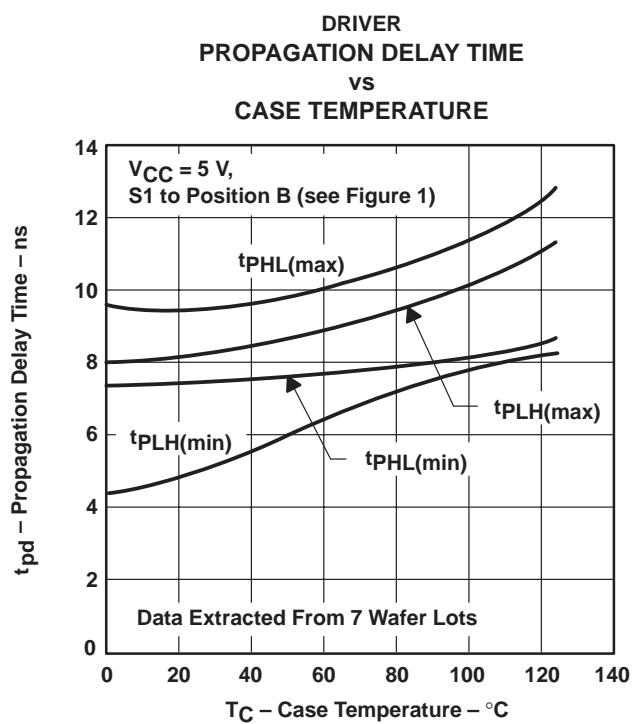



Figure 16

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## TYPICAL CHARACTERISTICS

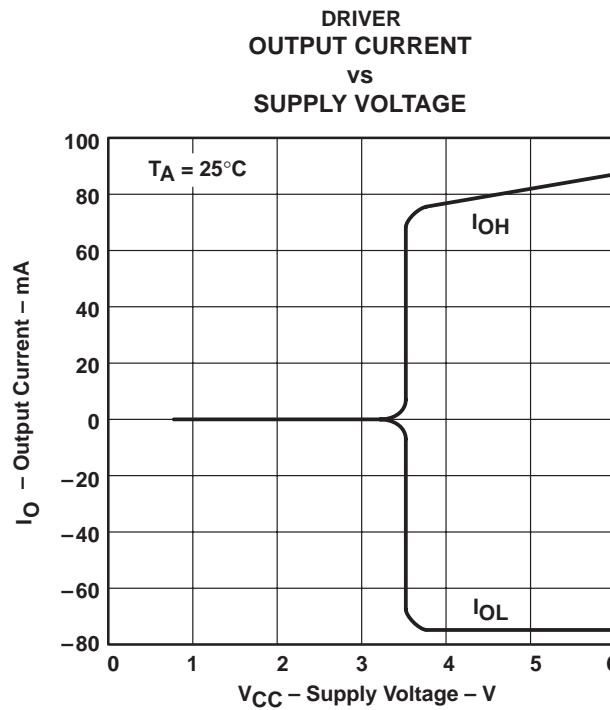



Figure 17

APPLICATION INFORMATION

Table 2. Typical Signal and Terminal Assignments

| SIGNAL         | TERMINAL | SCSI DATA    | SCSI CONTROL | IPI DATA        | IPI CONTROL     |
|----------------|----------|--------------|--------------|-----------------|-----------------|
| CDE0           | 54       | DIFFSENSE    | DIFFSENSE    | V <sub>CC</sub> | V <sub>CC</sub> |
| CDE1           | 55       | GND          | GND          | XMTA, XMTB      | GND             |
| CDE2           | 56       | GND          | GND          | XMTA, XMTB      | SLAVE/MASTER    |
| BSR            | 2        | GND          | GND          | GND, BSR        | GND             |
| <u>CRE</u>     | 3        | GND          | GND          | GND             | V <sub>CC</sub> |
| 1A             | 4        | DB0, DB8     | ATN          | AD7, BD7        | NOT USED        |
| 1DE/ <u>RE</u> | 5        | DBE0, DBE8   | INIT EN      | GND             | GND             |
| 2A             | 6        | DB1, DB9     | BSY          | AD6, BD6        | NOT USED        |
| 2DE/ <u>RE</u> | 7        | DBE1, DBE9   | BSY EN       | GND             | GND             |
| 3A             | 8        | DB2, DB10    | ACK          | AD5, BD5        | SYNC IN         |
| 3DE/ <u>RE</u> | 9        | DBE2, DBE10  | INIT EN      | GND             | GND             |
| 4A             | 10       | DB3, DB11    | RST          | AD4, BD4        | SLAVE IN        |
| 4DE/ <u>RE</u> | 11       | DBE3, DBE11  | GND          | GND             | GND             |
| 5A             | 19       | DB4, DB12    | MSG          | AD3, BD3        | NOT USED        |
| 5DE/ <u>RE</u> | 20       | DBE4, DBE12  | TARG EN      | GND             | GND             |
| 6A             | 21       | DB5, DB13    | SEL          | AD2, BD2        | SYNC OUT        |
| 6DE/ <u>RE</u> | 22       | DBE5, DBE13  | SEL EN       | GND             | GND             |
| 7A             | 23       | DB6, DB14    | C/D          | AD1, BD1        | MASTER OUT      |
| 7DE/ <u>RE</u> | 24       | DBE6, DBE14  | TARG EN      | GND             | GND             |
| 8A             | 25       | DB7, DB15    | REQ          | AD0, BD0        | SELECT OUT      |
| 8DE/ <u>RE</u> | 26       | DBE7, DBE15  | TARG EN      | GND             | GND             |
| 9A             | 27       | DBP0, DBP1   | I/O          | AP, BP          | ATTENTION IN    |
| 9DE/ <u>RE</u> | 28       | DBPE0, DBPE1 | TARG EN      | XMTA, XMTB      | V <sub>CC</sub> |

ABBREVIATIONS:

DB<sub>n</sub> = data bit n, where n = (0,1, . . . ,15)

DBEn = data bit n enable, where n = (0,1, . . . ,15)

DBP0 = parity bit for data bits 0 through 7 or IPI bus A

DBPE0 = parity bit enable for P0

DBP1 = parity bit for data bits 8 through 15 or IPI bus B

DBPE1 = parity bit enable for P1

AD<sub>n</sub> or BD<sub>n</sub> = IPI Bus A – Bit n (AD<sub>n</sub>) or Bus B – Bit n (BD<sub>n</sub>), where n = (0,1, . . . ,7)

AP or BP = IPI parity bit for bus A or bus B

XMTA or XMTB = transmit enable for IPI bus A or B

BSR = bit significant response

INIT EN = common enable for SCSI initiator mode

TARG EN = common enable for SCSI target mode

NOTE A: Signal inputs are shown as active high. When only active-low inputs are available, logic inversion is accomplished by reversing the B+ and B- connector terminal assignments.

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

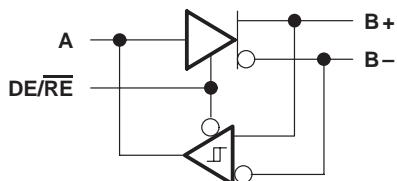
SLLS218B – MAY 1995 – REVISED MAY 1997

## APPLICATION INFORMATION

### Function Tables

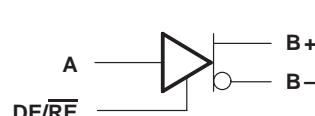
#### RECEIVER




| INPUTS |     | OUTPUT |
|--------|-----|--------|
| B+†    | B-† | A      |
| L      | H   | L      |
| H      | L   | H      |

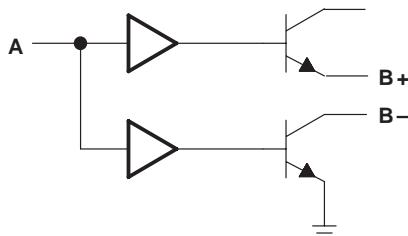
#### DRIVER




| INPUT | OUTPUTS |
|-------|---------|
| A     | B+ B-   |
| L     | L H     |
| H     | H L     |

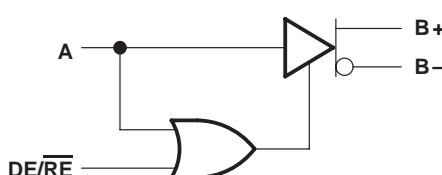
#### TRANSCEIVER




| INPUTS |   |     | OUTPUTS |   |       |
|--------|---|-----|---------|---|-------|
| DE/RE  | A | B+† | B-†     | A | B+ B- |
| L      | – | L   | H       | L | – –   |
| L      | – | H   | L       | H | – –   |
| H      | L | –   | –       | – | L H   |
| H      | H | –   | –       | – | H L   |

#### DRIVER WITH ENABLE



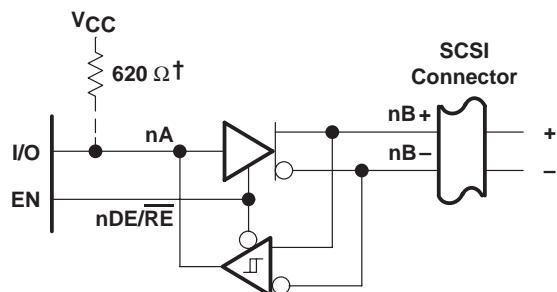

| INPUTS |   | OUTPUTS |    |
|--------|---|---------|----|
| DE/RE  | A | B+      | B- |
| L      | L | Z       | Z  |
| L      | H | Z       | Z  |
| H      | L | L       | H  |
| H      | H | H       | L  |

#### WIRED-OR DRIVER

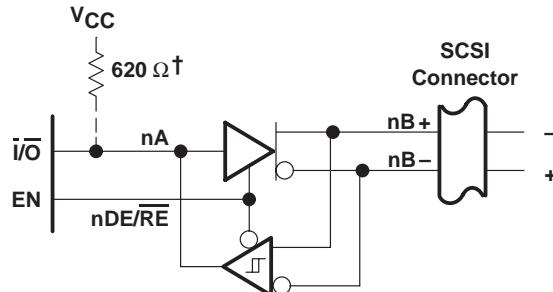


| INPUT |       | OUTPUTS |    |
|-------|-------|---------|----|
| A     | B+ B- | B+      | B- |
| L     | Z Z   | Z       | Z  |
| H     | H L   | H       | L  |

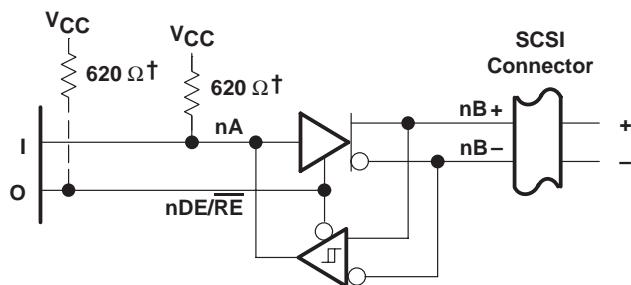
#### TWO-ENABLE INPUT DRIVER




| INPUTS |   | OUTPUTS |    |
|--------|---|---------|----|
| DE/RE  | A | B+      | B- |
| L      | L | Z       | Z  |
| L      | H | H       | L  |
| H      | L | L       | H  |
| H      | H | H       | L  |


H = high level, L = low level, X = irrelevant, Z = high impedance (off)

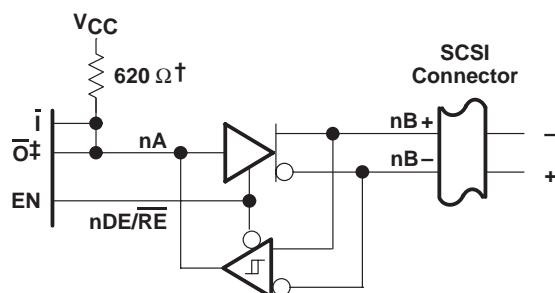
† An H in this column represents a voltage of 200 mV or higher than the other bus input. An L represents a voltage of 200 mV or lower than the other bus input. Any voltage less than 200 mV results in an indeterminate receiver output.


APPLICATION INFORMATION

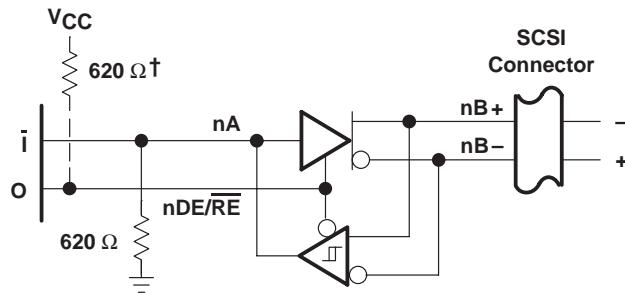


(a) ACTIVE-HIGH BIDIRECTIONAL I/O  
WITH SEPARATE ENABLE




(b) ACTIVE-LOW BIDIRECTIONAL I/O  
WITH SEPARATE ENABLE




(c) WIRED-OR DRIVER AND ACTIVE-HIGH INPUT



(d) SEPARATE ACTIVE-HIGH INPUT, OUTPUT,  
AND ENABLE



(e) SEPARATE ACTIVE-LOW INPUT AND  
OUTPUT AND ACTIVE-HIGH ENABLE



(f) WIRED-OR DRIVER AND ACTIVE-LOW INPUT

† When 0 is open drain

‡ Must be open-drain or 3-state output

NOTE A: The BSR, C<sub>RE</sub>, A, and DE/RE inputs have internal pullup resistors. CDE0, CDE1, and CDE2 have internal pulldown resistors.

Figure 18. Typical SCSI Transceiver Connections

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## APPLICATION INFORMATION

### channel logic configurations with control input logic

The following logic diagrams show the positive-logic representation for all combinations of control inputs. The control inputs are from MSB to LSB; the BSR, CDE0, CDE1, CDE2, and  $\overline{\text{CRE}}$  bit values are shown below the diagrams. Channel 1 is at the top of the logic diagrams; channel 9 is at the bottom of the logic diagrams.

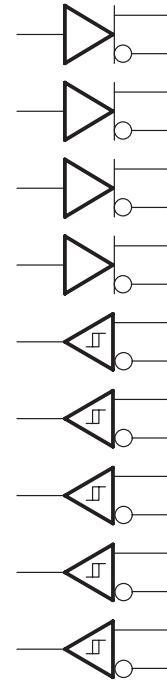
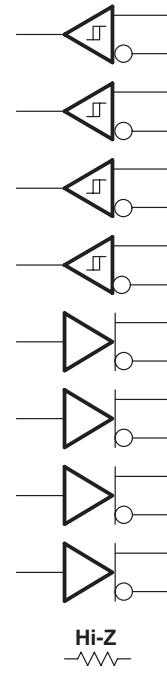
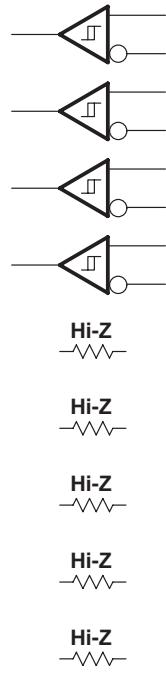
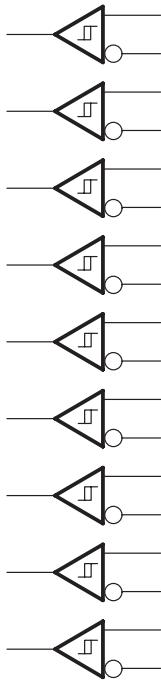






Figure 19. 00000

Figure 20. 00001

Figure 21. 00010

Figure 22. 00011

Figure 23. 00100

APPLICATION INFORMATION

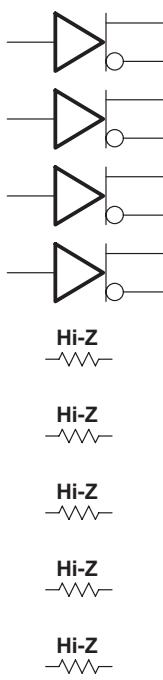



Figure 24. 00101

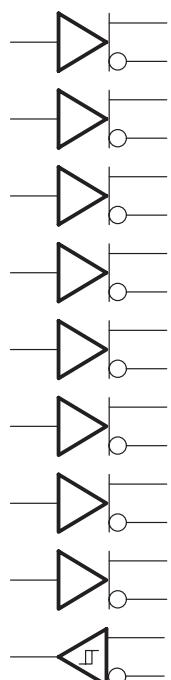



Figure 25. 00110

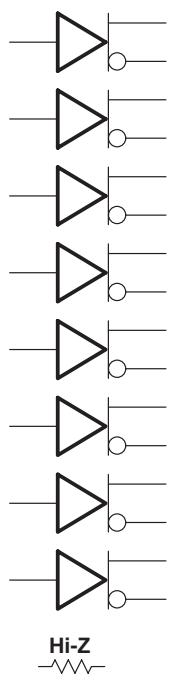



Figure 26. 00111

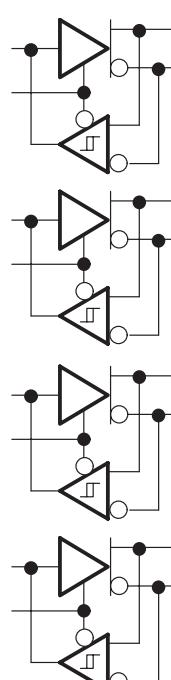



Figure 27. 01000

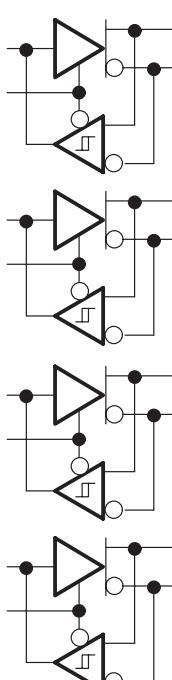



Figure 28. 01001

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## APPLICATION INFORMATION

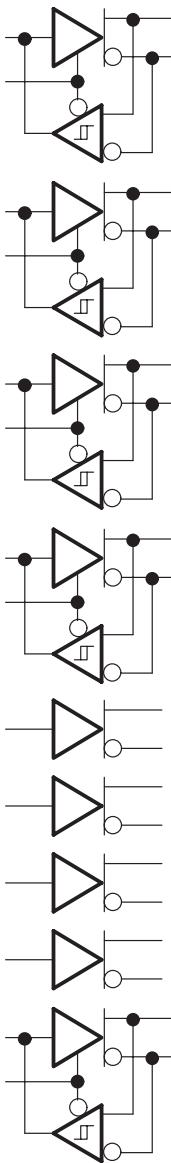



Figure 29. 01010

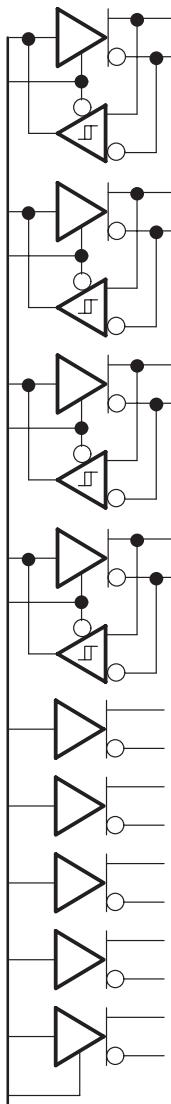



Figure 30. 01011

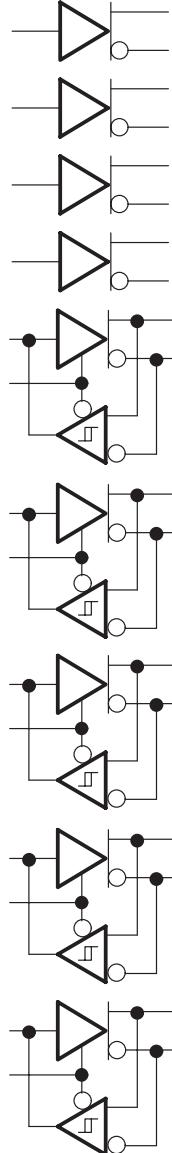



Figure 31. 01100

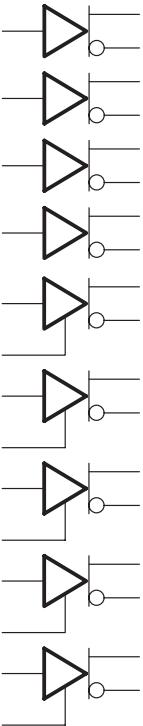



Figure 32. 01101

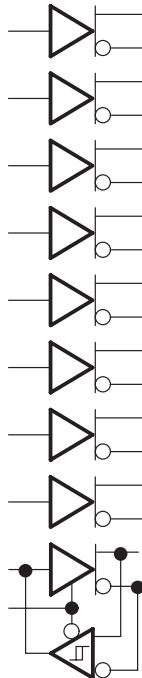



Figure 33. 01110

APPLICATION INFORMATION

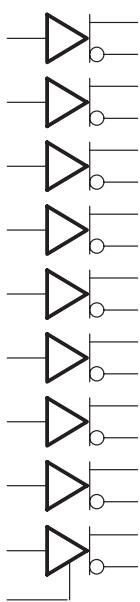



Figure 34. 01111



Figure 35.  
10000  
and 10001

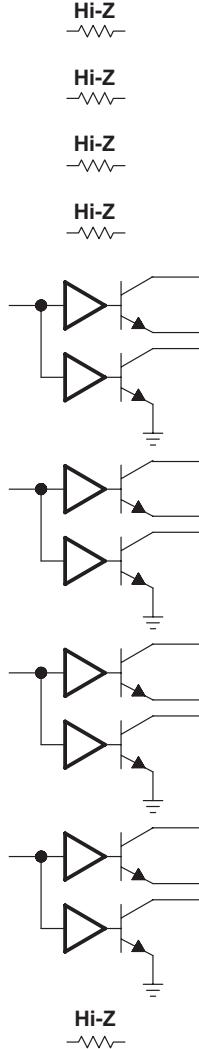



Figure 36. 10010  
and 10011

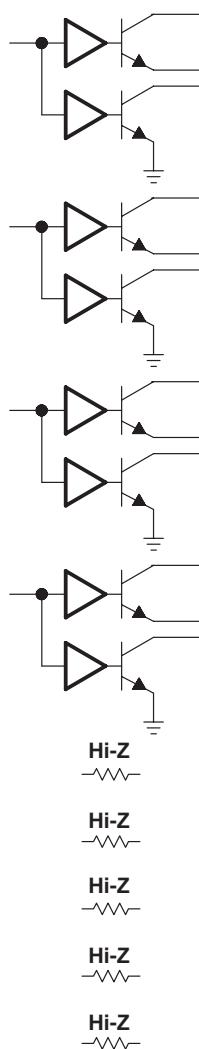



Figure 37. 10100  
and 10101

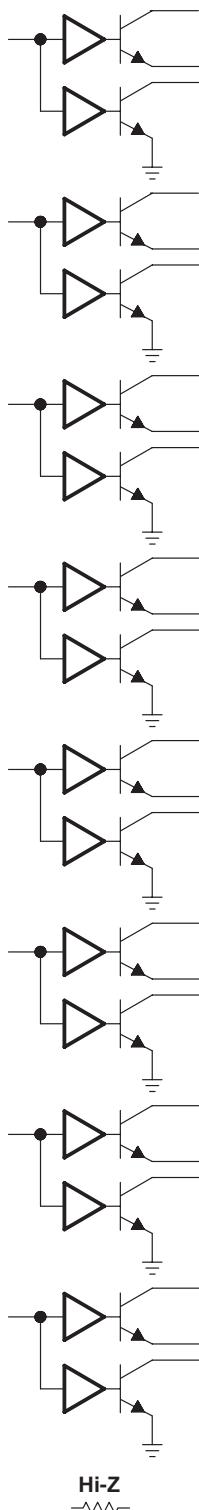



Figure 38. 10110  
and 10111

# SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997

## APPLICATION INFORMATION

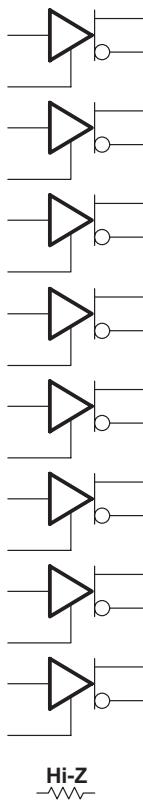



Figure 39. 11000  
and 11001

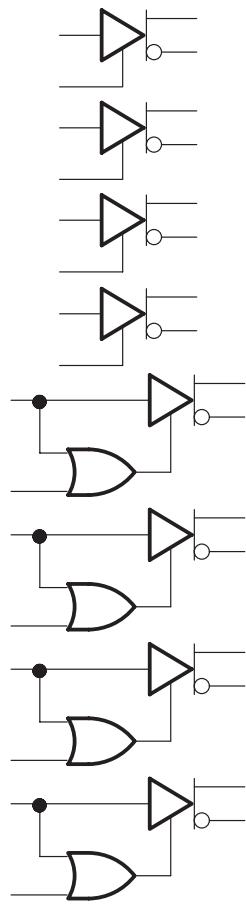



Figure 40. 11010  
and 11011

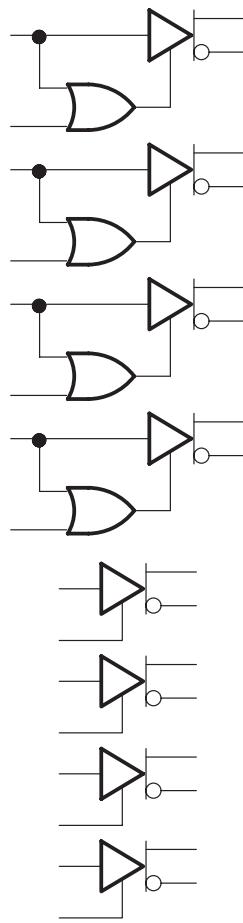



Figure 41. 11100  
and 11101

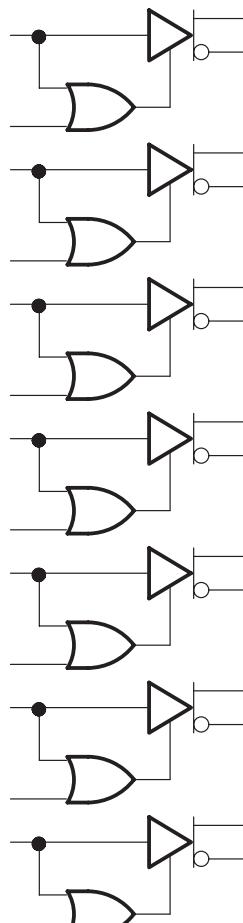
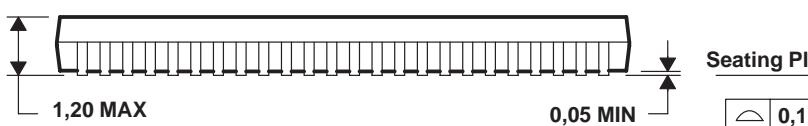
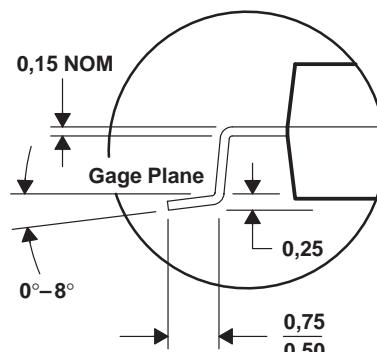
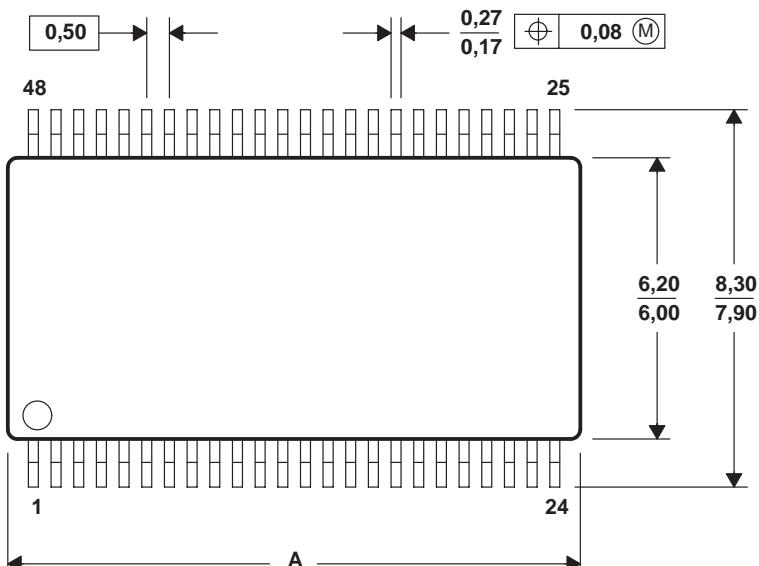



Figure 42. 11110  
and 11111




## MECHANICAL INFORMATION

## DGG (R-PDSO-G\*\*)

## PLASTIC SMALL-OUTLINE PACKAGE

48 PIN SHOWN

| <b>PINS **</b> | <b>48</b> | <b>56</b> | <b>64</b> |
|----------------|-----------|-----------|-----------|
| <b>DIM</b>     |           |           |           |
| A MAX          | 12,60     | 14,10     | 17,10     |
| A MIN          | 12,40     | 13,90     | 16,90     |



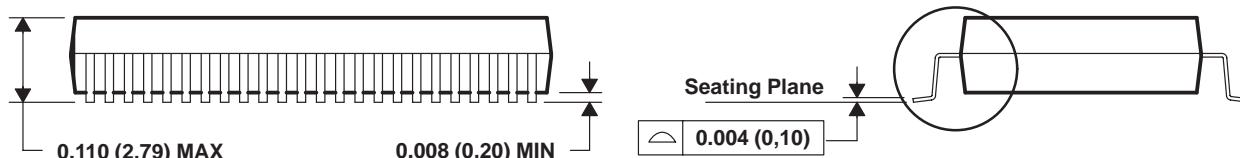
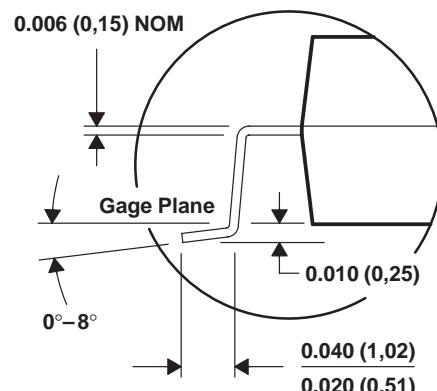
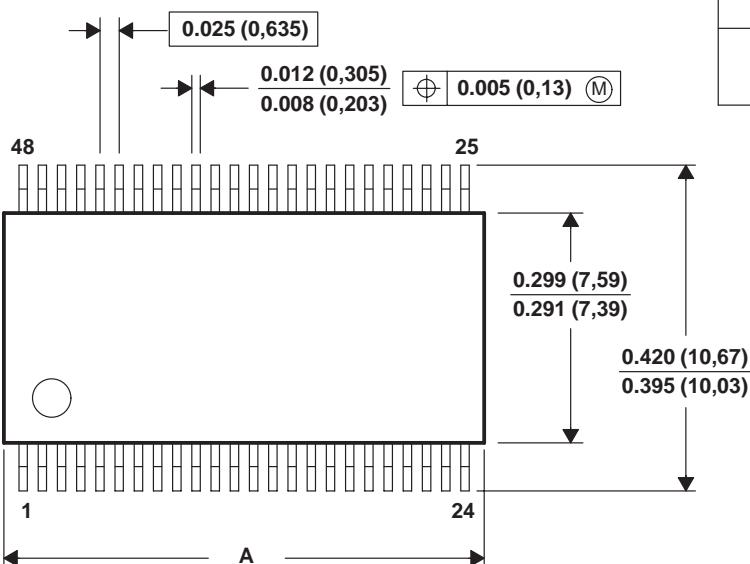
4040078/D 08/96

NOTES: B. All linear dimensions are in millimeters.  
C. This drawing is subject to change without notice.  
D. Falls within JEDEC MO-153



## SN75976A, SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SLLS218B – MAY 1995 – REVISED MAY 1997




## MECHANICAL INFORMATION

## DL (R-PDSO-G\*\*)

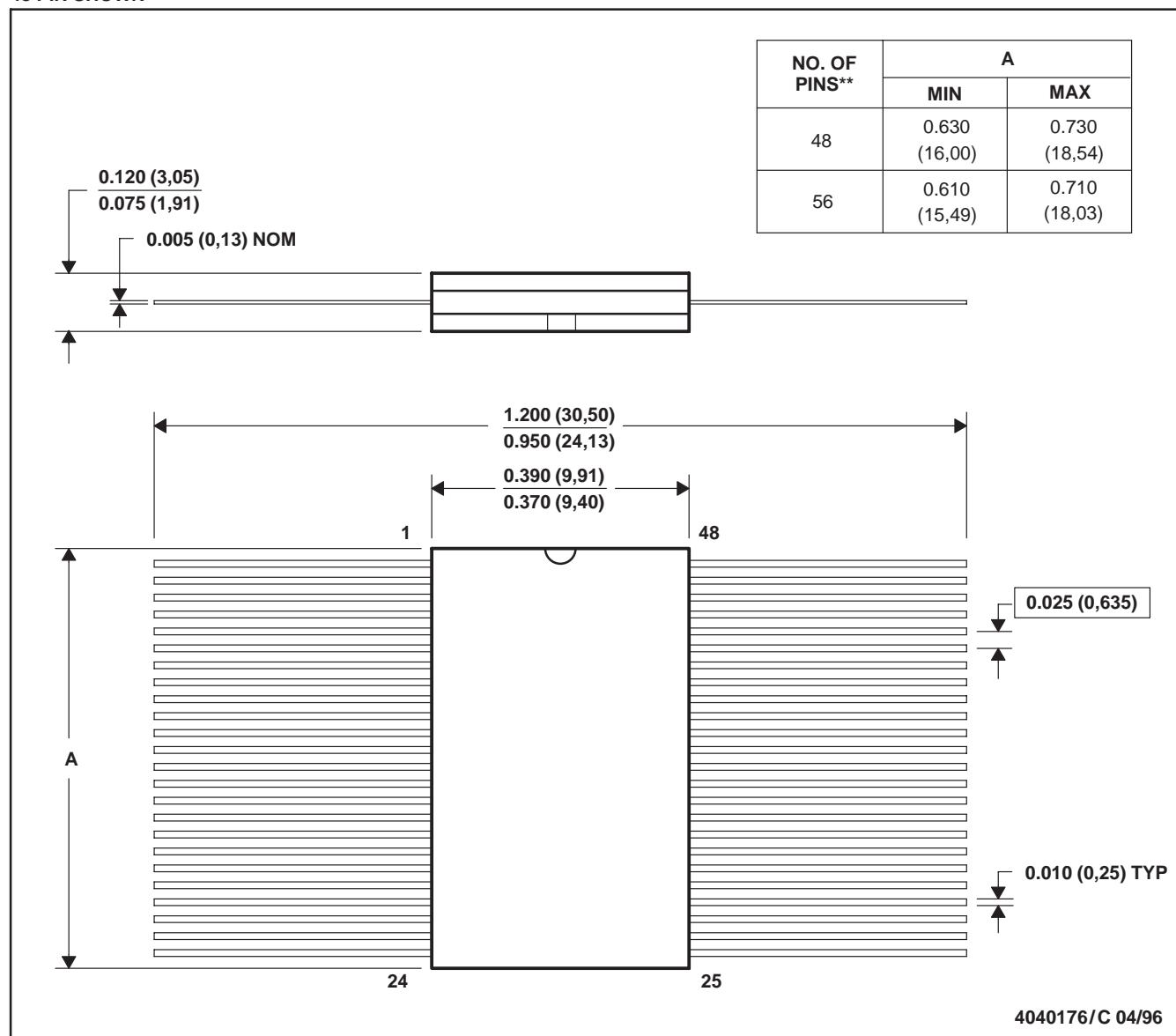
## PLASTIC SMALL-OUTLINE PACKAGE

48 PIN SHOWN

| DIM   | PINS **         | 28               | 48               | 56 |
|-------|-----------------|------------------|------------------|----|
| A MAX | 0.380<br>(9,65) | 0.630<br>(16,00) | 0.730<br>(18,54) |    |
| A MIN | 0.370<br>(9,40) | 0.620<br>(15,75) | 0.720<br>(18,29) |    |



4040048/B 02/95


NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).

MECHANICAL INFORMATION

WD (R-GDFP-F\*\*)

48 PIN SHOWN

CERAMIC DUAL FLATPACK



NOTES:

- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- This package can be hermetically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for pin identification only
- Falls within MIL-STD-1835: GDFP1-F48 and JEDEC MO-146AA  
GDFP1-F56 and JEDEC MO-146AB

**PACKAGING INFORMATION**

| Orderable Device | Status<br>(1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan<br>(2)         | Lead/Ball Finish | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5)         | Samples                 |
|------------------|---------------|--------------|-----------------|------|-------------|-------------------------|------------------|----------------------|--------------|---------------------------------|-------------------------|
| 5962-9689301QXA  | ACTIVE        | CFP          | WD              | 56   | 1           | TBD                     | A42              | N / A for Pkg Type   | -55 to 125   | 5962-9689301QXA<br>SNJ55976A1WD | <a href="#">Samples</a> |
| SN55976A1WD      | ACTIVE        | CFP          | WD              | 56   | 1           | TBD                     | A42              | N / A for Pkg Type   | -55 to 125   | SN55976A1WD                     | <a href="#">Samples</a> |
| SN75976A1DGG     | ACTIVE        | TSSOP        | DGG             | 56   | 35          | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A1                       | <a href="#">Samples</a> |
| SN75976A1DGGS4   | ACTIVE        | TSSOP        | DGG             | 56   | 35          | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A1                       | <a href="#">Samples</a> |
| SN75976A1DGGR    | ACTIVE        | TSSOP        | DGG             | 56   | 2000        | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  | 0 to 70      | SN75976A1                       | <a href="#">Samples</a> |
| SN75976A1DGGRG4  | ACTIVE        | TSSOP        | DGG             | 56   | 2000        | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  | 0 to 70      | SN75976A1                       | <a href="#">Samples</a> |
| SN75976A1DL      | ACTIVE        | SSOP         | DL              | 56   | 20          | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A1                       | <a href="#">Samples</a> |
| SN75976A1DLG4    | ACTIVE        | SSOP         | DL              | 56   | 20          | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A1                       | <a href="#">Samples</a> |
| SN75976A1DLR     | ACTIVE        | SSOP         | DL              | 56   | 1000        | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A1                       | <a href="#">Samples</a> |
| SN75976A1DLRG4   | ACTIVE        | SSOP         | DL              | 56   | 1000        | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A1                       | <a href="#">Samples</a> |
| SN75976A2DGG     | ACTIVE        | TSSOP        | DGG             | 56   | 35          | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  | 0 to 70      | SN75976A2                       | <a href="#">Samples</a> |
| SN75976A2DGGS4   | ACTIVE        | TSSOP        | DGG             | 56   | 35          | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  | 0 to 70      | SN75976A2                       | <a href="#">Samples</a> |
| SN75976A2DGGR    | ACTIVE        | TSSOP        | DGG             | 56   | 2000        | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A2                       | <a href="#">Samples</a> |
| SN75976A2DGGRG4  | ACTIVE        | TSSOP        | DGG             | 56   | 2000        | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A2                       | <a href="#">Samples</a> |
| SN75976A2DL      | ACTIVE        | SSOP         | DL              | 56   | 20          | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A2                       | <a href="#">Samples</a> |
| SN75976A2DLG4    | ACTIVE        | SSOP         | DL              | 56   | 20          | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A2                       | <a href="#">Samples</a> |
| SN75976A2DLR     | ACTIVE        | SSOP         | DL              | 56   | 1000        | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A2                       | <a href="#">Samples</a> |

| Orderable Device | Status<br>(1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan<br>(2)         | Lead/Ball Finish | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5)             | Samples                                                                         |
|------------------|---------------|--------------|-----------------|------|-------------|-------------------------|------------------|----------------------|--------------|-------------------------------------|---------------------------------------------------------------------------------|
| SN75976A2DLRG4   | ACTIVE        | SSOP         | DL              | 56   | 1000        | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR  |              | SN75976A2                           | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |
| SNJ55976A1WD     | ACTIVE        | CFP          | WD              | 56   | 1           | TBD                     | A42              | N / A for Pkg Type   | -55 to 125   | 5962-9689301QX<br>A<br>SNJ55976A1WD | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBsolete:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

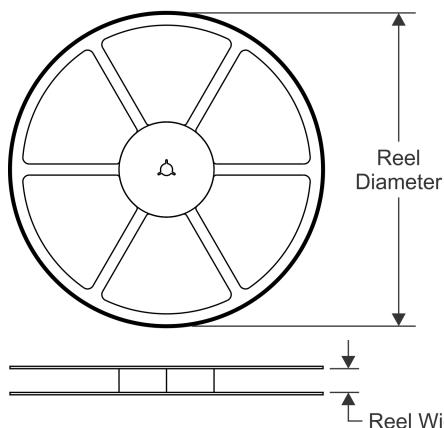
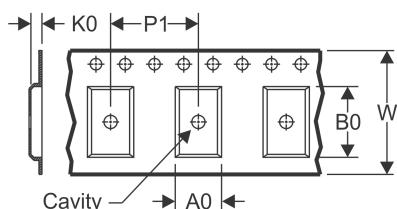
**Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

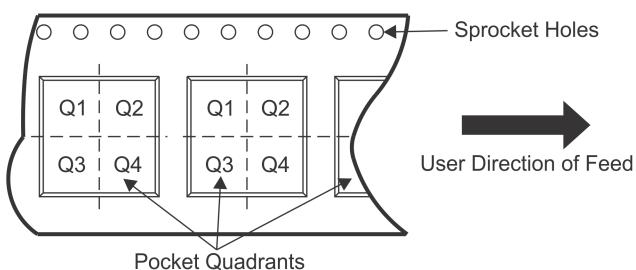
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

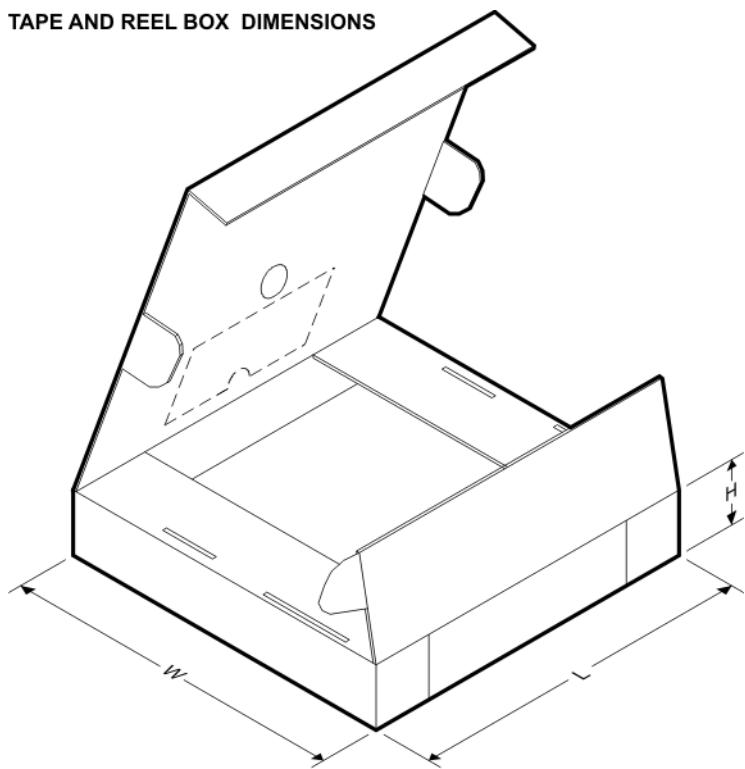


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

**OTHER QUALIFIED VERSIONS OF SN55976A, SN75976A :**


- Catalog: [SN75976A](#)
- Enhanced Product: [SN75976A-EP](#), [SN75976A-EP](#)
- Military: [SN55976A](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Enhanced Product - Supports Defense, Aerospace and Medical Applications
- Military - QML certified for Military and Defense Applications


**TAPE AND REEL INFORMATION**
**REEL DIMENSIONS**

**TAPE DIMENSIONS**

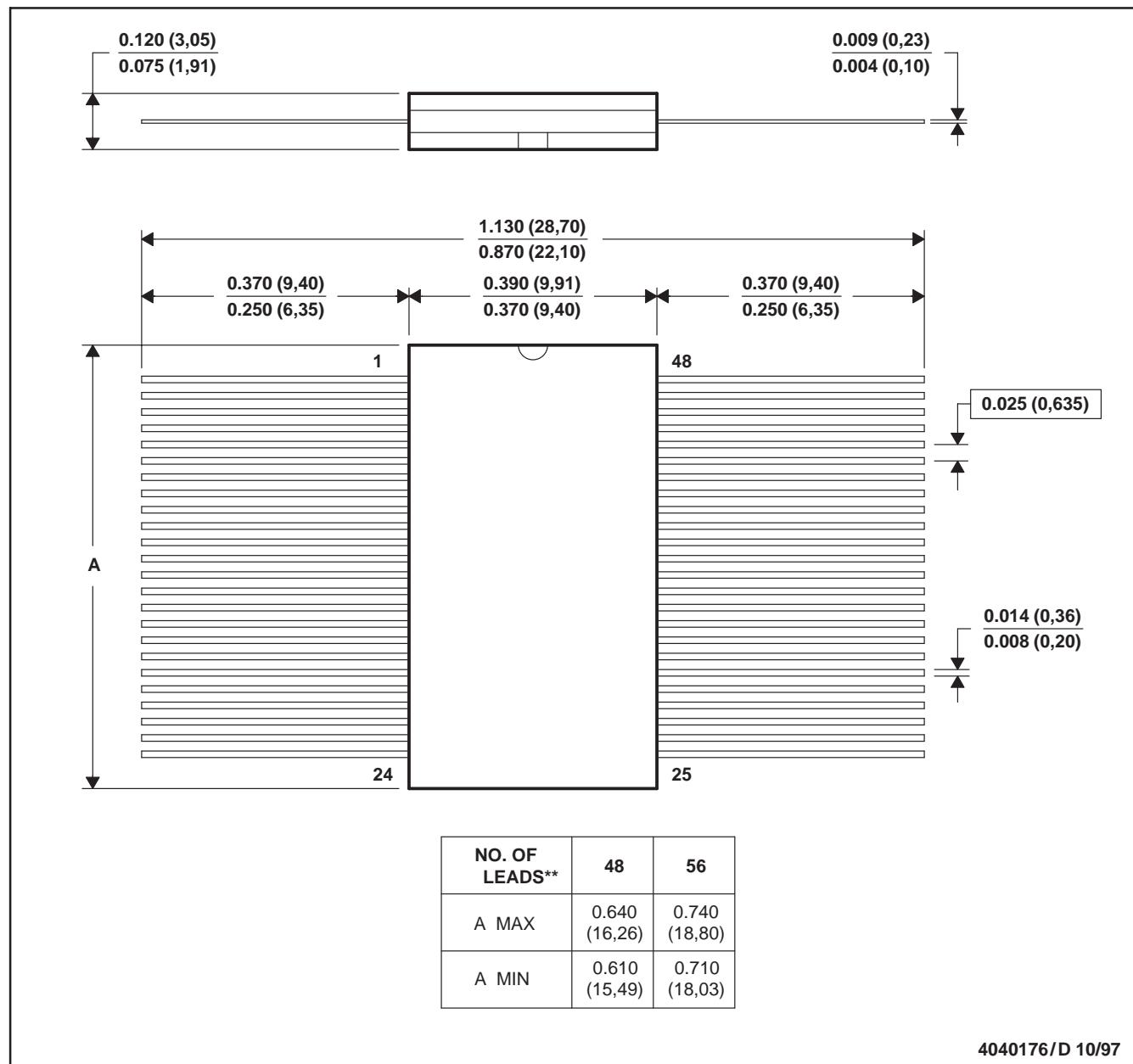

|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**


\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|---------------|--------------|-----------------|------|------|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| SN75976A1DGGR | TSSOP        | DGG             | 56   | 2000 | 330.0              | 24.4               | 8.6     | 15.6    | 1.8     | 12.0    | 24.0   | Q1            |
| SN75976A1DLR  | SSOP         | DL              | 56   | 1000 | 330.0              | 32.4               | 11.35   | 18.67   | 3.1     | 16.0    | 32.0   | Q1            |
| SN75976A2DGGR | TSSOP        | DGG             | 56   | 2000 | 330.0              | 24.4               | 8.6     | 15.6    | 1.8     | 12.0    | 24.0   | Q1            |
| SN75976A2DLR  | SSOP         | DL              | 56   | 1000 | 330.0              | 32.4               | 11.35   | 18.67   | 3.1     | 16.0    | 32.0   | Q1            |

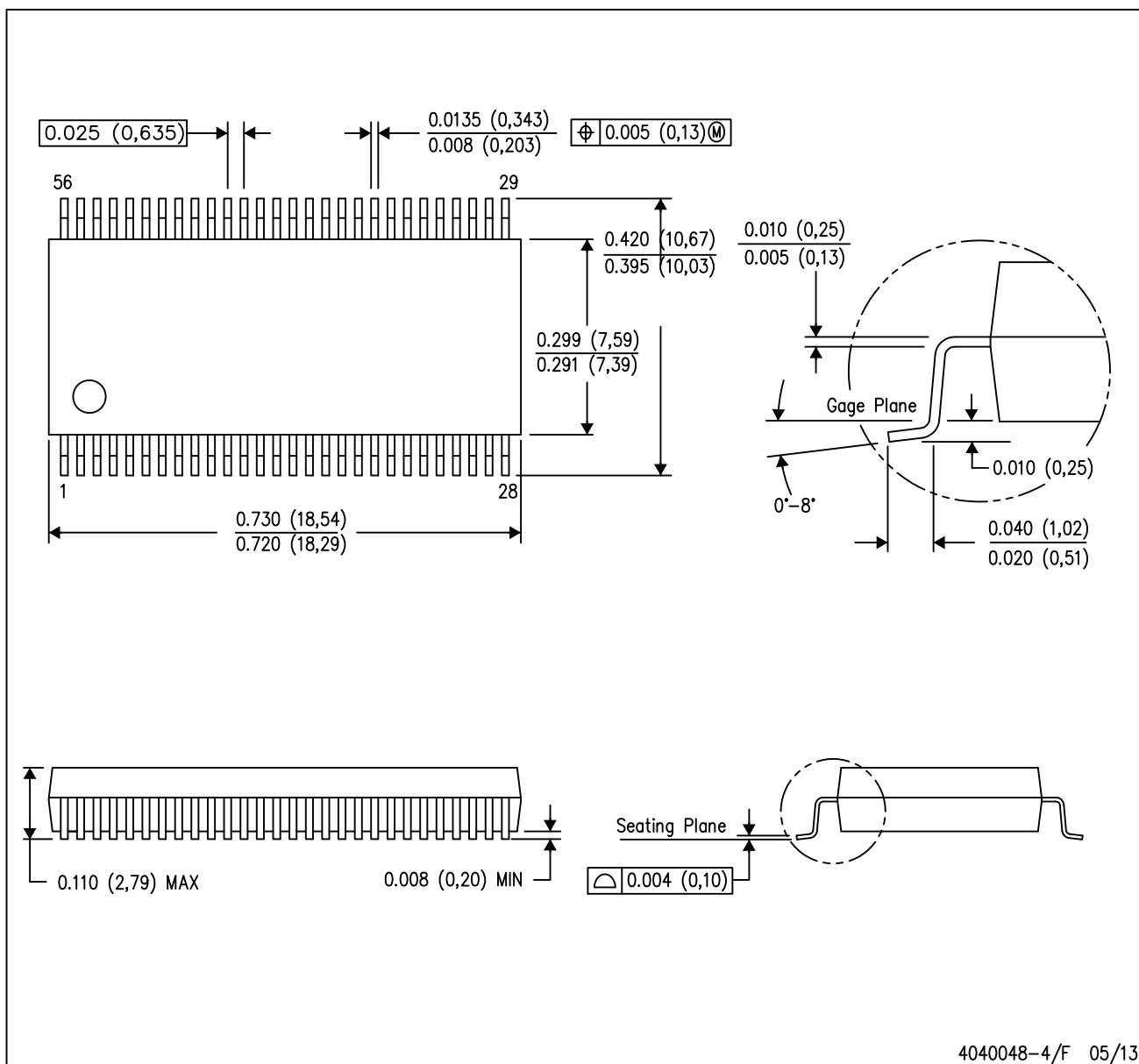
**TAPE AND REEL BOX DIMENSIONS**



\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN75976A1DGGR | TSSOP        | DGG             | 56   | 2000 | 367.0       | 367.0      | 45.0        |
| SN75976A1DLR  | SSOP         | DL              | 56   | 1000 | 367.0       | 367.0      | 55.0        |
| SN75976A2DGGR | TSSOP        | DGG             | 56   | 2000 | 367.0       | 367.0      | 45.0        |
| SN75976A2DLR  | SSOP         | DL              | 56   | 1000 | 367.0       | 367.0      | 55.0        |

WD (R-GDFP-F\*\*)

CERAMIC DUAL FLATPACK


48 LEADS SHOWN



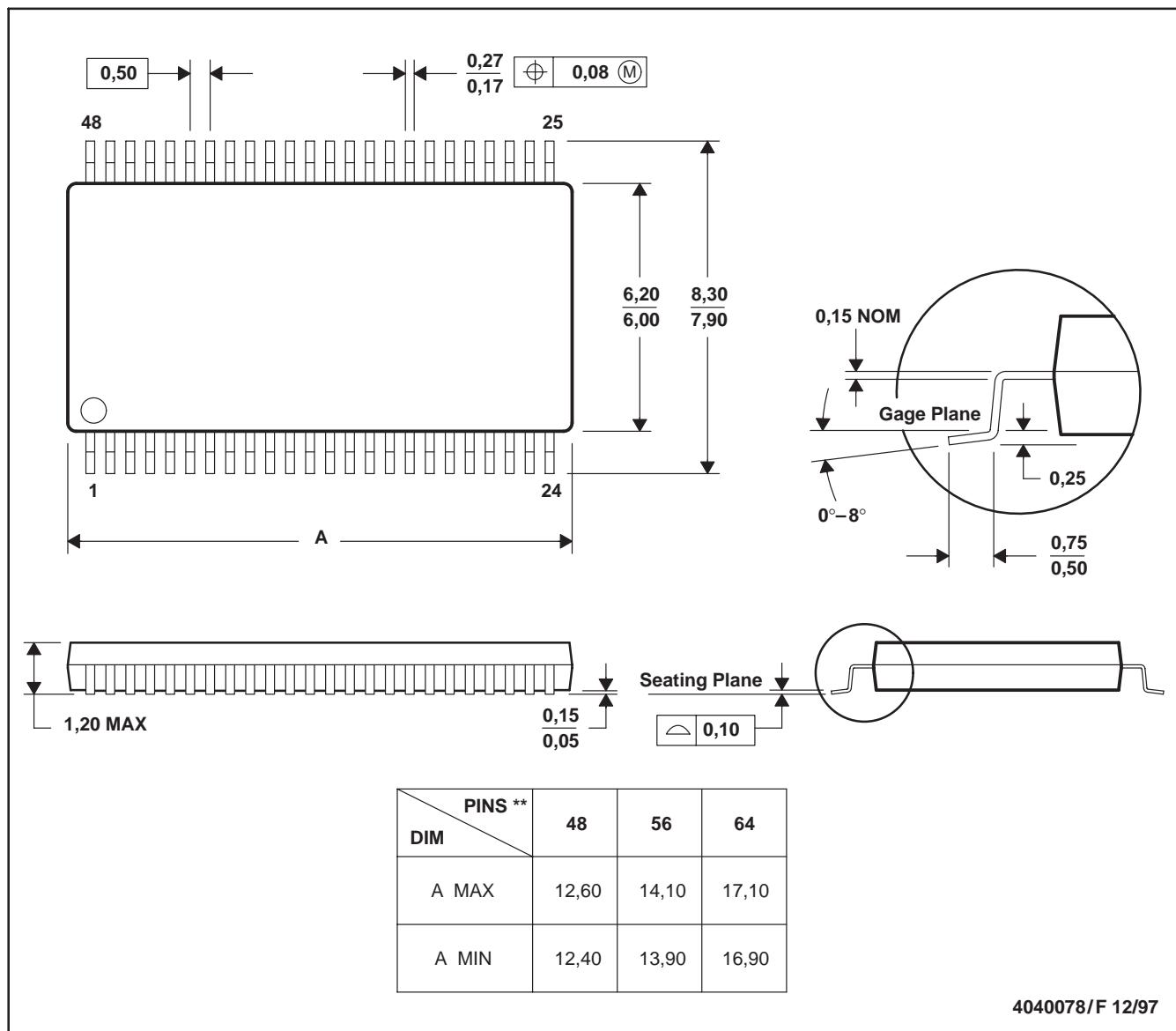
NOTES: A. All linear dimensions are in inches (millimeters).  
 B. This drawing is subject to change without notice.  
 C. This package can be hermetically sealed with a ceramic lid using glass frit.  
 D. Index point is provided on cap for terminal identification only.  
 E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA  
 GDFP1-F56 and JEDEC MO-146AB

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE



NOTES:


- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
- Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

## DGG (R-PDSO-G\*\*)

## PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.  
 B. This drawing is subject to change without notice.  
 C. Body dimensions do not include mold protrusion not to exceed 0,15.  
 D. Falls within JEDEC MO-153

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     | Applications                                                                         |
|------------------------------|--------------------------------------------------------------------------------------|
| Audio                        | <a href="http://www.ti.com/audio">www.ti.com/audio</a>                               |
| Amplifiers                   | <a href="http://amplifier.ti.com">amplifier.ti.com</a>                               |
| Data Converters              | <a href="http://dataconverter.ti.com">dataconverter.ti.com</a>                       |
| DLP® Products                | <a href="http://www.dlp.com">www.dlp.com</a>                                         |
| DSP                          | <a href="http://dsp.ti.com">dsp.ti.com</a>                                           |
| Clocks and Timers            | <a href="http://www.ti.com/clocks">www.ti.com/clocks</a>                             |
| Interface                    | <a href="http://interface.ti.com">interface.ti.com</a>                               |
| Logic                        | <a href="http://logic.ti.com">logic.ti.com</a>                                       |
| Power Mgmt                   | <a href="http://power.ti.com">power.ti.com</a>                                       |
| Microcontrollers             | <a href="http://microcontroller.ti.com">microcontroller.ti.com</a>                   |
| RFID                         | <a href="http://www.ti-rfid.com">www.ti-rfid.com</a>                                 |
| OMAP Applications Processors | <a href="http://www.ti.com/omap">www.ti.com/omap</a>                                 |
| Wireless Connectivity        | <a href="http://www.ti.com/wirelessconnectivity">www.ti.com/wirelessconnectivity</a> |
|                              | <b>TI E2E Community</b>                                                              |
|                              | <a href="http://e2e.ti.com">e2e.ti.com</a>                                           |