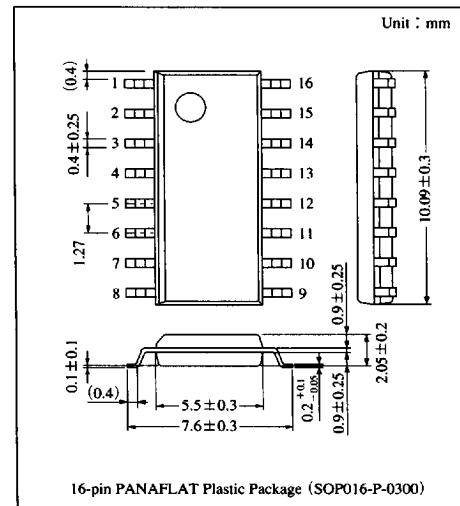


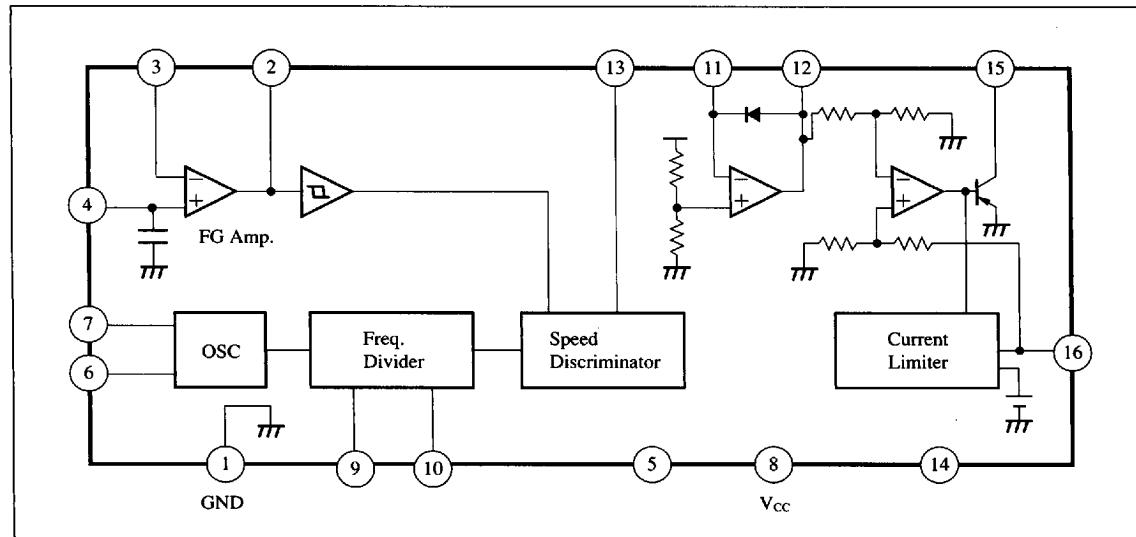
AN8235S

3.5-inch FDD Spindle Motor Controller

■ Overview


The AN8235S is an IC developed for controlling the 3.5-inch FDDs' belt type spindle motors. Using the digital FG servo system, it can easily realize adjustment-free low drift. It is also available as a DC motor speed control IC.

■ Features


- Operating supply voltage range : $V_{CC} = 4.4$ to $6V$
 - Digital F/V conversion system
 - Current feedback system
 - Built-in speed changeover function
 - 1/1.2 : Correspond to 300/360 r.p.m.
 - 1/1.2 : Corresponds to 300/600 r.p.m.
 - Built-in FG and EA amplifiers
 - Built-in protective circuit (current limiter) function

■ Applications

Control of the FDD spindle motors and DC motors

Block Diagram

6932852 0012867 795

Panasonic

■ Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	7	V
Supply current	I _{CC}	20	mA
Power dissipation	P _D	380	mW
Operating ambient temperature	T _{OPR}	-20 to +75	°C
Storage temperature	T _{STG}	-55 to +125	°C

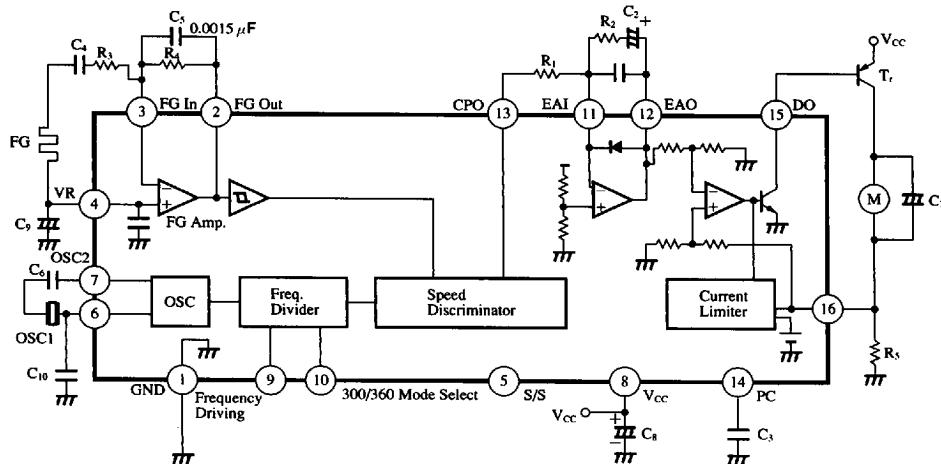
■ Recommended Operating Range (Ta=25°C)

Parameter	Symbol	Range
Operating supply voltage range	V _{CC}	4.4V to 6V

■ Electrical Characteristics (Ta=25°C)

Parameter	Symbol	Condition	min	typ	max	Unit
Quiescent current at standby	I _{QS}	V _{CC} =5V, V _S =4.2V or OPEN	—	0.01	0.5	mA
Quiescent current at no load	I _{QN}	V _{CC} =5V, V _S =0V	6	11	18	mA
Reference Voltage Block						
Reference voltage	V _{OR}	V _{CC} =5V	2.15	2.4	2.65	V
Output sink current	I _{OR} ⁺	V _{CC} =5V	0.02	0.08	—	mA
Output source current	I _{OR} ⁻	V _{CC} =5V	—	-1.6	-0.8	mA
Output impedance	Z _{OR}	V _{CC} =5V, I _{OR} ⁻ =0mA to -0.8mA	—	110	200	Ω
FG Amp./Schmidt Block						
Offset block	V _{OPS}	V _{CC} =5V	-20	—	20	mV
Output sink current	I _{OF} ⁺	V _{CC} =5V	1	3	—	mA
Output source current	I _{OF} ⁻	V _{CC} =5V	—	-3	-1	mA
Open loop gain	A _{FGG}	V _{CC} =5V	—	78	—	dB
Schmidt width	V _S	V _{CC} =5V	—	50	—	mV
Speed Discriminator Block						
Discriminator count 1	N _{CT}	V _{CC} =5V, V _{CT1} =0V, V _{CT2} =0V	—	1390	—	—
Speed discriminator error 1	ΔT1	V _{CC} =5V CLK=100kHz	6	10	14	μs
Speed discriminator error 2	ΔT2	V _{CC} =5V V _{CT1} =0V, V _{CT2} =0V	6	10	14	μs
Max. clock frequency	f _{max.}	V _{CC} =5V	1	2.2	—	MHz
1/1.2 select voltage	V _{CT1}	V _{CC} =5V	0.8	—	2	V
1/2 frequency-dividing select voltage	V _{CT2}	V _{CC} =5V	0.8	—	2	V
Speed discriminator output H	ΔV _{DH}	V _{CC} =5V	—	0.1	0.3	V
Speed discriminator output L	ΔV _{DL}	V _{CC} =5V	—	0.1	0.3	V
Output sink current	I _{DL}	V _{CC} =5V	1	3	—	mA
Output source current	I _{DH}	V _{CC} =5V	—	-3	-1	mA
Equivalent count 1	R _{C1}	V _{CC} =5V, 720rpm, V _{CT1} =LOW, V _{CT2} =LOW	—	1390	—	—
Equivalent count 2	R _{C2}	V _{CC} =5V, 600rpm, V _{CT1} =HIGH, V _{CT2} =LOW	—	1668	—	—
Equivalent count 3	R _{C3}	V _{CC} =5V, 360rpm, V _{CT1} =LOW, V _{CT2} =HIGH	—	2780	—	—
Equivalent count 4	R _{C4}	V _{CC} =5V, 300rpm, V _{CT1} =HIGH, V _{CT2} =HIGH	—	3336	—	—

Note) Equivalent count = CLK ÷ FG frequency (FG frequency when the motor is installed)


■ 6932852 0012868 621 ■

Panasonic

■ Electrical Characteristics (Cont.) (Ta=25°C)

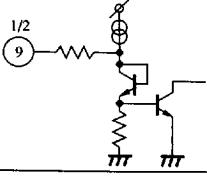
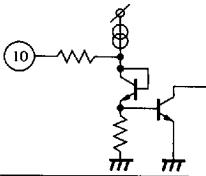
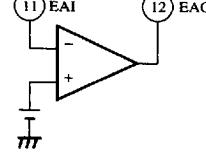
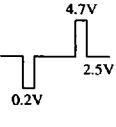
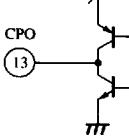
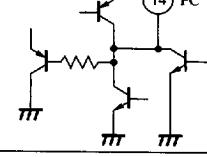
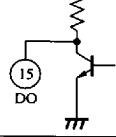
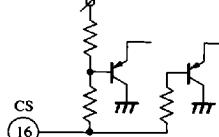
Parameter	Symbol	Condition		min	typ	max	Unit
Error Amp. Block							
Integrating amp. error output 1	ΔV_{ERO1}	$V_{CC} = 5V$	Acceleration mode	0.3	0.7	1.1	V
Integrating amp. error output 2	ΔV_{ERO2}	$V_{CC} = 5V$	Acceleration mode	—	—	-0.3	V
Output sink current	I_{OE^+}	$V_{CC} = 5V$		1	3	—	mA
Output source current	I_{OE^-}	$V_{CC} = 5V$		—	-3	-1	mA
Open loop gain	A_{EAG}	$V_{CC} = 5V$		—	73	—	dB
Input bias current	I_{EA}	$V_{CC} = 5V$		—	20	—	nA
Gain bandwisth product	f_T	$V_{CC} = 5V$		—	800	—	kHz
Predrive Output Block							
Drive output current	I_{OP}	$V_{CC} = 5V$		16	33	—	mA
Limiter voltage	V_{LC}	$V_{CC} = 5V$		0.225	0.25	0.275	V
Drive gain	G_D	$V_{CC} = 5V$		0.54	0.67	0.8	time
Start/Stop Control Block							
Input voltage H (stop)	V_{OSH}	$V_{CC} = 5V$		4.2	—	—	V
Input voltage L (start)	V_{OSL}	$V_{CC} = 5V$		—	—	0.8	V
Input current H	I_{OSH}	$V_{CC} = 5V$		-20	—	3	μA
Input current L	I_{OSL}	$V_{CC} = 5V$		-500	-180	—	μA
Oscillation Circuit Block							
Ceramic oscillation frequency	f_S	$V_{CC} = 5V$, Ceramic oscillator : 800kHz		—	800	—	kHz

■ Application Circuit

ICs for Motor

6932852 0012869 568

Panasonic

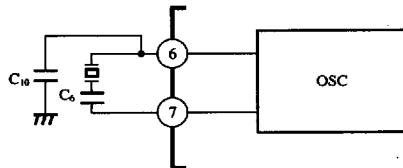








■ Pin Descriptions

Pin No.	Pin name	Typical waveform	Description	I/O impedance	Pin equivalent circuit
1	Ground (GND)	DC 0V	Ground pin	—	—
2	FG amp. inverting output (FG IN)	—	Output pin of the FG amplifier	—	
3	FG amp. inverting input (FG IN)	—	Inverting input pin of the FG amplifier	—	
4	FG amp. non-inverting input (Vref)	DC 2.4V	Reference voltage source of the main circuit	—	
5	Start/Stop select (S/S)	—	Start/stop selector pin	—	
6	Oscillation circuit 1 (OSC 1)	—	Oscillation circuit input pin	—	
7	Oscillation circuit 2 (OSC 2)	—	Oscillation circuit output pin	—	
8	Power supply	—	Power pin	—	—

6932852 0012870 28T

Panasonic

■ Pin Descriptions (Cont.)

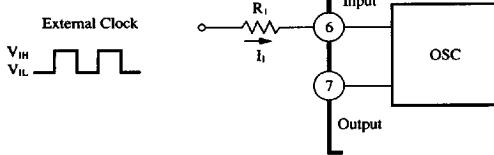

Pin No.	Pin name	Typical waveform	Description	I/O impedance	Pin equivalent circuit
9	1/2 frequency-dividing select (1/2)	—	300/600 r.p.m. selector pin	—	
10	1/1.2 speed select (1/1.2)	—	300/360 r.p.m. selector pin	—	
11	Error amp. inverting input (EAI)	—	Inverting input pin and amplifier output pin of the error amplifier	—	
12	Error amp. output (EAO)				
13	Speed error output (CPO)		Output pin of the speed discriminator circuit	—	
14	Phase compensation (PC)	—	Phase compensation pin for current feedback	—	
15	Predrive (DO)	—	Predrive pin of the external power PNP transistor	—	
16	Current detection (CS)	—	Current detection pin	—	

■ Supplementary Explanation

● Application

(1) Reference oscillator block

Set the motor speed according to the oscillation frequency of the oscillator block.



- ① Use a ceramic oscillator so that oscillations from 200kHz to 1MHz may be available.
- ② Some pF of capacitance is normally used for the capacitor C6.
- ③ The oscillation frequency can finely adjusted according to a capacitance value.
- ④ The capacitor C10 is a spurious measure for parasitic oscillation.

④ When using the external clock

(input an external clock without oscillating the OSC block)

The external clock can be input from the input Pin⑥ of the OSC.

If an excessive input is applied, the OSC block may not function. In this case, connect the current limiting resistor R1.

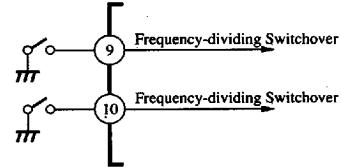
The input currents I_{IH} and I_{IL} flowing through the resistor R₁ are expressed as follows.

$$I_{IH} = \frac{V_{IH} - 1.4}{R_1 + R_{osc}} \quad (\mu A)$$

$$I_{IL} = -\frac{1.4 - V_{IL}}{R_1 + R_{osc}} \quad (\mu A)$$

(The V_{IH} and V_{IL} threshold levels inside the IC are calculated at 1.4V.)

However, R_{osc} is an IC internal resistance and designed to be 2kΩ.


Design at about some 10μF as an IC drive capability.

A recommended R₁ value is 10kΩ.

(conditions of V_{IH}=2.36V, V_{IL}=0.44V, I₁=80μA)

(2) Frequency-dividing selector block

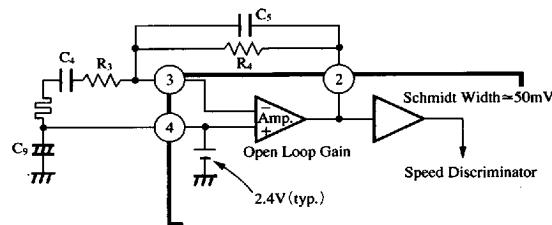
Frequency-dividing can be switched over to "Low" or "High (Open)", using the Pins⑨ and ⑩.

Pin⑩	Pin⑨	Motor Speed (rpm)	Equivalent Counts
Low	Low	720	1390
Open (High)	Low	600	1668
Low	Open (High)	360	2780
Open (High)	Open (High)	300	3336

The motor speed N is obtained by the following expression.

$$N \approx 60 \cdot \frac{f_{osc}}{N_c \cdot Z} \text{ (rpm)}$$

f_{osc} : Oscillation frequency (Hz)


N_c : Equivalent counts $N_c = \frac{f_{osc}}{f_{FG}}$

Z : No. of the FG teeth

f_{FG} : FG frequency (Hz)

(3) FG amplifier and Schmidt circuit

The motor speed is detected and amplified, and then, a waveform is shaped by the Schmidt circuit.

- ① Use as an inverting amplifier as shown in the figure above.

The closed loop gain G is as follows.

$$G \approx -\frac{R_4}{R_3}$$

Set the gain so that the output swing of the amplifier will be within a range of 1 to 3 V_{p-p}.

The voltage at the Pin④ has been set inside the IC to about 2.4V.

■ 6932852 0012872 052 ■

Panasonic

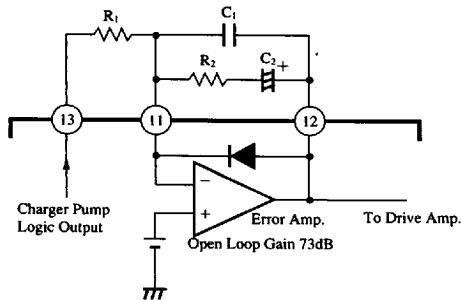
■ Supplementary Explanation (Cont.)

② Elimination of noise components

The high-pass filter is configured with C_4 and R_3 , and the low-pass filter with C_5 and R_4 . Noise components are eliminated by these filters. The cut-off frequencies f_{CH} and f_{CL} are as follows.

$$f_{CH} \approx \frac{1}{2\pi \cdot C_4 \cdot R_3}$$

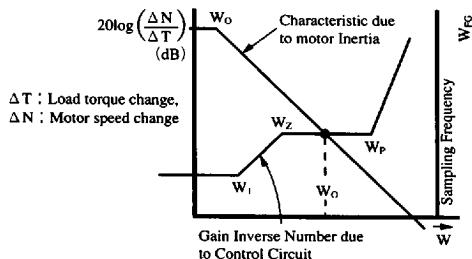
$$f_{CL} \approx \frac{1}{2\pi \cdot C_5 \cdot R_4}$$


Suppose the FG frequency is f_{FG} , make setting so that the following condition will be satisfied.

$$f_{CH} < f_{FG} < f_{CL}$$

(4) Error Amplifier Block

The error amplifier smoothes and amplifies a speed detection error.


Main characteristics such as control system stability, transient characteristics, etc. are determined in this block.

① Obtaining the constants C and R

The body chart of the control system is shown below. Phase advance/delay compensation is combined by Miller integral in order to improve the characteristics in the low frequency range.

The frequencies at the respective pole and zero points are as follows

$$W_o : 1/(\text{motor's time constant})$$

$$W_1 : 1/(\text{Miller integral time constant})$$

$$W_z : 1/C_2 R_2$$

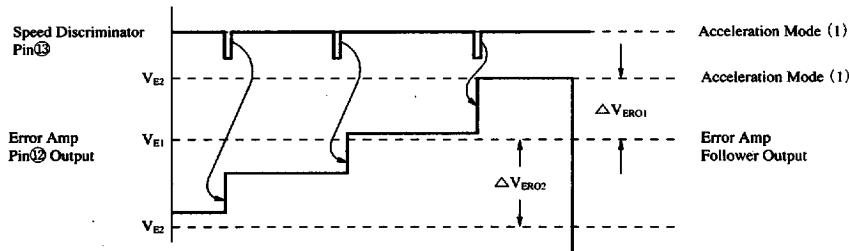
$$W_p : 1/(C_1 // C_2) R_2$$

② An important point to set the constants is to set the frequency W_{0dB} at the gain intersection so that the condition of $W_z < W_0 < W_p$ will be satisfied. This assures stability of the control system.

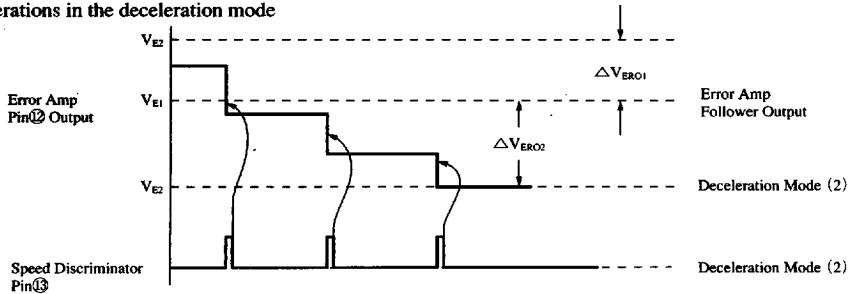
Normally, set as follows.

$$K_1 = W_p / W_z = \text{approx.} 10 \quad K_p = W_{FG} / W_0 > 20$$

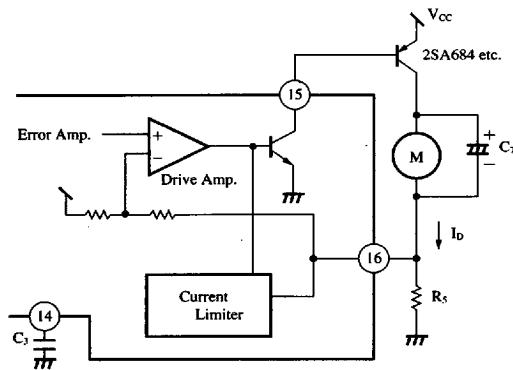
■ Supplementary Explanation (Cont.)


(5) Speed discriminator and error amplifier block

A waveform shaped FG signal and the reference frequency oscillated from the OSC block are compared by the speed discriminator, and a signal is output to the error


amplifier.

An output change of the error amplifier changes motor drive current and keeps the motor speed constantly.


① Operations in the acceleration mode

② Operations in the deceleration mode

(6) Predrive block

■ 6932852 0012874 925 ■

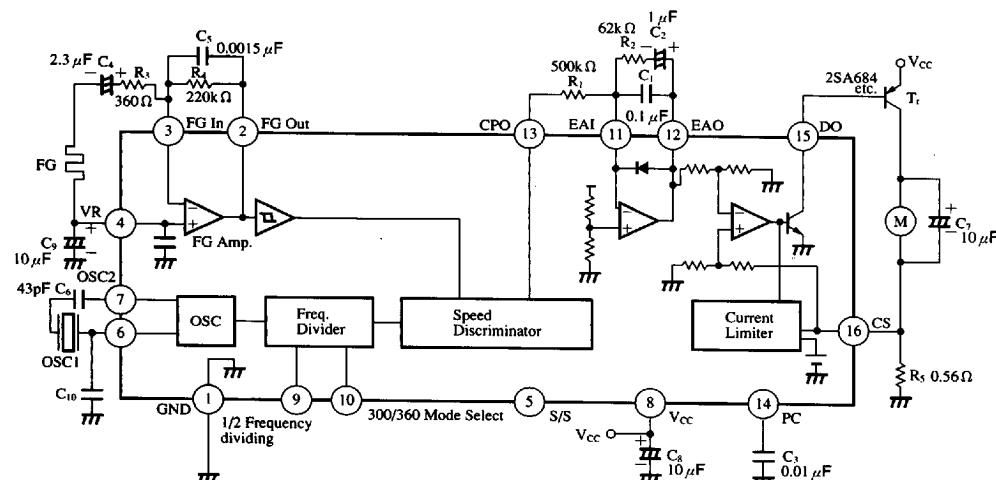
Panasonic

■ Supplementary Explanation (Cont.)

Connect the motor drive power PNP transistor to the predrive output Pin 15. Adjust the wattage of the power PNP transistor to the motor working condition.

The resistor R_5 is used to detect a current flowing to the motor and works as a current limiter. The reference voltage of the current limiter has been designed at $0.25V \pm 10\%$.

The capacitor C_3 is for phase compensation. When


parasitic oscillation may occur depending on a type of motor, connect the capacitor C_7 to prevent parasitic oscillation.

(7) Start/stop

Motor rotation can be started/stopped with the Pin 5.

The logic level starts at Low and stops at High. At the stop mode, current consumption can be reduced very much to as low as $500\mu A$ or less.

(8) External parts

ICs for
Motor

External Part No.	Recommended value	Function
R_1, R_2	C_1, C_2 Note 1)	—
R_3, R_4	C_4, C_5 Note 2)	FD amp. filter constant
R_5 Note 4)	C_3 Note 3)	Filter constant
V_6, C_{10} Note 5)	0.56Ω	Current detection
C_7 Note 6)	—	OSC/AC coupling
C_8 Note 7)	$0.1\mu F$ to $10\mu F$	For stabilization
C_9 Note 8)	$0.1\mu F$ to $10\mu F$	Power supply noise measure
		For stabilization

Note 1) For C_1 and C_2 , use the types which are less affected by a leak current. If you use those having a leak current, the motor speed will deviate.

(Example) When $C_1=0.1\mu F$ and $C_2=1\mu F$ and $R_1=20\Omega$, a leak current of $125nA$ corresponds to 0.1% rotational deviation.

Note 2) When setting the closed loop gain of the FG amplifier to about $60dB$, use the types less affected by a leak current for C_4, C_5 .

In this case, note that the leak current will be the DC offset of an output voltage.

(Example) When $R_1=100\Omega$ and $R_2=100k\Omega$, if the leak current of the capacitor is $1\mu A$, it will be a $100mV$ offset.

Note 3) It is for phase compensation of the current feedback loop and current limiter loop.

Note 4) It works as a current limiter when R_5 is not equal to 0.

Note 5) They are for fine adjustment of the oscillation frequency f_{osc} . Use those with low temperature dependency.

Note 6) When oscillation occurs depending on a type of motor, use this part for prevention of oscillation.

Note 7) Attach this part when operations become unstable due to noises coming from the power supply.

Note 8) Attach this part when the FD amplifier output becomes unstable due to noises.

■ 6932852 0012875 861 ■

Panasonic