

6-channel Combo driver IC BD7907FS

Description

BD7907FS is a 6-channel driver IC that integrates all drivers necessary for CD-ROM, and DVD-ROM systems into a single chip. The built-in 2-channel sled motor driver is used for the stepping motor. Low heat operation can be achieved by applying the PWM driving system for sled and spindle motor drivers.

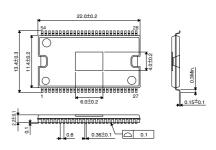
Features

- 1) Motor drivers for spindle, sled (2-channel) and loading, and actuator drivers for tracking are all integrated into a single chip.
- ON/OFF for each driver, brake mode switching of spindle and stand-by mode switching can be controlled by 2-wire serial data.
- 3) Built-in triangular-wave generator
- 4) SSOP-A54 package
- 5) Built-in thermal shut-down circuit

<Spindle driver>

- 6) Highly efficient by applying the PWM drive and Low ON resistance POWER MOSFET
- 7) Built-in current limit, hall bias, short brake, FG 3-phase synthesis output, and reverse protection circuit
- <Sled motor driver>
 - 8) Highly efficient due to the PWM drive
 - 9) Built-in 2-channel for the stepping motor
- <Actuator, loading driver>
 - 10) Low noise due to the linear BTL driver and smooth spin

Applications


CD-ROM, DVD-ROM, and any other equipment driven by optical DISC

Absolute Maximum Ratings (Ta=25°C)

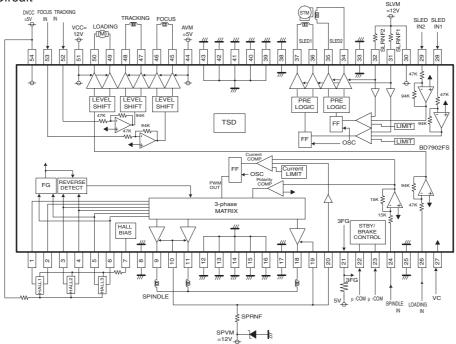
Parameter	Symbol	Limits	Unit
Power MOS supply voltage	SPVM1,2, SLRNF1,2	15	V
Pre/BTL power supply voltage	VCC, SLVDD, AVM	15	٧
PWM control supply voltage	DVCC	7	٧
Power dissipation	Pd	2.6 *1	W
Operating temperature range	Topr	−35 ~ +85	°C
Storage temperature range	Tstg	− 55 ~ +150	°C

^{*}Derating : 20.8mW/°C for operation above Ta=25°C PCB (70mm ¥ 70mm ¥ 1.6mm glass epoxy board)

Dimension (Units : mm)

SSOP-A54

Recommended Operating Conditions (Ta=25°C)


Parameter	Symbol	Min.	Тур.	Max.	Unit
Power MOS supply voltage1	SPVM1,2		VCC*2	_	V
Power MOS supply voltage2	SLRNF1,2		SLVDD*2	_	V
Pre-driver supply voltage	SLVDD,VCC	AVM	12	14	V
Power driver supply voltage	AVM	4.3	5.0	Vcc	V
PWM control supply voltage	DVCC	4.3	5.0	6.0	V

^{*2} SPVM1,2 must be established with the same voltage of Vcc and, SLRNF1,2 must be established with the same voltage of SLVDD.

■ Electrical Characteristics (Unless otherwise noted; Ta=25°C, SLVDD=VCC=12V, DVCC=AVM=5V, VC=1.65V, SPRNF=0.33Ω, SLRNF=0.5Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Feed motor driver			•					
Input dead zone (One-side)	VDZSL	15	40	65	mV			
I/O gain	gmSL	0.8	1.0	1.2	A/V	SLRNF=0.5Ω		
Output ON resistance	RONUSL	_	3.2	4.2	Ω	Io=500mA (Top+Bottom)		
Output limit current	ILIMSL	0.8	0.94	1.08	Α	SLRNF=0.5Ω		
Spindle driver <torque command="" i="" o=""></torque>								
Input dead zone (One-side)	VDZSP	20	50	90	mV			
I/O gain	gmSP	2.4	3.0	3.6	A/V	SPRNF=0.33Ω		
Output ON resistance	RONUSP	_	0.95	1.7	Ω	Ip=500mA (Top+Bottom)		
Output limit current	ILIMSL	1.2	1.42	1.64	Α	SPRNF=0.33Ω		
Actuator driver								
Output offset voltage	VOFFT	-50	0	50	mV			
Output saturation voltage	VOHFT	_	0.9	1.6	V	Io=500mA (Top+Bottom)		
Voltage gain	GVFT	16.0	17.5	19.0	dB			
Loading driver								
Output offset voltage	VOFLD	-50	0	50	mV			
Output saturation voltage	VOHLD	_	1.55	2.2	V	Io=500mA (Top+Bottom)		
Voltage gain	GVLD	16.0	17.5	19.0	dB			

Application Circuit

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

