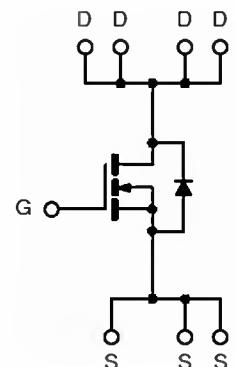


SOP-8
Pin Definition:
1. Source
2. Source
3. Source
4. Gate
5, 6, 7, 8. Drain

PRODUCT SUMMARY

V_{DS} (V)	R_{DS(on)}(mΩ)	I_D (A)
30	11.5 @ V _{GS} = 10V	12.5
	16.5 @ V _{GS} = 4.5V	10

Features


- Advance Trench Process Technology
- High Density Cell Design for Ultra Low On-resistance

Application

- High-Side DC/DC Conversion
- Notebook
- Server

Ordering Information

Part No.	Package	Packing
TSM4392CS RL	SOP-8	2.5Kpcs / 13" Reel

Block Diagram

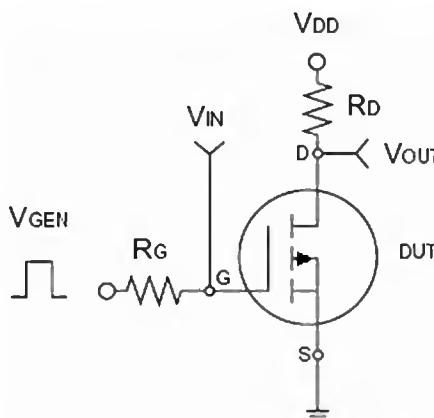
N-Channel MOSFET
Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current	I _D	12.5	A
Pulsed Drain Current	I _{DM}	50	A
Continuous Source Current (Diode Conduction) ^{a,b}	I _S	2.7	A
Maximum Power Dissipation	T _a = 25°C	3.0	W
		1.9	
Operating Junction Temperature	T _J	+150	°C
Operating Junction and Storage Temperature Range	T _J , T _{STG}	- 55 to +150	°C

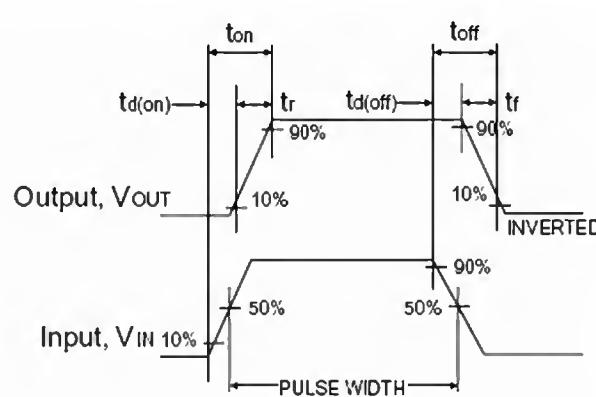
Thermal Performance

Parameter	Symbol	Limit	Unit
Junction to Case Thermal Resistance	R<θ _{JF}	25	°C/W
Junction to Ambient Thermal Resistance (PCB mounted)	R<θ _{JA}	50	°C/W

Notes:

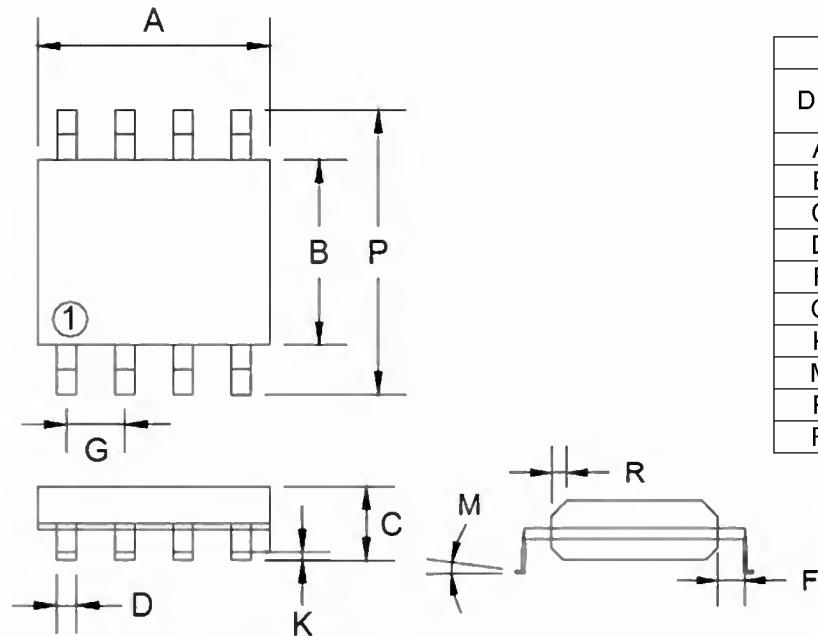

- a. Pulse width limited by the Maximum junction temperature
- b. Surface Mounted on FR4 Board, t ≤ 10 sec.

Electrical Specifications (Ta = 25°C unless otherwise noted)

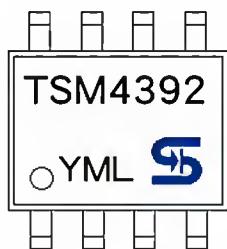

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Static						
Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA	BV _{DSS}	30	--	--	V
Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250μA	V _{GS(TH)}	1	1.8	3	V
Gate Body Leakage	V _{GS} = ±20V, V _{DS} = 0V	I _{GSS}	--	--	±100	nA
Zero Gate Voltage Drain Current	V _{DS} = 24V, V _{GS} = 0V	I _{DSS}	--	--	1.0	μA
On-State Drain Current ^a	V _{DS} ≥ 5V, V _{GS} = 10V	I _{D(ON)}	30	--	--	A
Drain-Source On-State Resistance ^a	V _{GS} = 10V, I _D = 12.5A	R _{DS(ON)}	--	9	11.5	mΩ
	V _{GS} = 4.5V, I _D = 10A		--	13	16.5	
Forward Transconductance ^a	V _{DS} = 15V, I _D = 12.5A	g _{fs}	--	40	--	S
Diode Forward Voltage	I _S = 2.7A, V _{GS} = 0V	V _{SD}	--	0.85	1.3	V
Dynamic^b						
Total Gate Charge	V _{DS} = 15V, I _D = 12.5A, V _{GS} = 10V	Q _g	--	26	--	nC
Gate-Source Charge		Q _{gs}	--	6	--	
Gate-Drain Charge		Q _{gd}	--	5	--	
Input Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1.0MHz	C _{iss}	--	2134	--	pF
Output Capacitance		C _{oss}	--	343	--	
Reverse Transfer Capacitance		C _{rss}	--	134	--	
Switching^c						
Turn-On Delay Time	V _{DD} = 15V, R _L = 15Ω, I _D = 1A, V _{GEN} = 10V, R _G = 6Ω	t _{d(on)}	--	17	--	nS
Turn-On Rise Time		t _r	--	3.5	--	
Turn-Off Delay Time		t _{d(off)}	--	40	--	
Turn-Off Fall Time		t _f	--	6	--	

Notes:

- a. pulse test: PW ≤300μS, duty cycle ≤2%
- b. For DESIGN AID ONLY, not subject to production testing.
- c. Switching time is essentially independent of operating temperature.



Switching Test Circuit


Switching Waveforms

SOP-8 Mechanical Drawing

SOP-8 DIMENSION				
DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX.
A	4.80	5.00	0.189	0.196
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27BSC		0.05BSC	
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Marking Diagram

Y = Year Code
M = Month Code
 (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug,
 I=Sep, J=Oct, K=Nov, L=Dec)
L = Lot Code

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Taiwan Semiconductor:](#)

[TSM4392CS](#)