

An ISO/TS16949 and ISO 9001 Certified Company

SOT-23 Formed SMD Package

BC817 BC818

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors

Marking

BC817 = 6D

BC817-16 = 6A

BC817-25 = 6B

BC817-40 = 6C

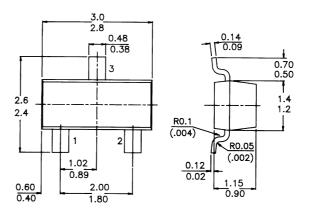
BC818 = 6H

BC818-16 = 6E

BC818-25 = 6F

BC818-40 = 6G

Pin configuration


1 = BASE

2 = EMITTER

3 = COLLECTOR

PACKAGE OUTLINE DETAILS ALL DIMENSIONS IN mm

DC017

DC010

ABSOLUTE MAXIMUM RATINGS

			DC017		DCOL	o
Collector-emitter voltage ($V_{BE} = 0$)	$V_{C\!E\!S}$	max.	50		30	V
Collector-emitter voltage (open base)	V_{CE0}	max.	45		25	V
Collector current (peak value)	I_{CM}	max.		1000		mA
Total power dissipation up to $T_{amb} = 25 ^{\circ}C$	P_{tot}	max.		<i>250</i>		mW
Junction temperature	T_j	max.		<i>150</i>		$^{\circ}$ C
Transition frequency at $f = 100 \text{ MHz}$	•					
$I_C = 10 \text{mA}; \ V_{CE} = 5 V$	f_T	>		100		MHz

RATINGS (at $T_A = 25^{\circ}C$ unless otherwise specimiting values	/		BC817 B		BC81	C818	
Collector-emitter voltage ($V_{BE} = 0$)	$V_{C\!E\!S}$	max.	50		30	V	
Collector-emitter voltage (open base)							
$I_C = 10 \text{ mA}$	V_{CE0}	max.	45		25	V	
Emitter-base voltage (open collector)	V_{EB0}	max.	5		5	V	
Collector current (d.c.)	I_C	max.		500		mA	
Collector current (peak value)	I_{CM}	max.		1000		mA	
Emitter current (peak value)	$-I_{EM}$	max.		1000		mA	
Base current (d.c.)	I_B	max.		100		mA	
Base current (peak value)	I_{BM}	max.		200		mA	
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max.		<i>250</i>		mW	
Storage temperature	T_{stg}		-53	5 to +1	50	$^{\circ}$ C	
Junction temperature	T_j	max.		<i>150</i>		°C	
THERMAL RESISTANCE							
			E	<u> </u>	. 500	LXX/	
From junction to ambient			Λ	?th j-a =	300	IXVV	
CHARACTERISTICS							
$T_j = 25$ °C unless otherwise specified							
Collector cut-off current							
$I_E = 0$; $V_{CB} = 20$ V; $T_j = 25$ °C			I_{CB0}	<	100	nΑ	
$I_E = 0$; $V_{CB} = 20V$; $T_i = 150^{\circ}C$			I_{CB0}	<	5	μA	
Emitter cut-off current							
$I_C = 0$; $V_{EB} = 5 V$			I_{EBO}	<	10	μA	
Base emitter voltage *							
$l_C = 500 \text{ mA}; V_{CE} = 1 \text{ V}$			V_{BE}	<	1,2	V	
Saturation voltage							
$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$			V_{CEsat}	<	700	mV	
D.C. current gain							
$I_C = 500 \text{ mA}; V_{CE} = 1 \text{ V}$			h_{FE}	>	40		
$I_C = 100 \text{ mA}; V_{CE} = 1 \text{ V}; BC817/BC818$			h_{FE}	100 to	<i>600</i>		
BC817-16				400 .	050		
BC818-16			h_{FE}	100 to	250		
BC817-25							
BC818-25			h_{FE}	160 to	400		
BC817-40							
BC818-40			h_{FE}	250 to	600		
Transition frequency at $f = 100 \text{ MHz}$							
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$			f_T	>	100	МЊ	
Collector capacitance at $f = 1$ MHz			- 1		100	14 H K	
$I_E = I_e = 0; V_{CB} = 10V$			C_{c}	typ.	5	рF	
E Te o, CD To			-c	JP.	J	P	

Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119

email@cdil.com www.cdilsemi.com