SPECIFICATION

PRODUCT CONTENTS

- SERIES PRODUCTS LIST
- PHYSICAL DATA
- ABSOLUTE MAXIMUM RATINGS
- EXTERNAL DIMENSIONS
- ELECTRICAL CHARACTERISTICS
- TIMING OF POWER SUPPLY
- POWER CONSUMPTION
- INTERFACE PIN CONNECTIONS
- COMMAND TABLE
- INTIALIZATION CODE
- SCHEMATIC EXAMPLE
- RELIABILITY TESTS
- OUTGOING QUALITY CONTROL SPECIFICATION
- CAUTIONS IN USING OLED MODULE

	ULY®	Customer	
Written by	Hujiabin	Approved by	
Checked by	Chenshengdong		
Approved by	Sujunhai		

REVISION HISTORY

Rev.	Contents	Date
0.0	Preliminary	2008-3-18

■ SERIES PRODUCTS LIST

Module No.	Display	Cl	E	Luminance	Lifetime(h	rs@25℃)
Module 1vo.	Color	X	y	typical(cd/m ²)	30% ON*	100% ON*
TOD9M0028-R-E	Red	0.65	0. 34	30	150K	45K
10D9M0026-K-E	Kea	0.05	0. 54	50	75K	22K
TOD9M0028-Y-E	Yellow	0. 46	0. 51	60	150K	45K
10D9M0026-1-E	rerrow	0.40	0. 51	100	70K	21K
TOD9M0028-G-E	Green	0.31	0. 62	80	80K	24K
10D9M0026-G-E	Green	0. 51	0. 31 0. 62	100	55K	16K
TOD9M0028-B-E	Blue	0. 16	0. 27	60	80K	24K
TOD9MOOZ6-D-E	brue	0. 10	0.21	80	60K	18K
TOD9M0028-W-E	White	0.3	0. 36	60	80K	24K
TODSMOOZ8-W-E	wiiite	0.3	0.30	80	60K	18K

^{* 30%} ON: 30% pixels scrolling display on; 100% ON: All pixels display on

■ PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	0.67	Inch
2	Resolution	96(H) x 36(V)	Lines
3	Active Area	16.11(W) x 5.67(H)	mm
4	Outline Dimension (Panel)	23.13(W) x 15.67(H)	mm
5	Pixel Pitch	0.168(W) x 0.158(H)	mm
6	Pixel Size	0.148(W) x 0.138(H)	mm
7	Driver IC	SH1101	-
8	Grayscale	mono	-
9	Interface	Parallel / Serial	-
10	IC package type	COG	-
11	Thickness	1.6	mm
12	Weight	<1.1	g
13	Duty	1/36	-

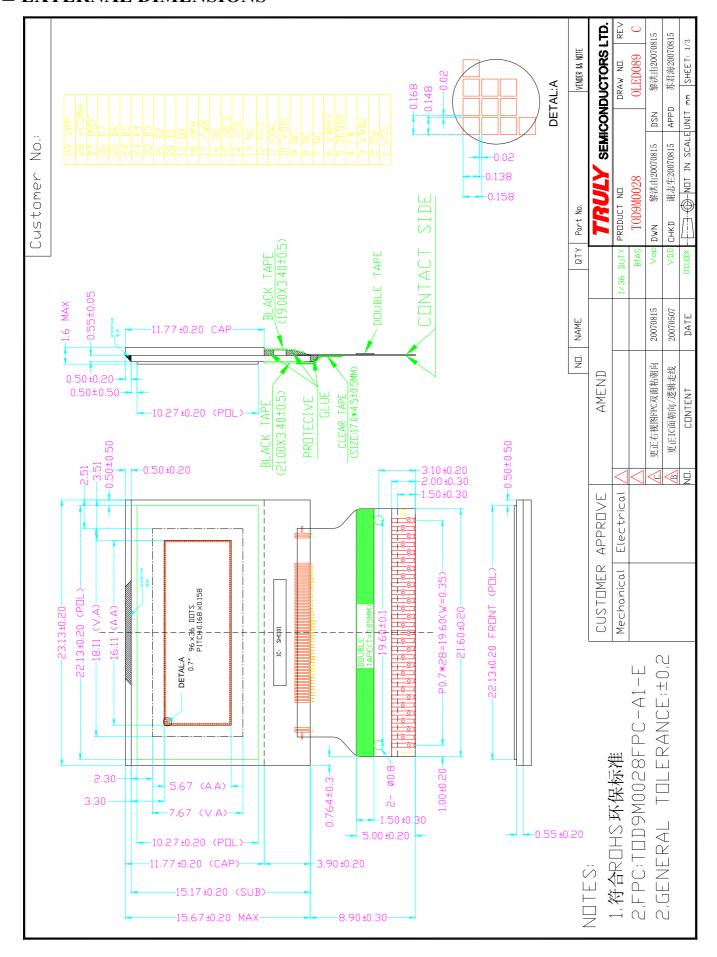
^{1.} Life Time is defined when the Luminance has decayed to less than 50% of the initial Luminance

Rev: 0.0 Mar.18, 2008

■ ABSOLUTE MAXIMUM RATINGS

Unless otherwise specified, $V_{SS} = 0V$

 $(Ta = 25^{\circ}C)$


Items		Symbol	Min	Тур.	Max	Unit
Supply	Logic	$V_{ m DD}$	-0.3	-	3.6	V
Voltage	Driving	V_{PP}	-0.3	-	18.0	V
Operating Temperatur	Operating Temperature		-20	-	70	$^{\circ}$
Storage Temperature		Tst	-30	-	80	${\mathbb C}$
Humidity		-	-	-	90	%RH

NOTE:

Permanent device damage may occur if **ABSOLUTE MAXIMUM RATINGS** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

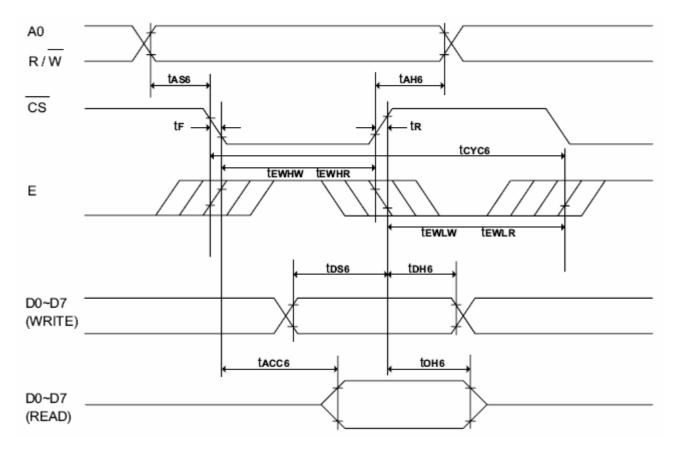
■ EXTERNAL DIMENSIONS

Rev: 0.0 Mar.18, 2008

■ ELECTRICAL CHARACTERISTICS

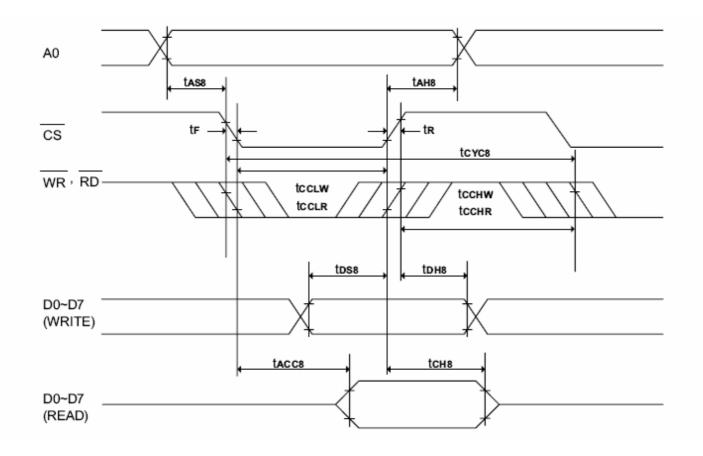
DC Characteristics

Unless otherwise specified, $V_{SS} = 0V$, $V_{DD} = 2.4V$ to 3.5V (Ta = 25°C)

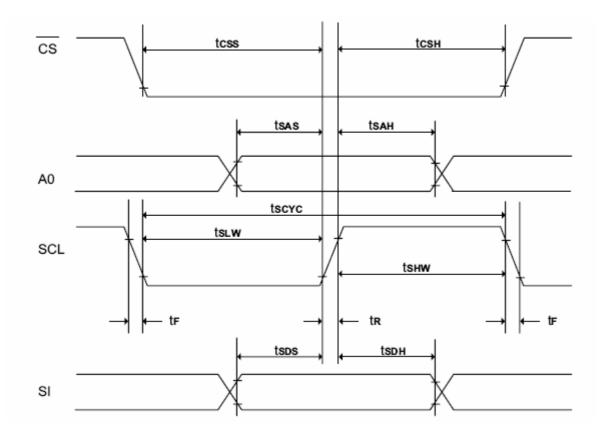

	Items	Symbol	Min	Typ.	Max	Unit
Supply	Supply Logic		2.4	3.0	3.5	V
Voltage Operating		V_{PP}	7.0	12	16	V
Input	High Voltage	$V_{ m IH}$	$0.8 \times V_{DD}$	-	$ m V_{DD}$	V
Voltage	Low Voltage	$V_{ m IL}$	V_{SS}	-	$0.2 \times V_{DD}$	V
Output	High Voltage	V_{OH}	$0.8 \times V_{DD}$	-	$V_{ m DD}$	V
Voltage	Low Voltage	V_{OL}	V_{SS}	-	$0.2 \times V_{DD}$	V

♦AC Characteristics

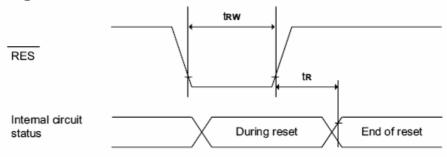
Use 8080/6800-Series MPU Parallel Interface or Serial Interface


1. 6800 Series MPU Parallel Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC6	System cycle time	300	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tan6	Address hold time	0	-	-	ns	
tDS6	Data setup time	40	-	-	ns	
tDH6	Data hold time	15	-	-	ns	
ton6	Output disable time	10	-	70	ns	CL=100pF
tACC6	Access time	-	-	140	ns	CL=100pF
tewnw	Enable H pulse width (Write)	100	-	-	ns	
tewhr	Enable H pulse width (Read)	120	-	-	ns	
tewLw	Enable L pulse width (Write)	100	-	-	ns	
tewLR	Enable L pulse width (Read)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	


2. 8080 Series MPU Parallel Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc8	System cycle time	300	-	-	ns	
tAS8	Address setup time	0	-	-	ns	
tans	Address hold time	0	-	-	ns	
tDS8	Data setup time	40	-	-	ns	
tDH8	Data hold time	15	-	-	ns	
tCH8	Output disable time	10	-	70	ns	CL=100pF
tACC8	RD access time	-	-	140	ns	CL=100pF
tccLw	Control L pulse width (WR)	100	-	-	ns	
tcclr	Control L pulse width (RD)	120	-	-	ns	
tcchw	Control H pulse width (WR)	100	-	-	ns	
tcchr	Control H pulse width (RD)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

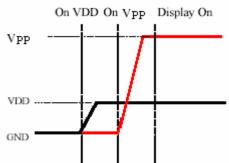


3. Serial Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Tscyc	Serial clock cycle	250	-	-	ns	
Tsas	Address setup time	150	-	-	ns	
Тѕан	Address hold time	150	-	-	ns	
Tsps	Data setup time	100	-	-	ns	
Тѕрн	Data hold time	100	-	-	ns	
Tcss	CS setup time	120	-	-	ns	
Тсѕн	CS hold time time	60	-	-	ns	
Тѕнw	Serial clock H pulse width	100	-	-	ns	
TsLw	Serial clock L pulse width	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

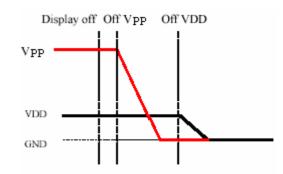
4. Reset Timing

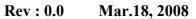
 $(VDD1=2.4 - 3.5V, TA = 25^{\circ}C)$


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Tr	Reset time	-	-	1.0	μs	
Trw	Reset low pulse width	5.0	-	-	μs	

■ TIMING OF POWER SUPPLY

To Protect OLED panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources turn on/off.


Power up Sequence:


- 1. Power up V_{DD}
- 2. Delay 100ms
- 3. Power up V_{PP} (High Voltage)
- 4. Delay 100ms
- 5. Send Display ON command

Power down Sequence:

- 1. Send Display OFF command
- 2. Power down V_{PP}(High Voltage)
- 3. Delay 100ms
- 4. Power down V_{DD}

■ POWER CONSUMPTION

Unless otherwise specified, VSS=0V, VDD=3.0V, Frame Frequency=100Hz

Module No.	VPP(V)	Contrast Command	Luminance	Typical Power C	Typical Power Consumption(mW)			
s s		Set(hex)	Typical(cd/m2)	All pixels ON	30% pixels ON	Sleep Mode		
TODOMOOOO D E	10.0	010	30	55	20	<5uA		
TOD9M0028-R-E	12.0	0x1F	50	70	25	\SuA		
TOD9M0028-Y-E	9.5	0x1F	60	35	15	<5uA		
10D9M0026-1-E	10.5	UXIF	100	45	20	\ounderset		
TOD9M0028-G-E	11.0	0x1F	80	30	15	<5uA		
10D9M0028-G-E	11.5	UXII	100	40	20	\5uA		
TOD9M0028-B-E	10.5	0x1F	60	55	20	<5uA		
TOD9MOOZO-D-E	O-D-E 11.0		80	60	25	\5uA		
TOD9M0028-W-E	10.5	0x1F	60	55	20	<5uA		
I ODSMOUZO-W-E	11.0	UXIT	80	60	25	\ouA		

■ INTERFACE PIN CONNECTIONS

No	Symbol	Description
1	VSS	Ground
2	SW	Driving the gate of the external NMOS of the booster circuit
3	VDD2	Voltage supply for the booster circuit
4	FB	A feedback voltage for the booster circuit
5	SENSE	A source current pad of the external NMOS of the booster circuit
6	VBREF	Internal voltage reference pad for the booster circuit
7	NC	No connection
8	NC	No connection
9	NC	No connection
10	VDD1	Logic voltage supply for IC
11	C86	It is the MPU interface switched pad(L:6800; H:8080)
12	P/S	It is a switch to select the input data to parallel or series
13	NC	No connection
14	/CS	The chip select pin. Low is enabled
15	/RES	MCU control or RC for low pulse start up
16	A0	The chip select pin. Low is enabled
17	/WR	MCU interface input pin
18	/RD	MCU interface input pin
19	D0	Data bus or SCLK in Serial mode
20	D1	Data bus or SI in Serial mode
21	D2	Data bus or High impedance in Serial mode
22	D3	Data bus or High impedance in Serial mode
23	D4	Data bus or High impedance in Serial mode
24	D5	Data bus or High impedance in Serial mode
25	D6	Data bus or High impedance in Serial mode
26	D7	Data bus or High impedance in Serial mode
27	IREF	Current reference pin
28	VCOMH	High level voltage output of COM signal
29	VPP	High voltage supply for OLED panel

Mar.18, 2008 **Rev: 0.0**

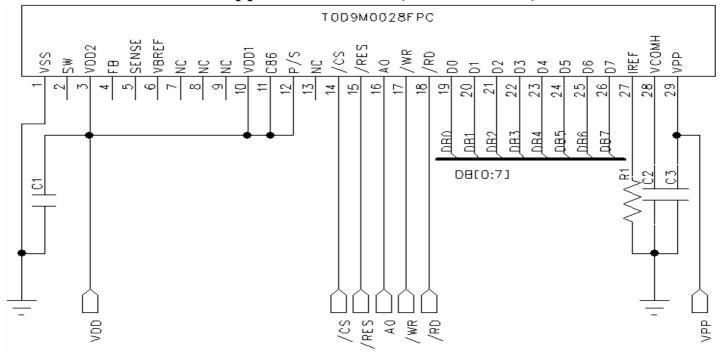
■ COMMAND TABLE

Command	Code									Function			
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Fullcuoli	
Set Column Address I lower bits	0	1	0	0	0	0	0	Lower column address		dress	Sets 4 lower bits of column address of display RAM in register. (POR = 00H)		
Set Column Address 4 higher bits	0	1	0	0	0	0	1	Higher column address		dress	Sets 4 higher bits of column address of display RAM in register. (POR = 10H)		
Reserved Command	0	1	0	0	0	1	0	0	1	0	0	Reserved	
Reserved Command	0	1	0	0	0	1	0	0	1	1	0	Reserved	
5. Reserved Command	0	1	0	0	0	1	0	1	1	1	D	Reserved	
6. Set Display Start Line	0	1	0	0	1		Line address		Specifies RAM display line for COM0. (POR = 40H)				
7. The Contrast Control Mode Set	0	1	0	1	0	0	0	0	0	0	1	This command is to set Contrast Setting of the display.	
Contrast Data Register Set	0	1	0			(Contra	The chip has 256 contrast s			The chip has 256 contrast steps from 00 to FF. (POR = 80H)		
8. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The right (0) or left (1) rotation. (POR = A0H)	
9. Set Entire Display OFF/ON	0	1	0	1	0	1	0	0	1	0	D	Selects normal display (0) or Entire Display ON (1). (POR = A4H)	
10. Set Normal/ Reverse Display	0	1	0	1	0	1	0	0	1	1	D	Normal indication (0) when low, but reverse indication (1) when high. (POR = A6H)	
11. Multiplex Ration Mode Set	0	1	0	1	0	1	0	1	0	0	0	This command switches default 63 multiplex mode to	
Multiplex Ration Data Set	0	1	0	*	*		١			any multiplex ratio from 1 to 64. (POR = 3FH)			
12. DC-DC Control Mode Set	0	1	0	1	0	1	0	1	1	0	1	This command is to control the DC-DC voltage DC-DC	
DC-DC ON/OFF Mode Set	0	1	0	1	0	0	0	1	0	1	D	will be turned on when displa on converter (1) or DC-DC OFF (0). (POR = 8BH)	

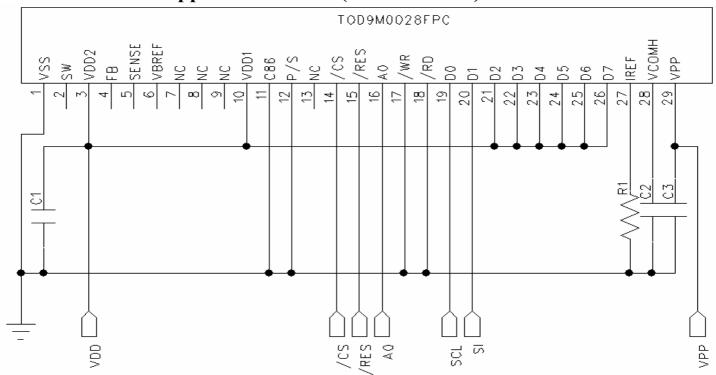
NUH	TRULY SEMICONDUCTORS LTD. Rev							: 0.0 Mar.18, 2008				
						Code						
Command	A0	RD	WR	D7 D6 D5		D4	D3 D2		D1	D0	- Function	
13. Display OFF/ON	0	1	0	1	0	1	0	1	1	1	D	Turns on OLED panel (1) or turns off (0). (POR = AEH)
14. Set Page Address	0	1	0	1	0	1	1	Page Address		3	Specifies page address to load display RAM data to page address register. (POR = B0H)	
15. Set Common Output Scan Direction	0	1	0	1	1	0	0	D	*	*	*	Scan from COM0 to COM [N - 1] (0) or Scan from COM [N -1] to COM0 (1). (POR = C0H)
16. Display Offset Mode Set	0	1	0	1	1	0	1	0	0	1	1	This is a double byte command which specifies
Display Offset Data Set	0	1	0	*	*			COMx			the mapping of display start line to one of COM0-63. (POR = 00H)	
17. Set Display Divide Ratio/Oscillator Frequency Mode Set	0	1	0	1	1	0	1	0	1	0	1	This command is used to set the frequency of the internal display clocks. (POR = 50H)
Divide Ratio/Oscillator Frequency Data Set	0	1	0	Osc	illator	Freque	ency	Divide Ratio			,	
18. Dis-charge / Pre-charge Period Mode Set	0	1	0	1	1	0	1	1	0	0	1	This command is used to set the duration of the dis-charge and pre-charge
Dis-charge /Pre-charge Period Data Set	0	1	0	Dis	s-charç	ge Peri	iod			od	period. (POR = 22H)	
19. Common Pads Hardware Configuration Mode Set	0	1	0	1	1	0	1	1	0	1	0	This command is to set the common signals pad configuration. (POR = 12H)
Sequential/Alternat ive Mode Set	0	1	0	0	0	0	D	0	0	1	0	
20. VCOM Deselect Level Mode Set	0	1	0	1	1	0	1	1	0	1	1	This command is to set the common pad output voltage
VCOM Deselect Level Data Set	0	1	0			V	COM (level at deselect stage. (POR = 35H)				
21. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.
22. End	0	1	0	1	1	1	0	1	1	1	0	Read-Modify-Write end.
23. NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation Command
24. Write Display Data	1	1	0	Write RAM data								
25. Read Status	0	0	1	BUSY	ON/ OFF	*	*	*	0	0	0	

Note: Do not use any other command, or the system malfunction may result.

26. Read Display Data


■ INTIALIZATION CODE

```
Void init oled()
  WOLEDCOM(0xAE);
                      //DOT MARTIX DISPLAY OFF
  WOLEDCOM(0x40);
                      //SET DISPLAY START LINE(40H-7FH)
  WOLEDCOM(0xA1);
                      //SET SEGMENT RE-MAP(0A0H-0A1H)
  WOLEDCOM(0xA4);
                      //ENTIRE DISPLAY OFF(0A4H-0A5H)
  WOLEDCOM(0xA6);
                      //SET NORMAL DISPLAY(0A6H-0A7H)
  WOLEDCOM(0xC8);
                      //COM SCAN COM1-COM64(0C8H,0C0H)
  WOLEDCOM(0xA8);
                      //SET MULTIPLEX RATIO 64
  WOLEDCOM(0x23);
  WOLEDCOM(0xD3);
                      //SET DISPLAY OFFSET(OOH-3FH)
  WOLEDCOM(0x1C);
  WOLEDCOM(0xD5);
                      //SET FRAME FREQUENCY
  WOLEDCOM(0x50);
                      //100Hz
  WOLEDCOM(0xD9);
                      //SET DIS-/PRE- CHARGE PERIOD
  WOLEDCOM(0x22);
  WOLEDCOM(0xDA);
                      //COM PIN CONFIGURATION(02H,12H)
  WOLEDCOM(0x12);
  WOLEDCOM(0xDB);
                      //SET VCOM DESELECT LEVEL(035H)
  WOLEDCOM(0x35);
  WOLEDCOM(0x81);
                      //CONTARST CONTROL(00H-0FFH)
  WOLEDCOM(0x1F);
                      //reference the page6
  WOLEDCOM(0xAD);
                      //SET DC/DC BOOSTER(8AH=OFF,8BH=ON)
  WOLEDCOM(0x8A);
  WOLEDCOM(0xAF);
                      //DSPLAY ON
```


}

■ SCHEMATIC EXAMPLE

♦8080 Series Interface Application Circuit(External VPP):

♦Serial Interface Application Circuit(External VPP):

NOTE:

- 1. R1=910K Ω ,C1=C2=C3=4.7uF
- 2. The V_{PP} should connect a external voltage.
- 3.VBREF, SENCE, FB and SW pin should be open.
- 4.In Serial interface mode, the read function is not possible.

TRULY SEMICONDUCTORS LTD.

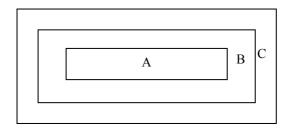
Rev: 0.0 Mar.18, 2008

■ RELIABILITY TESTS

	Item	Condition	Criterion		
High Te	emperature Storage (HTS)	80±2°C, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. 		
High Temperature Operating (HTO)		70±2°€, 96 hours	3. After testing, the change of luminance should be within +/- 50% of initial value.		
Low Temperature Storage (LTS)		-30±2°C, 200 hours	4. After testing, the change for the mono and area color must be within (+/-0.02, +/-		
Low Temperature Operating (LTO)		-20±2°€, 96 hours	0.02) and for the full color it must be within (+/-0.04, +/-0.04) of		
High Temperature / High Humidity Storage (HTHHS)		50±3°C, 90%±3%RH, 120 hours	initial value based on 1931 CIE coordinates. 5. After testing, the change of total current		
Thermal Shock (Non-operation) (TS)		-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	consumption should be within +/- 50% of initial value.		
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.	c and the electrical defects.		
Drop (Packing)	Height: 1 m, each time for 6 sides, 3 edges, 1 angle	2. No addition to the cosmetic			
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF , 10times, air discharge)	 After testing, cosmetic and electrical defects should n happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 			

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance>10M Ω).
- 3) The test should be done after 2 hours of recovery time in normal environment.


OUTGOING QUALITY CONTROL SPECIFICATION

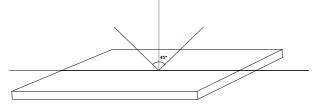
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

◆Inspection Methods

1 The general inspection : under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection : By PR705 or BM-7 or the equal equipments, in the dark room, under 25±5 $^{\circ}\text{C}$.

◆Inspection Criteria

1 Major defect : AQL= 0.65

Item	Criterion				
	1. No display or abnormal display is not accepted				
Function Defect	2. Open or short is not accepted.				
	3. Power consumption exceeding the spec is not accepted.				
Outline Dimension	Outline dimension exceeding the spec is not accepted.				
Glass Crack	Glass crack tends to enlarge is not accepted.				

2 Minor Defect : AQL= 1.5

	I ROLL SEMICO	NDUCTORS LID.	Kev . U.U	Mai.10, 4					
Item		Criterion							
	Size	(mm)	Accepted Qty						
Spot		Area A + Area B	Area C						
Defect		Φ≤0.10	Ignored						
(dimming and	Y	0.10<Φ≦0.15	3						
lighting	X	0.15<Φ≦0.20	1	Ignored					
spot)	 	0.20<₽	0	7					
	Note: $\Phi = (x + y) / 2$								
Line	L (Length): mm	W (Width): mm	Area A + Area B	Area C					
Defect	/	W ≤ 0.03	Ignored						
(dimming and	L≦3.0	$0.03 < W \le 0.05$	2						
lighting	L≦2.0	$0.05 < W \le 0.08$	1	Ignored					
line)	/	0.08 <w< td=""><td>As spot defect</td><td></td></w<>	As spot defect						
Remarks: The total of spot defect and line defect shall not exceed 4 pcs.									
Polarizer Stain	Stain which can be wiped off lightly with a soft cloth or similar cleaning is accepted, otherwise, according to the Spot Defect and the Line Defect.								
	1. If scratch can be so of the Spot Defect an	een during operation, nd the Line Defect.	, according to the cr	iterions					
	2. If scratch can be seen only under non-operation or some special angle, the criterion is as below:								
Polarizer	L (Length): mm	W (Width): mm	Area A + Area B	Area C					
Scratch	/	$W \leq 0.03$	Ignore						
	5.0 <l≦10.0< td=""><td>$0.03 < W \le 0.05$</td><td>2</td><td rowspan="2">Ignore</td></l≦10.0<>	$0.03 < W \le 0.05$	2	Ignore					
	L≦5.0	$0.05 < W \le 0.08$	1						
	/	0.08 <w< td=""><td>0</td><td colspan="2"></td></w<>	0						
	Si	ze	Area A + Area B	Area C					
Polarizer Air Bubble		Φ≦0.20	Ignored						
	Y	$0.20 < \Phi \le 0.50$ 2							
2111 2 40010	X	$0.50 < \Phi \leq 0.80$	1	Ignored					
		0.80<Ф	0						

	1. On the corner							
		(mm)						
		x ≤ 2.0						
		y ≤ S						
		$z \leq t$						
	z							
Glass	2. On the bonding edge							
Defect (Glass		(mm)						
Chiped)	1 7 7	$X \leq a/2$						
		$y \leq s/3$						
		$z \leq t$						
	W. T.							
	3. On the other edges							
		(mm)						
	The state of the s	$x \leq a/5$						
		y ≤1.0						
		$z \leq t$						
	Note: t: glass thickness; s: pad width; a: the	length of the edge						
TCP Defect	Crack, deep fold and deep pressure mark on the TCP are not accepted							
Pixel Size	The tolerance of display pixel dimension should be within $\pm 20\%$ of the spec							
Luminance	Refer to the spec or the reference sample							
Color	Refer to the spec or the reference sample							

■ CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:

Rev: 0.0

Mar.18, 2008

- i. Avoid drop from high, avoid excessive impact and pressure.
- ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
- iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
- iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
- v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
- vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{PP}$, and power off sequence: $V_{PP} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and Datasheet of IC controller, otherwise something wrong may be seen.

TRULY SEMICONDUCTORS LTD. Rev: 0.0 Mar.18, 2008

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

◆Precautions For Soldering OLED Module:

- 1. Soldering temperature : $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.
- 2. Soldering time: 3-4 sec.
- 3. Repeating time: no more than 3 times.
- 4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

◆ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0°C and 30°C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

◆Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.