

21–23 GHz GaAs MMIC Medium Power Amplifier

Alpha

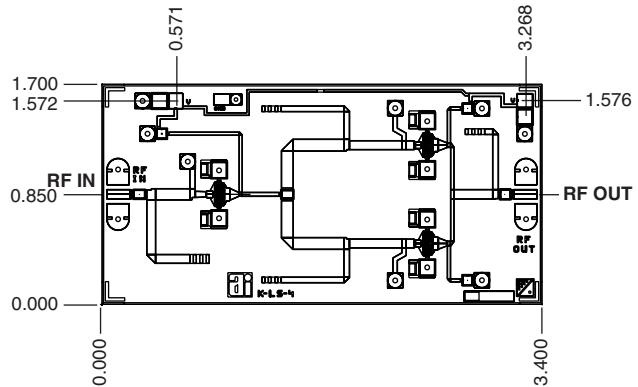
AA022P2-00

Features

- Single Bias Supply Operation (6 V)
- 22 dBm Typical $P_{1\text{ dB}}$ Output Power at 23 GHz
- 14 dB Typical Small Signal Gain
- 0.25 μm Ti/Pd/Au Gates
- 100% On-Wafer RF and DC Testing
- 100% Visual Inspection to MIL-STD-883 MT 2010

Description

Alpha's two-stage balanced K band GaAs MMIC power amplifier has a typical $P_{1\text{ dB}}$ of 22 dBm with 13 dB associated gain guaranteed across frequency range 21–23 GHz. The chip uses Alpha's proven 0.25 μm MESFET technology, and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged reliable part with through-substrate via holes and gold-based backside metallization to facilitate a conductive epoxy die attach process. All chips are screened for small signal S-parameters and power characteristics prior to shipment for guaranteed performance.

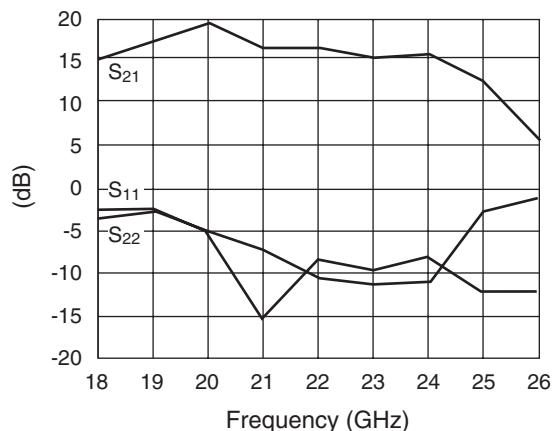

Electrical Specifications at 25°C ($V_{DS} = 6$ V)

Parameter	Condition	Symbol	Min.	Typ. ²	Max.	Unit
Drain Current (at Saturation)		I_{DS}		280	300	mA
Small Signal Gain	$F = 21\text{--}23$ GHz	G	12	14		dB
Input Return Loss	$F = 21\text{--}23$ GHz	RL_I		-8	-6	dB
Output Return Loss	$F = 21\text{--}23$ GHz	RL_O		-9	-7	dB
Output Power at 1 dB Gain Compression	$F = 23$ GHz	$P_{1\text{ dB}}$	19	22		dBm
Saturated Output Power	$F = 23$ GHz	P_{SAT}	21	23.5		dBm
Gain at Saturation	$F = 23$ GHz	G_{SAT}		11		dB
Thermal Resistance ¹		Θ_{JC}		69		°C/W

1. Calculated value based on measurement of discrete FET.

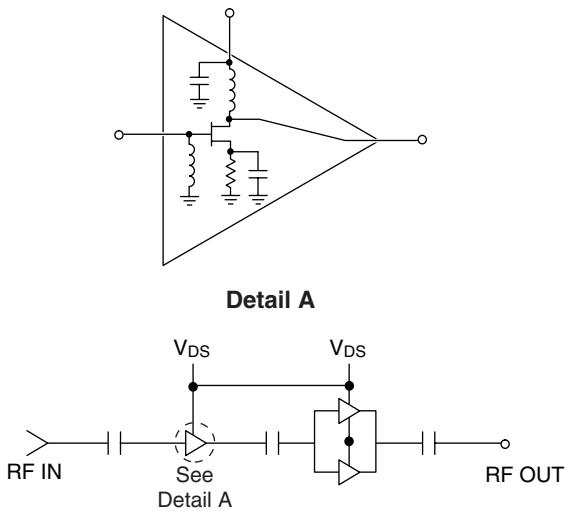
2. Typical represents the median parameter value across the specified frequency range for the median chip.

Chip Outline

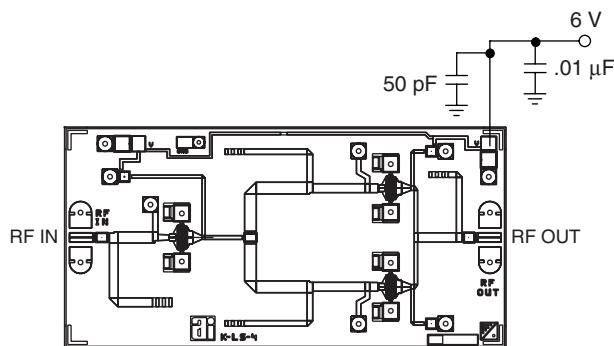

Dimensions indicated in mm.

All DC (V) pads are 0.1 x 0.1 mm and RF In, Out pads are 0.07 mm wide.
Chip thickness = 0.1 mm.

Absolute Maximum Ratings


Characteristic	Value
Operating Temperature (T_C)	-55°C to +90°C
Storage Temperature (T_{ST})	-65°C to +150°C
Bias Voltage (V_D)	7 V _{DC}
Power In (P_{IN})	19 dBm
Junction Temperature (T_J)	175°C

Typical Performance Data



Typical Small Signal Performance
**S-Parameters ($V_{DS} = 6$ V $I_{DS} = 240$ mA,
 $T_A = 25^\circ\text{C}$)**

Circuit Schematic

Bias Arrangement

For biasing on, adjust V_{DS} from zero to the desired value (6 V recommended). For biasing off, reverse the biasing on procedure.