Sianetics

Logic Products

FEATURES

- · Synchronous counting and loading
- Up/down counting
- Modulo 16 binary counter 169A
- BCD decade counter '168A
- Two Count Enable inputs for n-bit cascading
- Positive edge-triggered clock

DESCRIPTION

The '168A is a synchronous, presettable BCD decade up/down counter featuring an internal carry look-ahead for applications in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the Count Enable inputs and internal gating. This mode of operation eliminates the output spikes which are normally associated with asynchronous (ripple clock) counters. A buffered Clock input triggers the flip-flops on the LOWto-HIGH transition of the clock.

74LS168A, 74LS169A. S168A, S169A **4-Bit Bidirectional Counters**

4-Bit Up/Down Synchronous Counter **Product Specification**

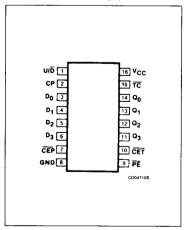
TYPE ,	TYPICAL IMAX	TYPICAL SUPPLY CURRENT (TOTAL)
74LS168A	32MHz	20mA
74S168A	70MHz	100mA
74LS169A	32MHz	20mA
74S169A	70MHz	100mA

ORDERING CODE

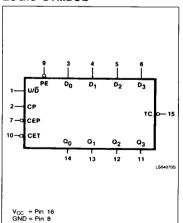
PACKAGES Plastic DIP	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N74LS168AN, N74S168AN N74LS169AN, N74S169AN
Plastic SO	N74LS169AD, N74LS169AD, N74S169AD

NOTE:

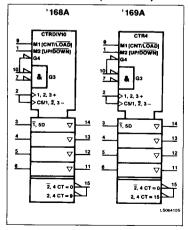
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual


INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S	74LS
PE	Input	1Sul	2LSul
CET	Input	2Sul	1LSul
Other	Inputs	1Sul	1LSul
All	Outputs	10Sul	10LSul


NOTE:

Where a 74S unit load (Sul) is understood to be 50μ A I_{IH} and -2.0mA I_{IL} and a 74LS unit load (LSul) is 20μ A I_{IH} and -0.4mA I_{II}.


PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 4, 1985

5-310

853-0457 81502

74LS168A, 74LS169A, S168A, S169A

The counter is fully programmable; that is, the outputs may be preset to either level. Presetting is synchronous with the clock and takes place regardless of the levels of the Count Enable inputs. A LOW level on the Parallel Enable (PE) input disables the counter and causes the data at the $D_{\rm n}$ input to be loaded into the counter on the next LOW-to-HIGH transition of the clock.

The direction of counting is controlled by the $Up/Down (U/\overline{D})$ input; a HIGH will cause the

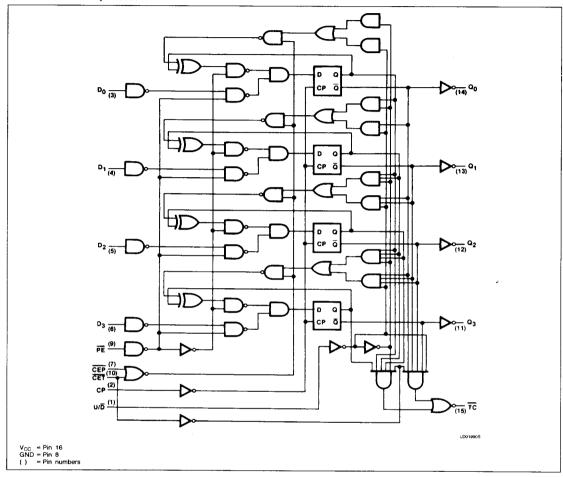

count to increase, a LOW will cause the count to decrease.

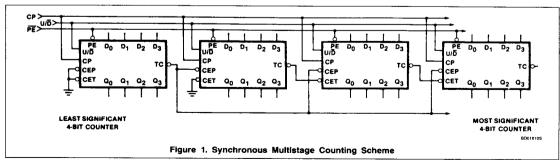
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two Count Enable inputs (CET • CEP) and a Terminal Count (TC) output. Both Count Enable inputs must be LOW to count. The CET input is fed forward to enable the TC output. The TC output thus enabled will produce a LOW

output pulse with a duration approximately equal to the HIGH level portion of the Q_0 output. This LOW level $\overline{\text{TC}}$ pulse is used to enable successive cascaded stages. See Figure A for the fast synchronous multistage counting connections.

The '169A is identical except that it is a Modulo 16 counter.

LOGIC DIAGRAM, '168A




December 4, 1985

5-311

74LS168A, 74LS169A, S168A, S169A

LOGIC DIAGRAM, '169A

December 4, 1985

5-312

74LS168A, 74LS169A, S168A, S169A

MODE SELECT - FUNCTION TABLE

OPERATING MODE			OUTPUTS					
	СР	U/D̄	CEP	CET	PE	D _n	Qn	TC
Parallel Load	†	X X	X X	X X		í h	L H	(1) (1)
Count Up	1	h	ı	I	h	х	Count Up	(1)
Count Down	1	ī	ı	ı	h	х	Count Down	(1)
Hold (do nothing)	↑	X X	h X	X h	h h	X X	q _n q _n	(1) H

H = HIGH voltage level steady state

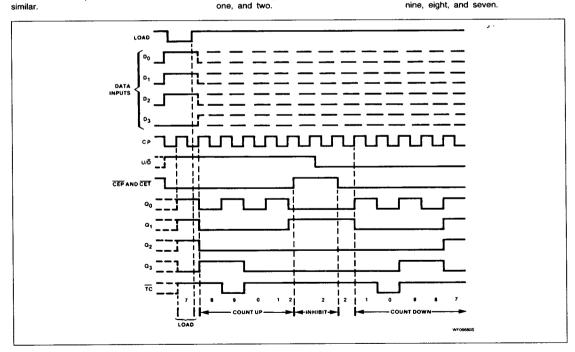
h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition

L = LOW voltage level steady state

I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition

X = Don't care

 ${\bf q}$ = Lower case letters indicate the state of the referenced output prior to the LOW-to-HIGH clock transition ${\bf \uparrow}$ = LOW-to-HIGH clock transition


NOTE:

1. The TC is LOW when CET is LOW and the counter is at Terminal Count. Terminal Count Up is (HHHH) and Terminal Count Down is (LLLL) for '169A. The TC is LOW when CET is LOW and the counter is at Terminal Count. Terminal Count Up is (HLLH) and Terminal Count Down is (LLLL) for '168A.

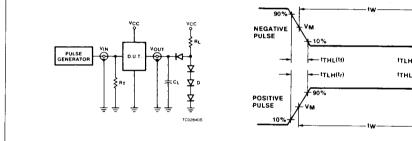
WAVEFORM (Typical Load, Count, and Inhibit Sequences)

Illustrated below is the following sequence for

- 1. Load (preset) to BCD seven.
- the '168A. The operation of the '169A is 2. Count up to eight, nine (maximum), zero, one, and two.
- Inhibit.
- Count down to one, zero (minimum), nine, eight, and seven.

5-313

74LS168A, 74LS169A, S168A, S169A


ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74LS	74S	UNIT
V _{CC}	Supply voltage	7.0	7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	-0.5 to +5.5	
I _{IN}	Input current	-30 to +1	-30 to +5	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	-0.5 to +V _{CC}	V
TA	Operating free-air temperature range	0 to	70	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER			74LS			74S		
		Min	Nom	Max	Min	Nom	Max	UNIT
V _{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
ViH	HIGH-level input voltage	2.0			2.0			V
VIL	LOW-level input voltage			+ 0.8			+0.8	V
l _{ik}	Input clamp current		,-	-18			-18	mA
l _{OH}	HIGH-level output current			-400			-1000	μΑ
l _{OL}	LOW-level output current		-	8	-		20	mA
TA	Operating free-air temperature	0		70	0		70	°C

TEST CIRCUITS AND WAVEFORMS

Test Circuit For 74 Totem-Pole Outputs

DEFINITIONS

 R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value. C_L = Load capacitance includes jig and probe capacitance;

see AC CHARACTERISTICS for value.

 $\mbox{R}_{\mbox{\scriptsize T}}=\mbox{Termination}$ resistance should be equal to $\mbox{Z}_{\mbox{\scriptsize OUT}}$ of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent.

 $t_{\text{TLH}},\,t_{\text{THL}}$ Values should be less than or equal to the table entries.

f				- 0V
-	+ tTHL(tf)	tTLH(tr)	-	
-	TEH(tr)	tTHL(ti)	•	
VE	90%	90%		- AMP (V)
7	⊬ ∨m	Ym>	7	
<u>0%</u> ₩		w	10%	- ov
				WF06450S
	V _M = 1.3V for 74LS;	V _M ≈ 1.5V for all other	TTL families	3.

Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS									
TAMIL 1	Amplitude	Rep. Rate	Pulse Width	t _{TLH}	t _{THL}					
74	3.0V	1MHz	500ns	7ns	7ns					
74LS	3.0V	1MHz	500ns	15ns	6ns					
74S	3.0V	1MHz	500ns	2.5ns	2.5ns					

74LS168A, 74LS169A, S168A, S169A

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER				74L	5168A, 1	169A	748	69A	UNIT		
		TEST CONDITIONS1			Min	Typ ²	Max	Min	Typ ²	Max	UNII
V _{OH}	HIGH-level output voltage	V _{CC} = MIN, V _{IL} = MAX, I			2.7	3.4		2.7	3.4		V
				I _{OL} = MAX		0.35	0.5			0.5	V
V _{OL}	LOW-level output voltage	V _{CC} = MIN, V _{IH} = MIN, V _{IL} = MAX		I _{OL} = 4mA (74LS)		0.25	0.4				>
V _{IK}	Input clamp voltage	V _{CC} = MIN,	I _I = I _{IK}				-1.5			-1.2	٧
l ₁	Input current at maximum input voltage		Vı	= 5.5V						1.0	mA
		V _{CC} = MAX	V ₁ = 7.0V	PE input			40				μΑ
				Other inputs	_		0.1				mA
-		V _{CC} = MAX	V ₁ = 2.7V	PE input			0.2			100	mA
I _{IH}	HIGH-level input current			CET input			20			100	μA
				Other inputs			20			50	μΑ
			-	PE input			-0.8		Γ		mA
			$V_{\parallel} = 0.4V$	Other inputs			-0.4				mA
I _{IL}	LOW-level input current	V _{CC} = MAX	1	CET input						-4.0	mA
		V _I = 0.5V	Other inputs						-2.0	mA	
los	Short-circuit output current ³	V _{CC} = MAX			-20		-100	-40		-100	mA
lcc	Supply current ⁴ (total)	V _{CC} = MAX				20	34		55	80	mA

NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at V_{CC} = 5V, T_A = 25°C.
- 3. IoS is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX + 0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- 4. I_{CC} is measured after applying a momentary 4.5V, then ground to the Clock input with all other inputs grounded and outputs open.

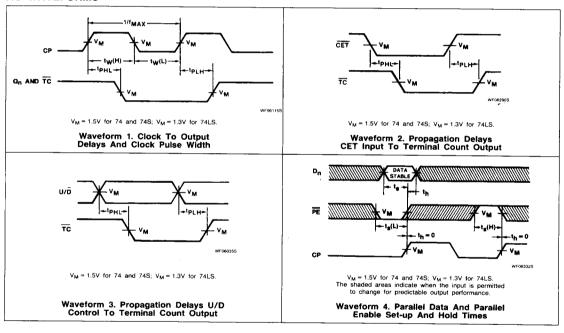
AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V

			74	4LS	745				
	PARAMETER	PARAMETER TEST CONDITIONS		IDITIONS $C_L = 15pF, R_L = 2k\Omega$		C_L = 15pF, R_L = 280 Ω U/ \overline{D} = HIGH		R _L = 280Ω = LOW	UNIT
			Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum clock frequency	Waveform 1	25		40		40		MHz
t _{PLH}	Propagation delay Clock to Q output	Waveform 1		20 23		12 15		12 15	ns
t _{PLH} t _{PHL}	Propagation delay Clock to TC	Waveform 1		35 35		17 15		15 25	ns
t _{PLH} t _{PHL}	Propagation delay	Waveform 2		14 14		11 15		11 15	ns
t _{PLH}	Propagation delay U/D control to TC(b)	Waveform 3		25 29		15 15		10 20	ns

NOTE

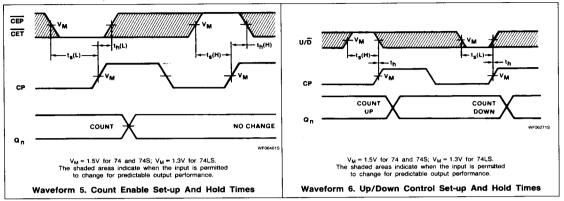
Per industry convention, f_{MAX} is the worst case value of the maximum device operating frequency with no constraints on t, t_i, pulse width or duty cycle.

December 4, 1985


b. Propagation delay time from up/down to terminal count must be measured with the counter at either a minimum or a maximum count. As the logic level of the Up/Down input is changed, the Terminal Count output will follow. If the count is minimum (0), the Terminal Count output transition will be in phase. If the count is maximum (9 for '168A or 15 for 169A, the Terminal Count output will be out of phase.

74LS168A, 74LS169A, S168A, S169A

AC SET-UP REQUIREMENTS TA = 25°C, VCC = 5.0V


	PARAMETER	TEST CONDITIONS	74LS		74S		
	TATIONICIES	TEST CONDITIONS	Min	Max	Min	Max	UNIT
tw	Clock pulse width	Waveform 1	25		10		ns
ts	Setup time, data to clock	Waveform 4	20		6		ns
th	Hold time, data to clock	Waveform 4	0		1		ns
ts	Setup time, PE to clock	Waveform 4	25	-	9		ns
t _h	Hold time, PE to clock	Waveform 4	0		0		ns
ts	Setup time, CEP & CET to clock	Waveform 5	20		16		ns
th	Hold time, CEP & CET to clock	Waveform 5	0		0		ns
ts	Setup time, U/D to clock	Waveform 6	30		20	 	ns
t _h	Hold time, U/D to clock	Waveform 6	0		0		ns

AC WAVEFORMS

74LS168A, 74LS169A, S168A, S169A

AC WAVEFORMS (Continued)

