

TC74LVX4051FT, TC74LVX4052FT, TC74LVX4053FT

TC74LVX4051FT 8-Channel Analog Multiplexer/Demultiplexer

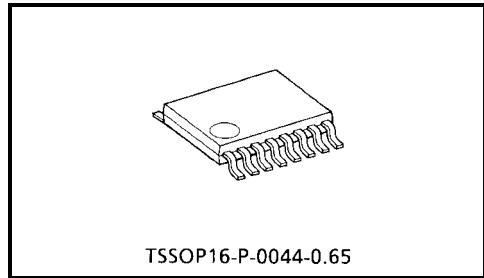
TC74LVX4052FT Dual 4-Channel Analog Multiplexer/Demultiplexer

TC74LVX4053FT Triple 2-Channel Analog Multiplexer/Demultiplexer

The TC74LVX4051/4052/4053FT are high-speed, low-voltage drive analog multiplexer/demultiplexers using silicon gate CMOS technology. In 3 V and 5 V systems these can achieve high-speed operation with the low power dissipation that is a feature of CMOS.

The TC74LVX4051/4052/4053FT offer analog/digital signal selection as well as mixed signals. The 4051 has an 8-channel configuration, the 4052 has an 4-channel \times 2 configuration, and the 4053 has a 2-channel \times 3 configuration.

The switches for each channel are turned ON by the control pin digital signals.

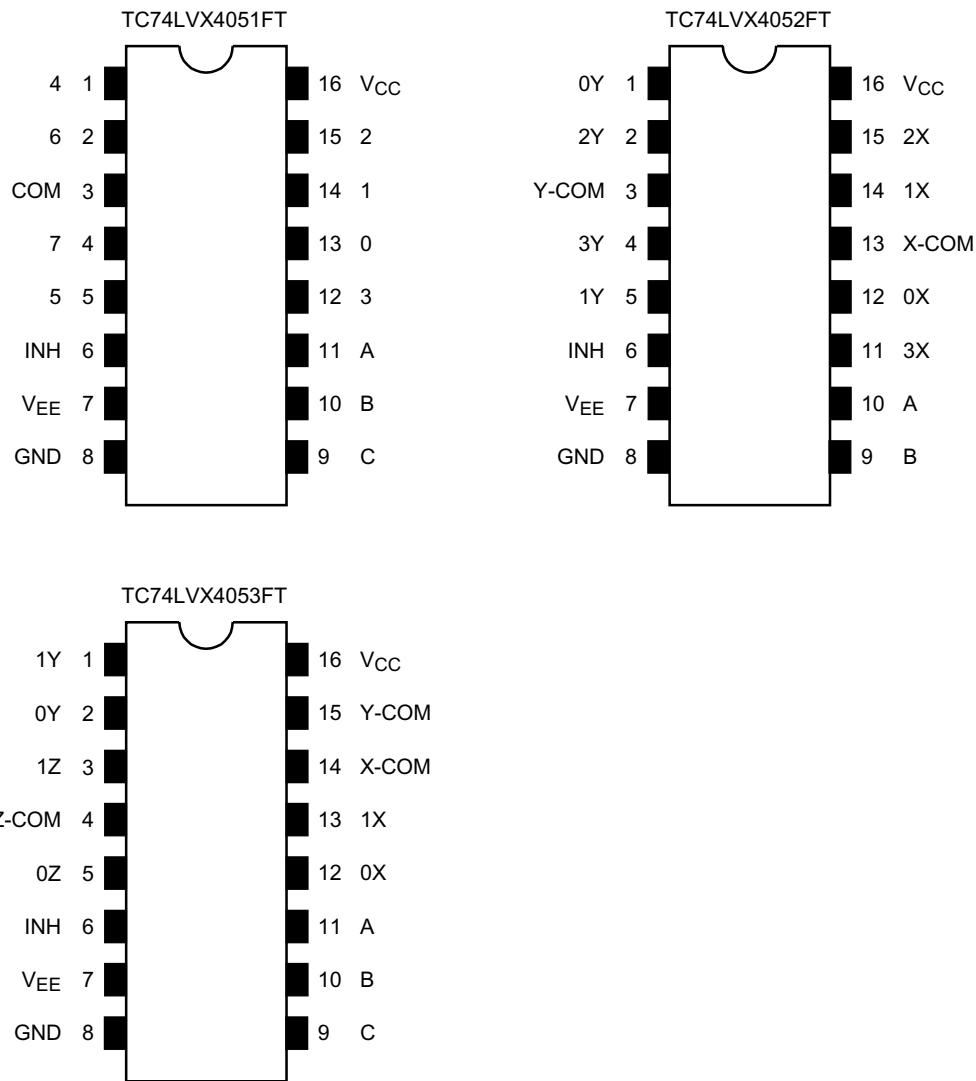

Although the control signal logical amplitude (VCC – GND) is small, the device can perform large-amplitude (VCC – VEE) signal switching.

For example, if VCC = 3 V, GND = 0 V, and VEE = -3 V, signals between -3 V and +3 V can be switched from the logical circuit using a single 3 V power supply.

All input pins are equipped with a newly developed input protection circuit that avoids the need for a diode on the plus side (forward side from the input to the VCC). As a result, for example, 5 V signals can be permitted on the inputs even when the power supply voltage to the circuits is off. As a result of this input power protection, the TC74LVX4051/4052/4053FT can be used in a variety of applications, including in the system which has two power supplies, and in battery backup circuits.

Features

- Low ON resistance: $R_{on} = 22 \Omega$ (typ.) (VCC – VEE = 3 V)
 $R_{on} = 15 \Omega$ (typ.) (VCC – VEE = 6 V)
- High speed: $tpd = 3$ ns (typ.) (VCC = 3.0 V)
- Low power dissipation: $I_{CC} = 4 \mu A$ (max) (Ta = 25°C)
- Input level: $V_{IL} = 0.8$ V (max) (VCC = 3 V)
 $V_{IH} = 2.0$ V (min) (VCC = 3 V)
- Power down protection is provided on all control inputs
- Pin and function compatible with 74HC4051/4052/4053

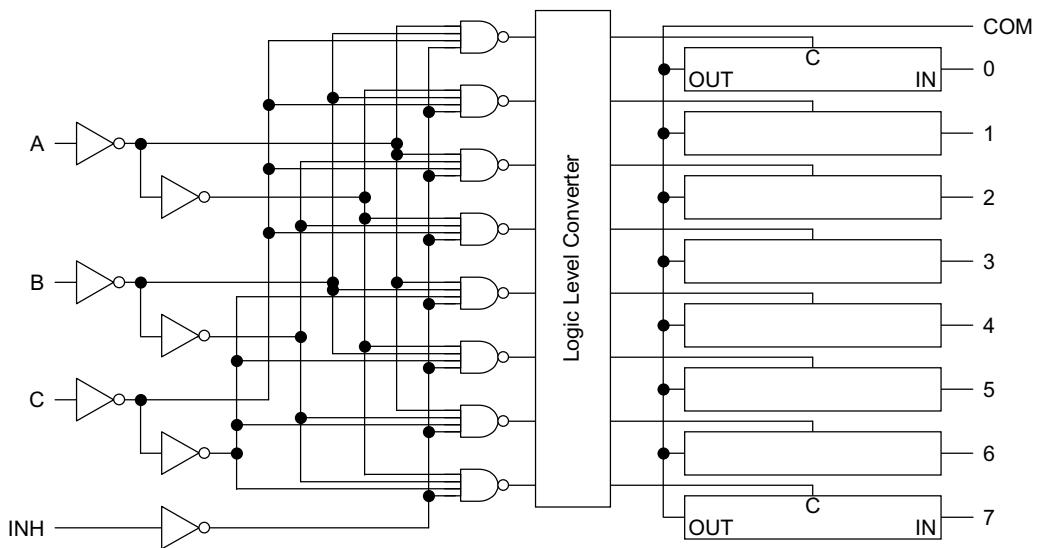

TSSOP16-P-0044-0.65

Weight: 0.06 g (typ.)

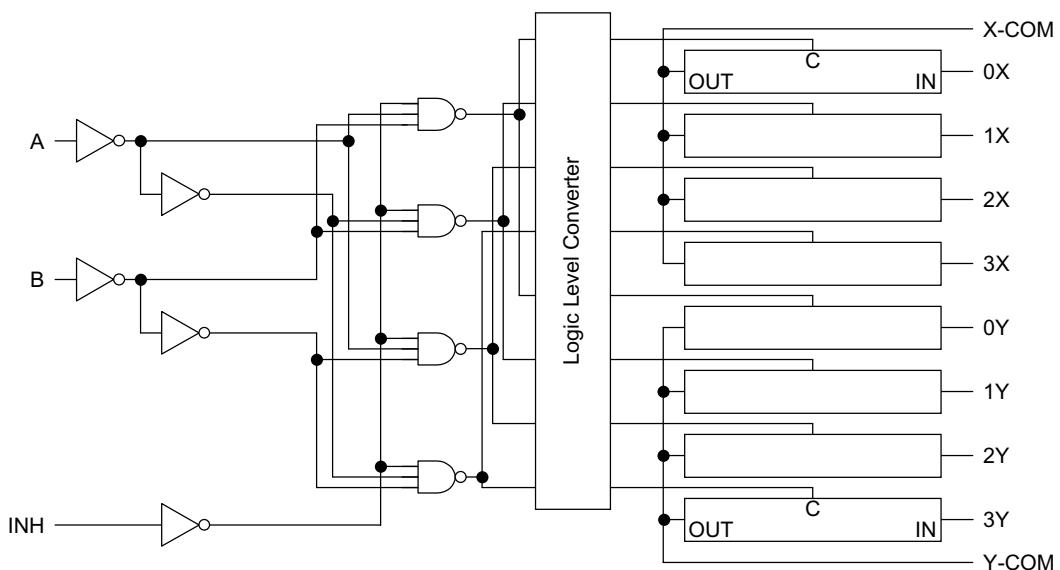
000707EBA1

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
- In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

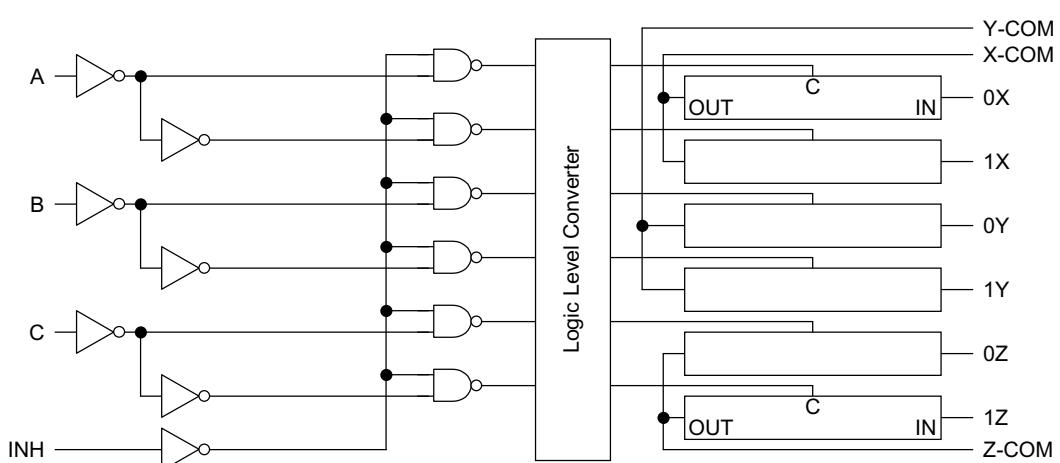
Pin Assignment (top view)


Truth Table

Control Inputs				"ON" Channel		
Inhibit	C*	B	A	LVX4051FT	LVX4052FT	LVX4053FT
L	L	L	L	0	0X, 0Y	0X, 0Y, 0Z
L	L	L	H	1	1X, 1Y	1X, 0Y, 0Z
L	L	H	L	2	2X, 2Y	0X, 1Y, 0Z
L	L	H	H	3	3X, 3Y	1X, 1Y, 0Z
L	H	L	L	4	—	0X, 0Y, 1Z
L	H	L	H	5	—	1X, 0Y, 1Z
L	H	H	L	6	—	0X, 1Y, 1Z
L	H	H	H	7	—	1X, 1Y, 1Z
H	X	X	X	None	None	None


X: Don't care, *: Except LVX4052FT

System Diagram


TC74LVX4051FT

TC74LVX4052FT

TC74LVX4053FT

Absolute Maximum Ratings

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5~7.0	V
	V _{CC} ~V _{EE}	-0.5~7.0	
Control input voltage	V _{IN}	-0.5~7.0	V
Switch I/O voltage	V _{I/O}	V _{EE} - 0.5~V _{CC} + 0.5	V
Input diode current	I _{IK}	-20	mA
I/O diode current	I _{IOK}	±20	mA
Switch through current	I _T	±25	mA
DC V _{CC} or ground current	I _{CC}	±50	mA
Power dissipation	P _D	180	mW
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	2~6	V
	V _{EE}	-4~0	
	V _{CC} ~V _{EE}	2~6	
Input voltage	V _{IN}	0~6.0	V
Switch I/O voltage	V _{I/O}	V _{EE} ~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	0~100 (V _{CC} = 3.3 ± 0.3 V)	ns/V
		0~20 (V _{CC} = 5 ± 0.5 V)	

Electrical Characteristics

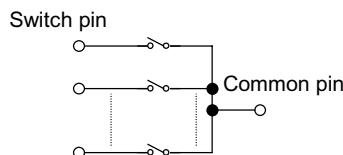
DC Electrical Characteristics

Characteristics		Symbol	Test Condition	V _{EE} (V)	V _{CC} (V)	Ta = 25°C			Ta = -40~85°C		Unit
						Min	Typ.	Max	Min	Max	
Input voltage	High-level	V _{IH}	—	2.0	1.5	—	—	1.5	—	—	V
				3.0	2.0	—	—	2.0	—	—	
				4.5	3.15	—	—	3.15	—	—	
				6.0	4.2	—	—	4.2	—	—	
	Low-level	V _{IL}	—	2.0	—	—	0.5	—	0.5	—	
				3.0	—	—	0.8	—	0.8	—	
				4.5	—	—	1.35	—	1.35	—	
				6.0	—	—	1.8	—	1.8	—	
ON resistance	R _{ON}	V _{IN} = V _{IL} or V _{IH} V _{I/O} = V _{CC} to V _{EE} I _{I/O} = 2 mA	GND	2.0	—	200	—	—	—	—	Ω
			GND	3.0	—	45	86	—	108	—	
			GND	4.5	—	24	37	—	46	—	
			—3.0	3.0	—	17	26	—	33	—	
		V _{IN} = V _{IL} or V _{IH} V _{I/O} = V _{CC} or V _{EE} I _{I/O} = 2 mA	GND	2.0	—	28	73	—	84	—	
			GND	3.0	—	22	38	—	44	—	
			GND	4.5	—	17	27	—	31	—	
			—3.0	3.0	—	15	24	—	28	—	
Difference of ON resistance between switches	ΔR _{ON}	V _{IN} = V _{IL} or V _{IH} V _{I/O} = V _{CC} to V _{EE} I _{I/O} = 2 mA	GND	2.0	—	10	25	—	35	—	Ω
			GND	3.0	—	5	15	—	20	—	
			GND	4.5	—	5	13	—	18	—	
			—3.0	3.0	—	5	10	—	15	—	
Input/Output leakage current (switch OFF)	I _{OFF}	V _{OS} = V _{CC} or GND V _{IS} = GND to V _{CC} V _{IN} = V _{IL} or V _{IH}	GND	3.0	—	—	±0.25	—	±2.5	—	μA
			—3.0	3.0	—	—	±0.5	—	±5.0	—	
Input/Output leakage current (switch ON, output open)	I _{IN}	V _{OS} = V _{CC} or GND V _{IN} = V _{IL} or V _{IH}	GND	3.0	—	—	±0.25	—	±2.5	—	μA
			—3.0	3.0	—	—	±0.5	—	±5.0	—	
Control input current	I _{IN}	V _{IN} = V _{CC} or GND	GND	6.0	—	—	±0.1	—	±0.1	—	μA
Quiescent supply current	I _{CC}	V _{IN} = V _{CC} or GND	GND	3.0	—	—	4.0	—	40.0	—	μA
			—3.0	3.0	—	—	8.0	—	80.0	—	

AC Electrical Characteristics ($C_L = 50 \text{ pF}$, Input: $t_r = t_f = 3 \text{ ns}$, GND = 0 V)

Characteristics	Symbol	Test Condition	Ta = 25°C			Ta = -40~85°C		Unit	
			V_{EE} (V)	V_{CC} (V)	Min	Typ.	Max		
Phase difference between input and output	ϕ I/O	All types	GND	2.0	—	3.2	6.0	—	6.9
			GND	3.0	—	1.8	3.0	—	3.5
			GND	4.5	—	1.3	1.8	—	2.1
			—3.0	3.0	—	1.1	1.3	—	1.5
Output enable time	t_{pZL} t_{pZH}	Figure 1 (Note 1)	GND	2.0	—	9.0	17	—	20
			GND	3.0	—	5.7	9.0	—	11
			GND	4.5	—	4.5	6.0	—	7.0
			—3.0	3.0	—	5.8	8.0	—	10
Output disable time	t_{pLZ} t_{pHZ}	Figure 1 (Note 1)	GND	2.0	—	13.5	21	—	25
			GND	3.0	—	11.3	15	—	18
			GND	4.5	—	10.3	12	—	14
			—3.0	3.0	—	10.9	13	—	15
Control input capacitance	C_{in}	All types (Note 2)	—	—	—	5	10	—	10 pF
COMMON terminal capacitance	C_{IS}	Figure 2 (Note 2)	—3.0	3.0	—	11	25	—	25 pF
						9	20		20
						7	15		15
SWITCH terminal capacitance	C_{OS}	Figure 2 (Note 2)	—3.0	3.0	—	6	13	—	13 pF
						6	13		13
						6	13		13
Feedthrough capacitance	C_{IOS}	Figure 2 (Note 2)	—3.0	3.0	—	3	6	—	6 pF
						3	6		6
						3	6		6
Power dissipation capacitance	C_{PD}	Figure 2 (Note 3)	GND	6.0	—	14	—	—	pF
						24			
						18			

Note1: $R_L = 1 \text{ k}\Omega$ Note2: C_{in} , C_{IS} , C_{OS} and C_{IOS} are guaranteed by the design.Note3: C_{PD} is defined as the value of the internal equivalent capacitance of IC which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

$$I_{CC (\text{opr})} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$$

*Analog Switch Characteristics (GND = 0 V, Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{EE} (V)	V _{CC} (V)	Typ.	Unit	
Sine Wave Distortion (T.H.D)		$R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF}, f_{IN} = 1 \text{ kHz}$	$V_{IN} = 2.0 \text{ V}_{\text{p-p}}$	0	3.0	0.100	%
			$V_{IN} = 4.0 \text{ V}_{\text{p-p}}$	0	4.5	0.030	
			$V_{IN} = 6.0 \text{ V}_{\text{p-p}}$	-0.3	3.0	0.020	
Frequency response (switch ON)	f_{max}	Adjust f_{IN} voltage to obtain 0dBm at V_{OS} .	4051	0	3.0	150	MHz
			4052			180	
			4053			200	
		Increase f_{IN} frequency until dB meter reads -3dB.	4051	0	4.5	150	
			4052			180	
			4053			200	
		Figure 3	4051	-3.0	3.0	150	
			4052			180	
			4053			200	
Feed through attenuation (switch OFF)		V _{IN} is centered at $(V_{CC} - V_{EE})/2$. Adjust input for 0dBm. $R_L = 600 \Omega, C_L = 50 \text{ pF}, f_{IN} = 1 \text{ MHz, sine wave}$ Figure 4	0	3.0	-45	dB	
			0	4.5	-45		
			-3.0	3.0	-45		
			0	3.0	-60		
		$R_L = 50 \Omega, C_L = 10 \text{ pF}, f_{IN} = 1 \text{ MHz, sine wave}$	0	4.5	-60		
			-3.0	3.0	-60		
			0	3.0	90	mV	
			0	4.5	150		
Crosstalk (control input to signal output)		$R_L = 600 \Omega, C_L = 50 \text{ pF}, f_{IN} = 1 \text{ MHz, square wave}$ ($t_r = t_f = 6 \text{ ns}$) Figure 5	-3.0	3.0	120	mV	
			0	3.0	-45		
			0	4.5	-45		
		Figure 6	-3.0	3.0	-45	dB	
			0	3.0	-45		
Crosstalk (between any switches)		Adjust V_{IN} to obtain 0dBm at input. $R_L = 600 \Omega, C_L = 50 \text{ pF}, f_{IN} = 1 \text{ MHz, sine wave}$ Figure 6	0	4.5	-45	dB	
			-3.0	3.0	-45		
			0	3.0	-45		
			-3.0	3.0	-45		

*: These characteristics are determined by design of devices.

AC Test Circuit

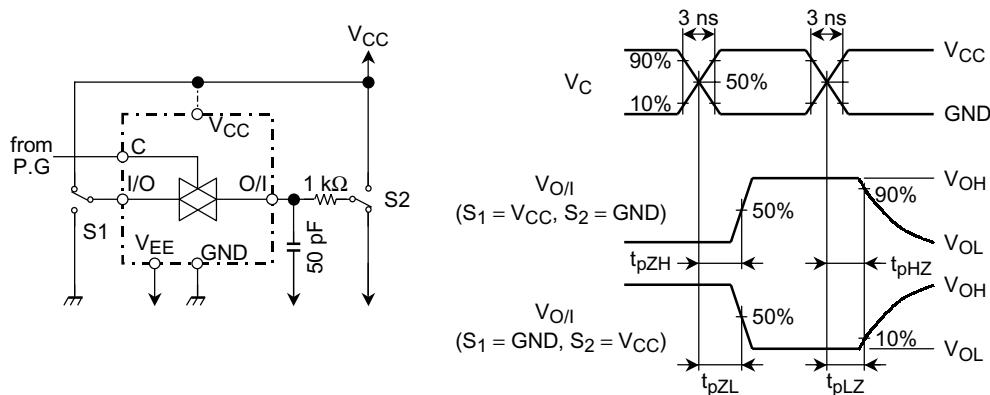


Figure 1 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

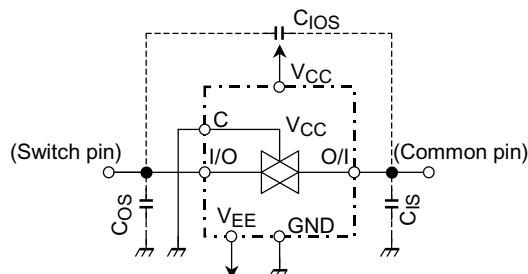


Figure 2 C_{lOS} , C_{lIs} , C_{lOs}

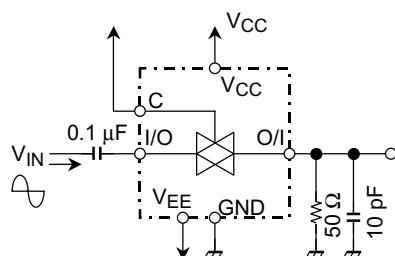


Figure 3 Frequency Response (switch on)

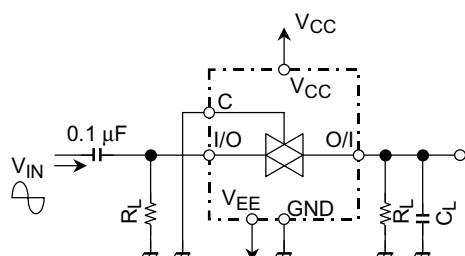


Figure 4 Feedthrough

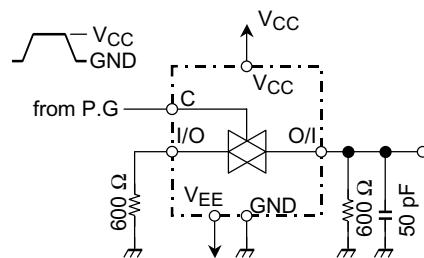


Figure 5 Cross Talk (control input to output signal)

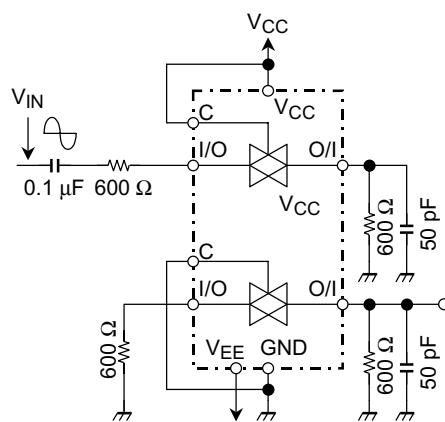
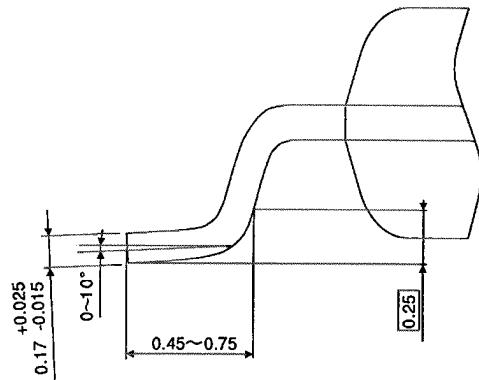
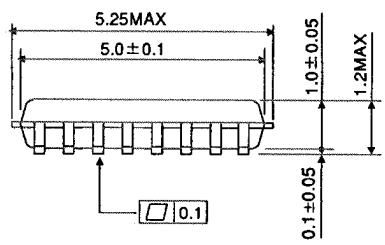
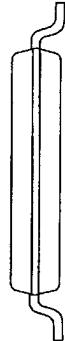
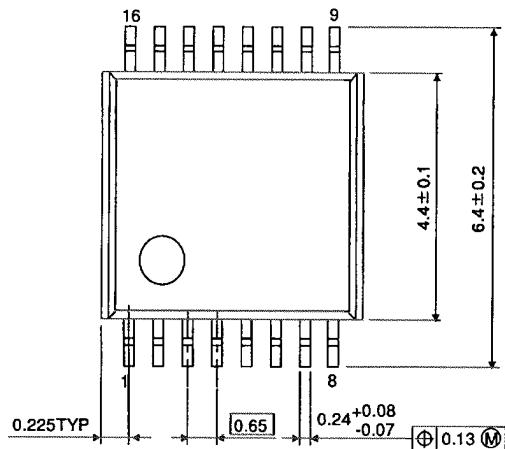






Figure 6 Cross Talk (between any two switches)

Package Dimensions

TSSOP16-P-0044-0.65

Unit : mm

Weight: 0.06 g (typ.)