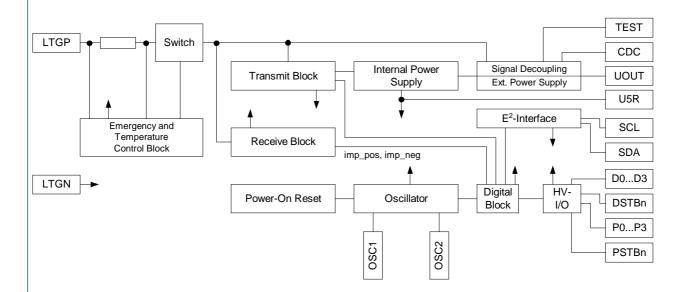
DATA SHEET

Key Features

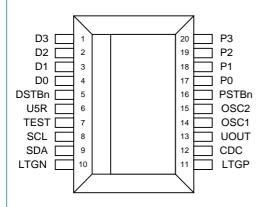

- Simple two-wire bus (ASI line)
- Transmission of both power and signal on the ASI line
- Decoupling of power and signal by the IC without additional external devices
- Transmitting protocol for using the IC and the ASI master in the transmit/receive modes
- Switching of max. 31 ASI slave ICs on one bus possible
- Power supply of peripheral devices from the ASI slave IC of up to 35 mA @ 24V
- Only few external devices necessary for operation (quartz, 4 capacitors, E²PROM)
- Storing of the configuration data and the slave address in one E²PROM
- Quartz oscillator for 5.333 MHz without external capacitances
- Standards: AS-Interface—Spec V2.0 and EN 50295

General Description

The signal transmission between the master and the slaves in the ASI system is performed by a parallel two-line wire (ASI-line) to which the IC is connected only via a polarity protection diode and a suppressor diode. The line is powered by a direct dc voltage of up to 33.1 V, on which data pulses with signal amplitudes of (3...8) Vpp are superimposed. The IC extracts its own power and the power for peripherals from the line and detects the bus signals. The ASI slave IC consists of the following blocks:

- Receive Block
- Transmit Block
- Digital Logic Block
- Emergency Control Block
- Internal and External Power Supply with Signal decoupling
- Oscillator
- Power on Reset
- High Voltage I/O

Block Diagram



Revision NC, May 2002 Page 1 of 15

Package

SOIC 20

Pin Description

Pin	Name	Туре	Description			
1	D3	1/0	Data input/output 3, configurable			
2	D2	I/O	Data input/output 2, configurable			
3	D1	I/O	Data input/output 1, configurable			
4	D0	I/O	Data input/output 0, configurable			
5	DSTBn	I/O	Strobe output for the data port,			
			input for a reset signal (active low)			
6	U5R	Voltage OUT	Supply voltage of the E ² PROM,			
			Blocking capacitor CU5R			
7	TEST	IN	Connection to the capacitor CTEST			
8	SCL	OUT	Serial two-wire bus, puls wire			
9	SDA	I/O	Serial two-wire bus, address and data wire			
10	LTGN	SUPPLY	ASI wire, negative supply			
11	LTGP	SUPPLY	ASI wire, positive supply			
12	CDC	Voltage OUT	Blocking capacitor CCDC			
13	UOUT	Voltage OUT	Peripherals			
14	OSC1	IN	Quartz connection			
15	OSC2	OUT	Quartz connection			
16	PSTBn	OUT	Strobe output for the parameter port, test mode (without importance			
			for users)			
17	P0	OUT	Parameter output 0			
18	P1	OUT	Parameter output 1			
19	P2	OUT	Parameter output 2			
20	P3	OUT	Parameter output 3			

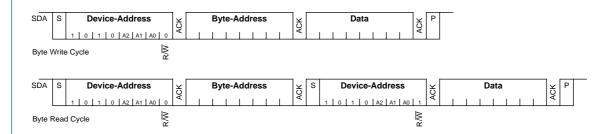
Revision NC, May 2002 Page 2 of 15

Functional Description

The IC identifies and decodes the supply voltage overlapping signals of the master telegram. If the slave address contained within the master telegram coincides with the stored information in the E²PROM of the slave address, the corresponding master command of the addressed ASI slave IC is executed.

After decoding of the master telegram the addressed ASI slave IC responds with a corresponding slave answer on the ASI line.

The ASI slave IC extracts its own supply voltage and the supply voltage for the E^2 PROM from the ASI line. At the same time, the IC provides a direct voltage for the peripheral UOUT which results from U_{LTGP} - U_{DROP} for a maximum current of 35 mA.


The receive block detects the signal on the ASI wire LTGP. The reference voltages of the signal comparators are (52.5 ± 5) % of the maximum signal value and are controlled by a peak value detector in the following mode: The comparator level is set to its default value by Reset or if a non-correct signal is received.

If a line pause is detected, the level reset is released and the ASIC is able to adapt itself to different signal levels. If the IC is not synchronized yet, the level adaption is faster (smaller attack and decay time constants) as in the synchronous case.

The output information of the receive blocks are the signals: "imp_pos" and "imp_neg".

The transmit block drives the output level for the modulated transmit signal edges. The transmit block consists of the NMOS transistor (transmit transistor), DAC for transmit signal formation and a Jabber-Inhibit Circuitry. The DAC is addressed by the digital block. If the transmitter is active more than typ. 300µs the Jabber-Inhibit circuit separates the IC from the ASI line. This condition can only be left by a Power-On-Reset.

In the digital block the received signal is analyzed, the transmit signal is generated and the data and parameter ports as well as the E²PROM interface are driven. The E²PROM interface acts as a serial two-wire interface with the following transmission strams:

After the ASI slave IC has sent the START condition, the device address is transmitted. This address serves for the selection of a maximum of 8 possible E²PROM ICs on this bus. This device address is defined as 000 within the ASI slave IC interface. Therefore in the application the PINS AO...A2 of the E²PROM are always set at Uss of the E²PROM.

Revision NC, May 2002 Page 3 of 15

Write Cycle

After the device address, the write cycle R/W-Bit=0, necessary for the identification of the write cycle, is sent. The E²PROM acknowledges the correct receipt with the acknowledge bit ACK. Then the data byte which should be written into the E²PROM reacknowledges with an ACK signal of the E²PROM. The STOP condition ends the cycle.

Read Cycle

The read cycle is similar to the herein described write cycle. In this case the R/W-Bit = 1 which causes the E^2 PROM to place read data for the received Byte address on the bus after the acknowledge.

The **START condition** is recognized by the E²PROM when a H/L edge arises on the dataline SDA during the high phase of the clock.

The **STOP condition** is present when a L/H edge arises on the dataline SDA during the high phase of the clock SCL. The timing of the E²PROM interface is derived from the ASI quartz frequency of 5.333 MHz.

Revision NC, May 2002 Page 4 of 15

Functional, electrical and timing characteristics

All voltages are referenced to LTGN = 0V, timing is valid for a clock frequency of 5.333 MHz.

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Note
VLTGP	Positive Voltage	- 0.3	40	V	1
VLTGPOV	Positive Impulse Voltage		50	V	2
Vin1	Voltage at D0D3, P0P3, DSTBn, PSTBn, CDC, UOUT, TEST	VLTGN - 0.3	VLTGP + 0.3	V	Vin ≤ 40V
Vin2	Voltage at OSC1, OSC2, SDA, SCL, U5R	VLTGN - 0.3	7	V	
lin	Input Current on every Pin	-25	25	mA	
Н	Non-Condensated Humidity				3
ESD	Electrostatic Discharge		1000	V	4
θSTG	Storing Temperature	-55	125	°C	
θlead	Soldering Temperature		260	°C	5
Ptot	Power Dissipation		1	W	6

Notes:

- 1 A polarity protection diode is to be used externally
- 2 Impulse width: $\leq 50 \mu s$; repetition rate: $\leq 0.5 Hz$
- 3 Defined in DIN 40040 cond. F
- 4 HBM; $R = 1.5 \text{ k}\Omega$; C = 100 pF
- 5 260 °C for 10 s (reflow and wave soldering), 360 °C for 3 s (manual soldering)
- 6 SOIC 20: Rthja = 64.5 °K/W typ.

Recommended Operating Conditions

Symbol	Parameter	Min	max	Unit	Note
VLTGP1	Positive Voltage	26.9	33.1	V	1
VLTGP2	Positive Voltage for Sensor Applications	17.5	33.1	V	2
ILTG	Operating Current @ VLTG = 30 V		6	mA	3
IOL	Max. Operating Current @ D0D3,		10	mA	
	DSTBn				
IOL	Max. Output Current @ P0P3, PSTBn		6	mA	
fC	Quartz Frequency	5.333		MHz	4
θamb	Operating Temperature	-25	85	°C	

Notes:

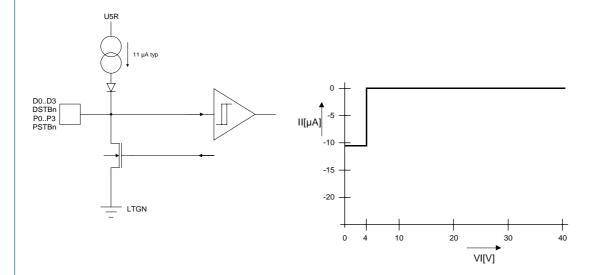
- 1 DC Parameter; VLTGP1min = VUOUTmin + VDROPmax;
 - VLTGPmax = VUOUTmax + VDROPmin
- 2 DC Parameter; VLTGP2min = VCOMOFFmax + VDROPmax
- 3 fC = 5.333 MHz, no load on UOUT and U5R, IC in idle mode
- 4 "ASI-Quartz"

Revision NC, May 2002 Page 5 of 15

Power Supply Pins LTGP and LTGN (LTGN = 0 V-reference

The ASI Slave IC's input at LTGP behaves as if a resistor RP and a (non-linear) parallel capacitor CP connect LTGP to LTGN.

LTGP input impedance over frequency is as follows:


RP	СР	F
≥ 10 kOhm	≤ 35 pF	50 kHz
≥ 10 kOhm	≤ 45 pF	100 kHz
≥ 10 kOhm	≤ 48 pF	125 kHz
≥ 10 kOhm	≤ 51 pF	160 kHz
≥ 10 kOhm	≤ 54 pF	200 kHz
≥ 10 kOhm	≤ 60 pF	300 kHz

Data and Parameter Ports (D0...D3, DSTBn; P0...P3, PSTBn)

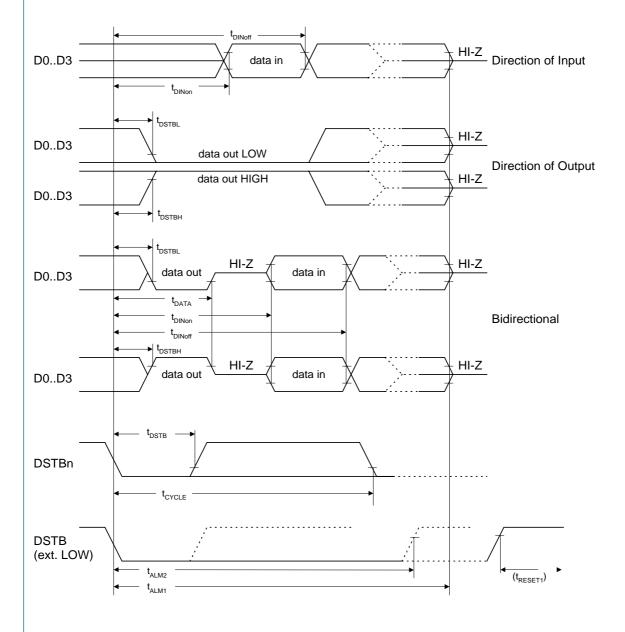
These pins are equipped with both an input and output channel as well as a current source based pull-up structure; the I/O-circuit at these pins and their DC-characteristics @ output channel 'Off' are described below.

The ASI slave system concept requires D0...D3 and DSTBn to be bidirectional pins and P0...P3 and PSTBn to be outputs.

The input channel on pins P0...P3 and PSTBn is only implemented to simplify the ASI Slave IC's device test, and is not intended to be used in ASI Slave system applications.

Revision NC, May 2002 Page 6 of 15

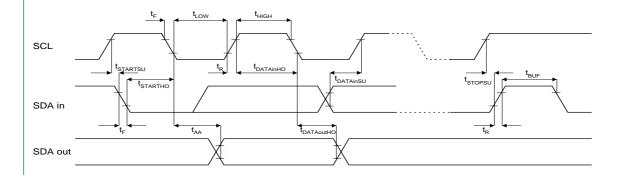
Symbol	Parameter	min	max	Unit	Note
VIL	Input Voltage "Low"	0	1.5	V	
VIH	Input Voltage "High"	3.5	VUOUT	V	
VHYST	Input Hysteresis	0.25	0.5	V	1
VOL11	Output Voltage	0	1	V	IOL11 = 10mA D0D3, DSTBn
VOL12	Output Voltage	0	1	V	IOL12 = 6mA P0P3, PSTBn
VOL2	Output Voltage	0	0.4		IOL2 = 2mA
IIL	Input Current	-20	-5	μA	VIL = 1V, Output "off"
IIH	Input Current	-10	10	μΑ	VU5R ≤ VIH ≤ 40V Output "off"
CDL	Loading Capacitance on DSTBn		10	pF	2


Notes:

- 1 Switching points approx. 2.5 V, i.e. 2.5 V \pm VHYST
- 2 For larger capacitive loads an external Pull-Up-Resistor to UOUT must be used, so that the beginning of the DSTB = LOW impulse of VIH \leq 3.5 V to DSTBn is reached in less than 35 μ s, otherwise a reset is the result.

Timing characteristics

Symbol	Parameter	min	max	Unit	Note
t DSTBL	DSTBn to D0D3, Direction OUT, Output Data LOW		1	μs	
t DSTBH	DSTBn to D0D3, Direction OUT, Output Data HIGH		1.5	μs	
t DATA	DSTBn to D0D3, High Resistive	6.2	7	μs	1
t DSTB	DSTBn Pulse Width	6	6.8	μs	
t _{DINon}	DSTBn to D0D3, Direction IN, Valid Input Data	6.5	7.7	μs	
t DINoff	DSTBn to D0D3, End of Direction IN	12.5	t CYCLE	μs	
t cycle	Next Cycle	150		μs	
t ALM1	Extension DSTBn to D0D3, High Resistive		44	μs	
t ALM2	Extension DSTBn (No Reset)	35		μs	
Note 1: Data	valid until DSTBn L/H-edge	1	L	1	1


Revision NC, May 2002 Page 7 of 15

Revision NC, May 2002 Page 8 of 15

Interface to the ext. E2PROM (U5R, SCL, SDA) / functional, electrical and timing characteristics

Symbol	Parameter	min	max	Unit	Note
VU5R	Output Voltage to E ² PROM	4.5	5.5	V	IU5R ≤ 3 mA
CU5R	1 0				
	Load Capacity to U5R	10	220	nF	Ceramics capacitor
IU5R	Output Current to U5R		3	mA	
VOL	Output Voltage "Low"	0	0.2 * VU5R	V	IOL = 10 µA
VOH	Output Voltage "High"	0.8 * VU5R	VU5R	V	-IOH = 10 μA
VIL	Input Voltage "Low" (only SDA)	-0.3	0.3 * VU5R	V	-IIL = 1.50.2mA
VIH	Input Voltage "High" (only SDA)	0.7 * VU5R	VU5R + 0.3	V	IIH = -11 μA
tDATAinSU	Set-up Time for Data Input	0.25		μs	
tDATAINHO	Hold Time for Data Input	0		μs	
t _{AA}	Time from SCK Low to SDA Data		3.5	μs	
	Out and ACK Out				
tDATAoutHO	Hold Time for Data Output	0.3		μs	
tstartsu	Set-up Time for Start Condition	4.7		μs	
tstartho	Hold Time for Start Condition	4		μs	
tstopsu	Set-up Time for Stop Condition	4.7		μs	
t _{BUF}	Time which has to be Free for Bus:	4.7		μs	
	Before Next Transmission				
t_R	Rise Time		1000	ns	
t _F	Fall Time		300	ns	
t _{LOW}	Impulse LOW Time	4700		ns	
tніGн	Impuls HIGH Time	4000		ns	
tscl	Clock Frequency for E ² PROM		100	kHz	fc = 5.333 MHz

The U5R supply pin provides a typically 5V supply voltage to the external E2PROM, and has a biasing capability only for this purpose.

Programming of the E^2PROM is possible with the E^2PROM soldered-in into the ASI Slave unit's pc-board by accessing the SCL / SDA serial bus with an external programming hardware.

Revision NC, May 2002 Page 9 of 15

For successful programming the programmer hardware must have sink/source capability of at least 5 mA, and the ASI Slave IC's supply voltage LTGP has to be in the range of 26.65 V ...33.35 V.

The only E²PROM address locations which can be programmed through the ASI Slave IC (hence over the ASI Bus and by the ASI Master), are locations 0 and 1, which both have been reserved for the ASI Slave unit's address.

The E²PROM has to be programmed in the following way:

E ² PROM	D7	D6	D5	D4	D3	D2	D1	D0	Initialization Data
Address									
0	0	0	0	ASI address					0
1	0	0	0		ASI address				0
2		ID C	Code	IO Configuration			Custom Specific Data		
3		ID C	Code		IO Configuration		Custom Specific Data		

Recommended E²PROM types:

Supplier	Туре	Organization
Philips	PCA8581P	128 x 8
ST	ST24C01	128 x 8
Catalyst	CAT24LC02(Z)IP	256 x 8
Xicor	X24LC02PI	256 x 8
Catalyst	CAT24LC04(Z)IP	512 x 8
Xicor	X24(L)C04PI	512 x 8

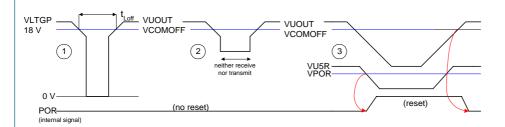
Sensor / actuator supply pin UOUT / Functional and electrical characteristics

Symbol	Parameter	min	max	Unit	Note
VUOUT	Output Voltage at UOUT	VLTGP –	VLTGP –	V	IUOUT = 35 mA
		VDROP min	VDROPmin		
VUOUTp	Overswing of the Output		1.5	V	CUOUT = 10 µF:
	Voltage				Switching 0-35 mA - 0
tuouтр	Overswing Impulse Width		2.	ms	
VDROP	Voltage Drop from LTGP to UOUT	5.5	6.7	V	
IUOUT	Output Current UOUT	0	35	mA	11.0 V < VUOUT < 27.6 V
CUOUT	Load Capacity UOUT	10	470	μF	

The interface is intended for the supply voltage to actuators, sensors as well as external circuits with a power supply of <35mA without overloading the ASI line in the range of the signal frequency. The ASI slave IC has an internal circuit protector which limits the current during the charging of the load capacitor and which effects a power down at thermal overload, e.g. at too high output currents.

In the case of a current break down on the ASI line of less than 1ms, the internally stored information is retained. The supply voltage of the IC during this time is extracted from the capacitor Pin UOUT which is interrupted from the ASI line.

Revision NC, May 2002 Page 10 of 15


Reset Behaviour

The ASI Slave IC can be in reset condition or reset by the following events:

- at power-up of VLTGP: as long as VUOUT has not yet reached the treshold voltage 9 V ≤ VCOMOFF ≤ 11 V;
- at power-down of VLTGP: as soon as U5R drops below the treshold voltage
 3.5 V ≤ VPOR ≤ 4 V;
- by a 'L' input level to DSTBn for more than 44 µs;
- resulting from a "Reset ASI Slave"- command by the ASI Master over the ASI BUS.

The different levels of VCOMOFF and VPOR as per a) and b) and the fact that the U5R supply voltage results from a down-regulation of the VUOUT supply assure a desirable hysteresis in the order of several volts between the VUOUT power-on-reset and power-down-reset threshold. Whereas at power-up the ASI Slave IC is released from reset by VUOUT reaching a level of between 9 V and 11 V, at power-down VUOUT has to come down to a level in the order of 5 V for U5R to drop into the reset-triggering window between 3.5 V and 4 V.

Some different power-down events are illustrated below:

Notes:

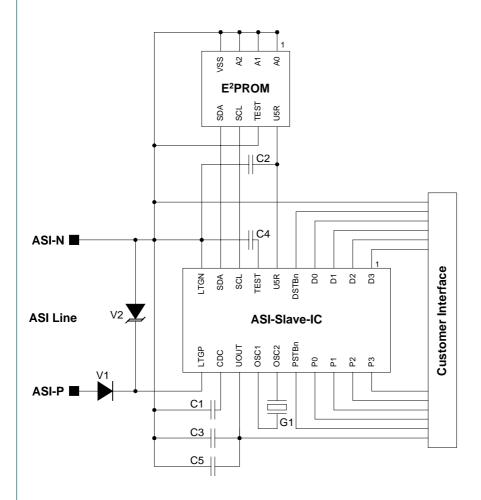
as to (1): No reset will be triggered, if VLTGP is lower than 18 V for less than 1 ms

as to (2): If VUOUT < VCOMOFF but still U5R > VPOR, communication over the Data Port is inhibited, but no

reset triggered

as to (3): If U5R < VPOR (resulting from VUOUT << VCOMOFF), a reset is triggered. Reset is overcome as soon as

VUOUT > VCOMOFF (implying U5R > VPOR)


In reset condition internal registers are cleared and data port D0...D3 is switched into high-impedant condition. After release from reset the ASI Slave automatically performs a first read cycle to clear the E²PROM from any previously interrupted communication state and a second one to load the ASI address, IO Configuration and ID Code into its internal registers.

Symbol	Parameter	min	max	Unit	Note
t reset	Reset Time after the Master Command		2	ms	
	"Reset ASI Slave" or DSTBn = ext. L/H-				
	Edge				
t reset2	Reset Time after Power On		30	ms	
t reset3	Reset Time after Power On with great		1000	ms	CUOUT = 470 µF
	Load Capacity				
t Loff	Voltage Breakdown Time		1	ms	CUOUT > 10 µF
VCOMMoff	Voltage for "Communication OFF"	9	11	V	
VPOR	Voltage for Internal Reset	3.5	4	V	

Revision NC, May 2002 Page 11 of 15

Application Example 1:

Sensor/actuator circuit supplied by the ASI Slave IC (UOUT) for supply current needs \leq 35 mA.

C1 = 22...470 nF / max. ASI BUS DC voltage

C2 = 10...220 nF / max VU5R = 5.5 V

C3 = 10...470 µF / max. (VUOUT + VUOUTp) = 29.1 V

C4 = 22...100 nF / max. (VUOUT + VUOUTp + 1.4 V) = 30.5 V

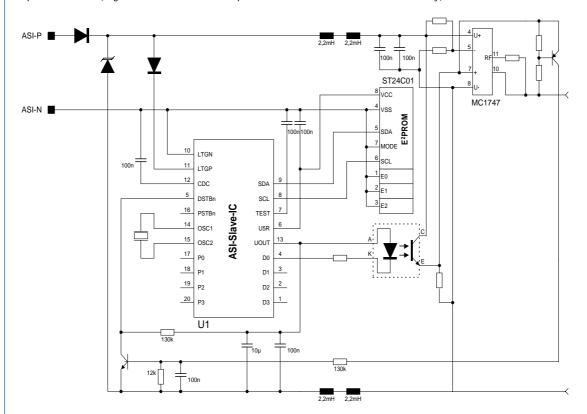
C5 = 10...100 nF (close to the IC) / max. (VUOUT + VUOUTp) = 29.1 V

V1 = 1N4002 or equivalent

V2 = TGL 41-39A or equivalent

G1 = ASI Crystal 5.333 MHz

For V2 a limiter diode with a small capacitance value should be selected, to ensure that the ASI Bus can be operated with the maximum number of Slave units connected.


In a more general sense care should be taken that the pc board tracks and the external components between the ASI Bus and LTGP / LTGN contribute to the ASI Slave unit's input impedance inductively and highly resistively, rather than capacitively.

Revision NC, May 2002 Page 12 of 15

Application Example 2:

Sensor / actuator circuit supplied from the ASI Bus for supply current needs > 35 mA

It is recommended to protect the ASI Bus by a fuse in this set-up, if there is a high risk of excessive current extraction due to component failure (e.g.: MC1747 or other components in the sensor / actuator circuitry).

ASI Quartz 5.333 MHz

AS2701A works fine with the following crystal types:

Citizen CM 309 Philips SQ 4849

ASI quartz crystals are available from:

Endrich GmbH Geyer electronic Kinseki Europe GmbH Dr. Ing. R. Mäder J. Reichmann Schirmer Str. 76 Hauptstr. 56 Camerloherstr. 71 D-72202 Nagold D-40211 Düsseldorf D-80689 München Tel.: +49-7452-6007-0 +49-89-546868-0 +49-211-36815-0 Fax: +49-7452-1470 +49-89-546868-90 +49-211-36815-10

Revision NC, May 2002 Page 13 of 15

Application Support

 For general information and documentation on the ASI concept you may contact the following local ASI Association:

AS-International Association

Rolf Becker

Zum Taubengarten 52 D-63571 Gelnhausen Tel.: +49-6051-473212 Fax: +49-6051-473282 e-mail: info@as-interface.net

AS-Interface CH

Rainer Schnaidt
Bittertenstraße 15
CH-4702 Oensingen
Tel.: +41-62-388-2567
Fax: +41-62-388-2525
e-mail: rainer.schnaidt@fho.ch

AS-Interface Italia

Giulio Pagliari

Piazza Maria Adelaide 1

I-20129 Milano

Tel.: +39-02-29405932 Fax: +39-02-29405932 e-mail: <u>gpagliari@iol.it</u>

AS-Interface Great Britain

Geoff Hodgkinson

1, West St, Titchfield Hampshire

PO14 4DH, UK

Tel.: +44-1329-511882 Fax: +44-1329-512063

e-mail: asi_nk@qqhcomms.demon.co.uk

AS-Interface Japan

Mr. Doi

FTF Bldg. West 9F 3-1 Ariake Kotu-ku, Tokyo 135, 8072 Japan

Tel.: +81-3-35703025 Fax: +81-3-35703062

e-mail: japan@as-interface.net

AS-Interface Association Belgique

Christine Biermant

Avenue Paul Hymanslaan 47

B-1200 Brüssel Tel.: +32-2-771-3912 Fax: +32-2-771-1264

e-mail: c.biermant@ndias.be

AS-Interface France

Alain Letourmy

89 boulevard Franklin Roosevelt F-92506 Rueil Malmaison Cedex

Tel.: +33-1-41-298221 Fax: +33-1-41-298482

e-mail: alain_letourmy@mail.schneider.fr

AS-Interface Netherlands

Andre Braakman Boerhaavelaan 40 NL-2700 AD Zoetermeer Tel.: +31-79-3531269

Fax: +31-79-3531269 Fax: +31-79-3531365 e-mail: aba@fme.nl

AS-Interface USA

Michael Bryant

16101 N. 82nd Street, Suite 3B Scottsdale, AZ 85260, USA Tel.: +1-480-483-2456

Fax: +1-480-483-7202

e-mail: michael.bryant@as-interface.com

AS-Interface Sweden

Lars Mattsson

AS-Interface Sweden/Marknads Partner

Mattsson & Lundell AB Karl Nordströms väg 31 SE-43253 Varberg

Tel.: +46-340629-270 Fax: +46-340677-190

e-mail: <u>lars.mattson@marknadspartnermol.se</u>

Revision NC, May 2002 Page 14 of 15

b) A demoboard, equipped with AS2701A and supporting discrete components, is available from:

Bihl & Wiedemann GmbH Leuze electronic GmbH

 Mr. Bihl
 Mr. Keller

 Käfertaler Straße 164
 In der Braike 1

 D-68167 Mannheim
 D-73277 Owen/Teck

 Tel.: +49-621-339-2723
 Tel.: +49-7021-573-248

 Fax: +49-621-339-2239
 Fax: +49-8021-573-200

c) Technical hotline assistance is provided by:

Bihl & Wiedemann GmbH (see above)

Bibliography

ASI: The Actuator-Sensor-Interface for Automation

Edts.: Werner Kriesel, Otto W. Madelung Carl Hanser Verlag, Munich and Vienna, 1995

ISBN: 3-446-18265-9

Ordering Information

AS2701A Package: SOIC 20 Delivery: tubes

AS2701AT Package: SOIC 20 Delivery: Tape & Reel

Contact

austriamicrosystems AG A 8141 Schloss Premstätten, Austria T. +43 (0) 3136 500 0 F. +43 (0) 3136 525 01 amadeus@austriamicrosystems.com

austriamicrosystems USA, Inc. 8601 Six Forks Road, Suite 400 Raleigh, NC 27615 USA

T. 919 676 5292 F. 509 696 2713

Copyright

Copyright © 2001 austriamicrosystems. Trademarks registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. To the best of its knowledge, austriamicrosystems asserts that the information contained in this publication is accurate and correct.

Revision NC, May 2002 Page 15 of 15