

Peak EMI Reducing Solution

Features

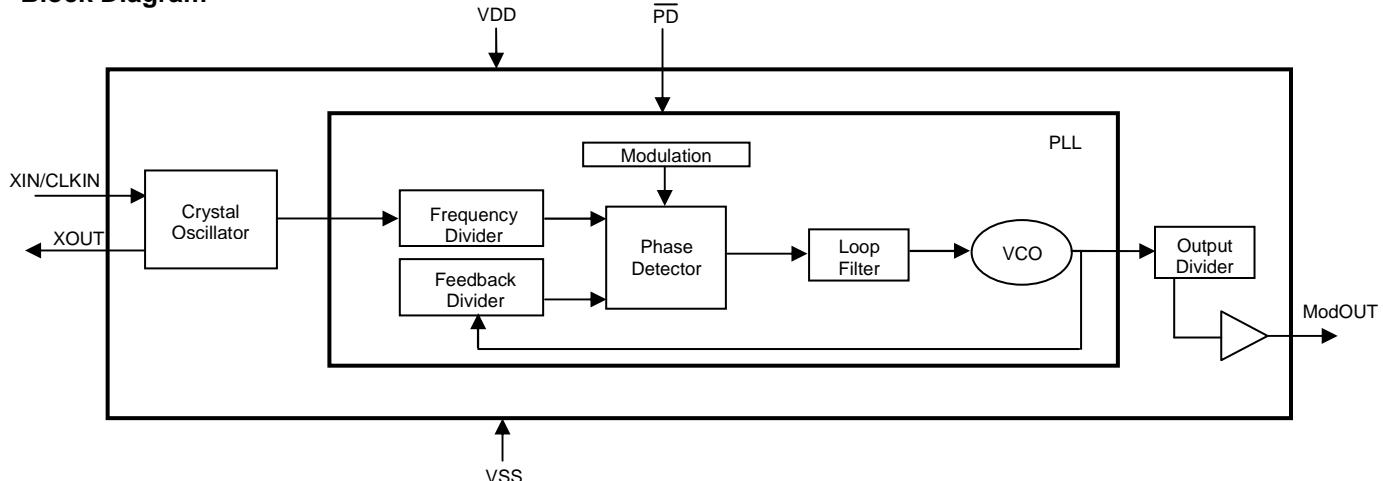
- Generates an EMI optimized clock signal at the output.
- Integrated loop filter components.
- Operates with a 3.3V Supply.
- Operating current less than 4mA.
- CMOS design.
- Input frequency range: 13MHz to 30MHz
- Generates a 1X low EMI spread spectrum clock of the input frequency.
- Frequency deviation: $\pm 1.8\%$ (Typ) @ 14.7MHz Input Frequency.
- Available in 6L-TSOP (6L-TSOT-23) package.

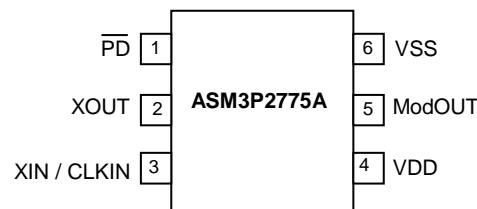
Product Description

The ASM3P2775A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The ASM3P2775A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. The ASM3P2775A allows significant system cost savings by reducing the number of circuit board layers, ferrite beads and shielding that are traditionally required to pass EMI regulations.

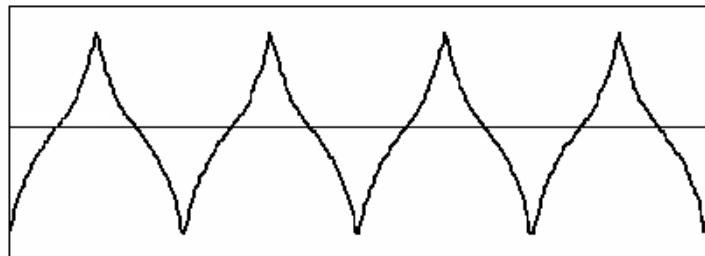
The ASM3P2775A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all digital method.

The ASM3P2775A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This result in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation.'


Applications


The ASM3P2775A is targeted towards all portable devices with very low power requirements like MP3 players and digital still cameras.

Key Specifications


Description	Specification
Supply voltage	VDD = 3.3V $\pm 0.3\text{V}$
Cycle-to-Cycle Jitter	$\pm 200\text{pS}$ (typ)
Output Duty Cycle	45/55% (worst case)
Modulation Rate Equation	$F_{\text{IN}}/640$
Frequency Deviation	$\pm 1.8\%$ (Typ) @ 14.7MHz

Block Diagram

Pin Configuration (6L-TSOP Package)**Pin Description**

Pin#	Pin Name	Type	Description
1	PD	I	Power-down control pin. Pull low to enable power-down mode. Connect to VDD if not used.
2	XOUT	O	Crystal connection. If using an external reference, this pin must be left unconnected.
3	XIN / CLKIN	I	Crystal connection or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock.
4	VDD	P	Power supply for the entire chip.
5	ModOUT	O	Spread spectrum clock output.
6	VSS	P	Ground connection.

Modulation Profile**Specifications**

Description	Specification
Frequency Range	13MHz < CLKIN < 30MHz
Modulation Equation	$F_{IN}/640$
Frequency Deviation	$\pm 1.8\% \text{ (Typ) } @ 14.7\text{MHz}$

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
VDD, V _{IN}	Voltage on any pin with respect to Ground	-0.5 to +4.6	V
T _{STG}	Storage temperature	-65 to +125	°C
T _A	Operating temperature	-40 to +85	°C
T _S	Max. Soldering Temperature (10 sec)	260	°C
T _J	Junction Temperature	150	°C
T _{DV}	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	kV

Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.

Operating Conditions

Parameter	Description	Min	Max	Unit
VDD	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	0	+70	°C
C _L	Load Capacitance		15	pF
C _{IN}	Input Capacitance		7	pF

DC Electrical Characteristics

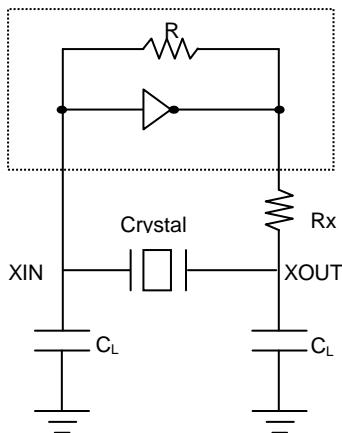
Symbol	Parameter	Min	Typ	Max	Unit
V_{IL}	Input low voltage	VSS-0.3		0.8	V
V_{IH}	Input high voltage	2.0		VDD+0.3	V
I_{IL}	Input low current			-35	μ A
I_{IH}	Input high current			35	μ A
I_{XOL}	XOUT output low current (@ 0.4V, VDD = 3.3V)		3		mA
I_{XOH}	XOUT output high current (@ 2.5V, VDD = 3.3V)		3		mA
V_{OL}	Output low voltage (VDD = 3.3 V, I_{OL} = 8mA)			0.4	V
V_{OH}	Output high voltage (VDD = 3.3 V, I_{OH} = 8mA)	2.5			V
I_{DD}	Static supply current ¹			10	μ A
I_{CC}	Dynamic supply current (3.3V, 16MHz and no load)		3.5		mA
VDD	Operating voltage	3.0	3.3	3.6	V
t_{ON}	Power-up time (first locked cycle after power-up) ¹			5	ms
Z_{OUT}	Output impedance		45		Ω

Notes: 1. XIN / CLKIN pin and PD pin are pulled low.

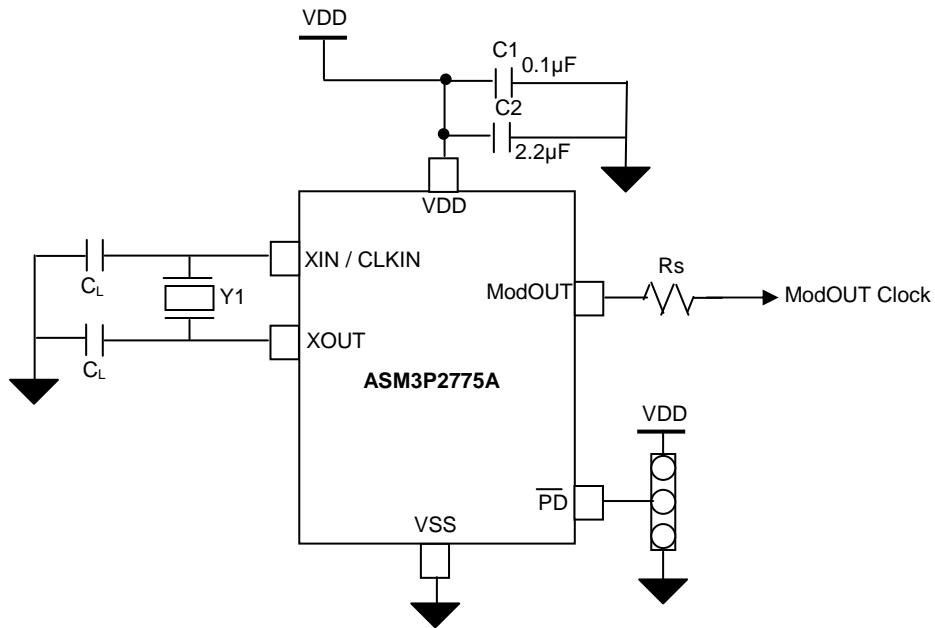
2. VDD and XIN / CLKIN input are stable, PD pin is made high from low.

AC Electrical Characteristics

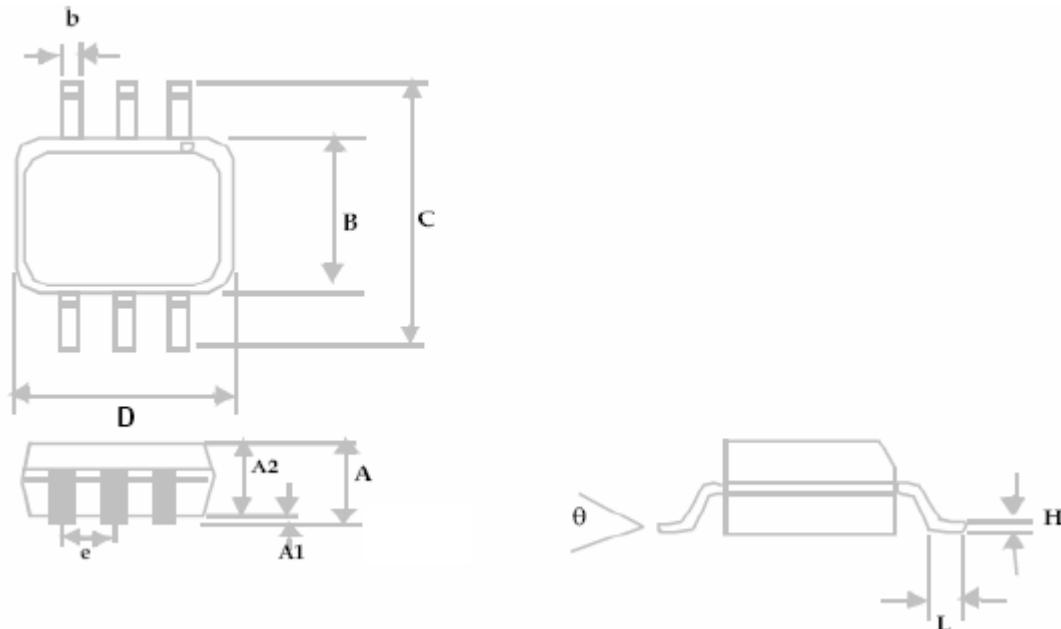
Symbol	Parameter	Min	Typ	Max	Unit
CLKIN	Input frequency	13		30	MHz
ModOUT	Output frequency	13		30	MHz
f_d	Frequency Deviation	Input Frequency = 13MHz	$\pm 1.85\%$		%
		Input Frequency = 30MHz	$\pm 1.45\%$		
t_{LH}^1	Output rise time (measured from 0.8 to 2.0V)	0.5	1.1	1.3	ns
t_{HL}^1	Output fall time (measured at 2.0V to 0.8V)	0.3	0.8	1.0	ns
t_{JC}	Jitter (cycle-to-cycle)		± 200	± 300	ps
t_D	Output duty cycle	45	50	55	%


Note: 1. t_{LH} and t_{HL} are measured into a capacitive load of 15pF.

Typical Crystal Specifications


Fundamental AT cut parallel resonant crystal	
Nominal frequency	14.31818MHz
Frequency tolerance	$\pm 50\text{ppm}$ or better at 25°C
Operating temperature range	-25°C to +85°C
Storage temperature	-40°C to +85°C
Load capacitance	18pF
Shunt capacitance	7pF maximum
ESR	25 Ω

Note: C_L is Load Capacitance and R_x is used to prevent oscillations at overtone frequency of the Fundamental frequency.


Typical Crystal Interface Circuit

$C_L = 2 * (C_P - C_S)$,
 Where C_P = Load capacitance of crystal from crystal vendor datasheet.
 C_S = Stray capacitance due to C_{IN} , PCB, Trace, etc.

Typical Application Schematic

Note: Refer to *Pin Description* table for Functionality details.

Package Information**6L-TSOP Package**

Symbol	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
A	0.04	1.00
A1	0.00	0.004	0.00	0.10
A2	0.033	0.036	0.84	0.90
b	0.012	0.02	0.30	0.50
H	0.005 BSC		0.127 BSC	
D	0.114 BSC		2.90 BSC	
B	0.06 BSC		1.60 BSC	
e	0.0374 BSC		0.950 BSC	
C	0.11 BSC		2.80 BSC	
L	0.0118	0.02	0.30	0.50
θ	0°	4°	0°	4°

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM3P2775AF-06OR	X4L	6L-TSOP (6L-TSOT-23), TAPE & REEL, Pb Free	0°C to +70°C

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-free.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION**LITERATURE FULFILLMENT:**

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free
USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free
USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855

Toll Free USA/Canada

Europe, Middle East and Africa Technical**Support:**

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website:

www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your
local Sales Representative