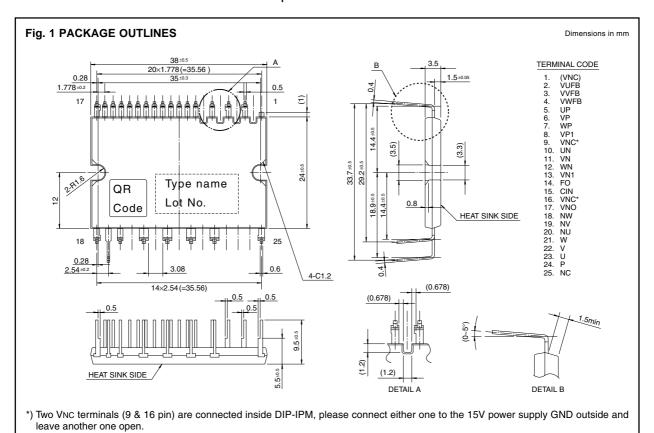
TRANSFER-MOLD TYPE INSULATED TYPE

PS21963-S

INTEGRATED POWER FUNCTIONS

600V/10A low-loss 5th generation IGBT inverter bridge for three phase DC-to-AC power conversion.


Open emitter type.

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For upper-leg IGBTs: Drive circuit, High voltage isolated high-speed level shifting, Control supply under-voltage (UV) protection.
- For lower-leg IGBTs: Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to an SC fault (Lower-leg IGBT) or a UV fault (Lower-side supply).
- Input interface: 3V, 5V line (High Active).

APPLICATION

AC100V~200V inverter drive for small power motor control.

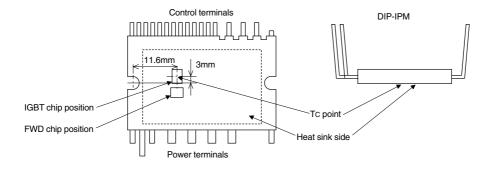
TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS ($T_j = 25^{\circ}C$, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-NU, NV, NW	500	V
VCES	Collector-emitter voltage		600	V
±lc	Each IGBT collector current	Tc = 25°C	10	Α
±ICP	Each IGBT collector current (peak)	Tc = 25°C, less than 1ms	20	Α
Pc	Collector dissipation	Tc = 25°C, per 1 chip	27.0	W
Tj	Junction temperature	(Note 1)	-20~+125	°C

Note 1: The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@ Tc $\leq 100^{\circ}$ C). However, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to $T_{j(ave)} \leq 125^{\circ}$ C (@ Tc $\leq 100^{\circ}$ C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
VDB	Control supply voltage	Applied between Vufb-U, Vvfb-V, Vwfb-W	20	V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$VD = 13.5 \sim 16.5 \text{V}$, Inverter part $T_j = 125 ^{\circ}\text{C}$, non-repetitive, less than 2μs	400	V
Tc	Module case operation temperature	(Note 2)	-20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, All connected pins to heat-sink plate	1500	Vrms

Note 2: To measurement point

TRANSFER-MOLD TYPE **INSULATED TYPE**

THERMAL RESISTANCE

0	Davamatav	Condition		Limits		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Rth(j-c)Q	Junction to case thermal Inverter IGBT part (per 1/6 module)		_	_	3.7	°C/W
Rth(j-c)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)	-	_	4.5	°C/W

Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM

and heat-sink.

The contacting thermal resistance between DIP-IPM case and heat sink (Rth(c-f)) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) (per 1/6 module) is about 0.3°C/W when the grease thickness is 20μm and the thermal conductivity is 1.0W/m-k.

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)

INVERTER PART

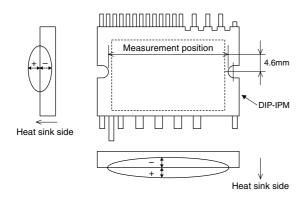
Symbol Parameter		Condition			Unit			
Symbol	yribot Parameter Condition		Min.	Тур.	Max.	Unit		
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	Ic = 10A, Tj = 25°C	_	1.70	2.20		
VCE(Sat)	voltage	VIN = 5V	Ic = 10A, Tj = 125°C	_	1.80	2.30	V	
VEC	FWD forward voltage	Tj = 25°C, -IC = 10A, VIN = 0V		_	1.70	2.20	V	
ton		Vcc = 300V, VD = VDB = 15V		0.60	1.10	1.70	μs	
trr				_	0.30	_	μs	
tc(on)	Switching times	$IC = 10A$, $T_j = 125^{\circ}C$, $VIN = 0 \leftrightarrow 5V$		_	0.40	0.60	μs	
toff		Inductive load (upper-lower arm)		_	1.50	2.10	μs	
tc(off)				_	0.50	0.80	μs	
ICES	Collector-emitter cut-off current VCE = VCES		Tj = 25°C	_	_	1	mA	
IOLO			Tj = 125°C	_	_	10	ША	

CONTROL (PROTECTION) PART

Symbol	Parameter	Condition			Limits			Unit	
Symbol	Parameter		Col	ndition	Min.	Тур.	Max.	Offit	
		VD = VDB = 15V Total of VP1-VNC, VN1-VNC		_	_	2.80			
lD	Circuit current	VIN = 5V	VUFB-	U, VVFB-V, VWFB-W	_	_	0.55	l l	
טו	Circuit current	VD = VDB = 15V	Total of	of VP1-VNC, VN1-VNC	_	_	2.80	mA	
		VIN = 0V	Vufb-	U, VVFB-V, VWFB-W	_	_	0.55	7	
VFOH	Fault output voltage	Vsc = 0V, Fo termi	Vsc = 0V, Fo terminal pull-up to 5V by $10k\Omega$			_	_	V	
VFOL	Fault output voltage	VSC = 1V, IFO = 1mA			_	_	0.95	V	
VSC(ref)	Short circuit trip level	$T_j = 25^{\circ}C, V_D = 15V$ (Note 4)			0.43	0.48	0.53	V	
lin	Input current	VIN = 5V		0.70	1.00	1.50	mA		
UVDBt		Trip level	Trip level	10.0	_	12.0	V		
UVDBr	Control supply under-voltage	 T _i ≤ 125°C		Reset level	10.5	_	12.5	V	
UVDt	protection	1] ≤ 125 C	Trip level	10.3	_	12.5	V		
UVDr				Reset level	10.8	_	13.0	V	
tFO	Fault output pulse width			(Note 5)	20	_	_	μs	
Vth(on)	ON threshold voltage				_	2.1	2.6	V	
Vth(off)	OFF threshold voltage	Applied between LID VID MID LIAL VAL MAL VALO		0.8	1.3	_	V		
Vth(hys)	ON/OFF threshold hysteresis voltage	Applied between UP, VP, WP, UN, VN, WN-VNC			0.35	0.65	_	V	

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating.

5: Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure.


TRANSFER-MOLD TYPE INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

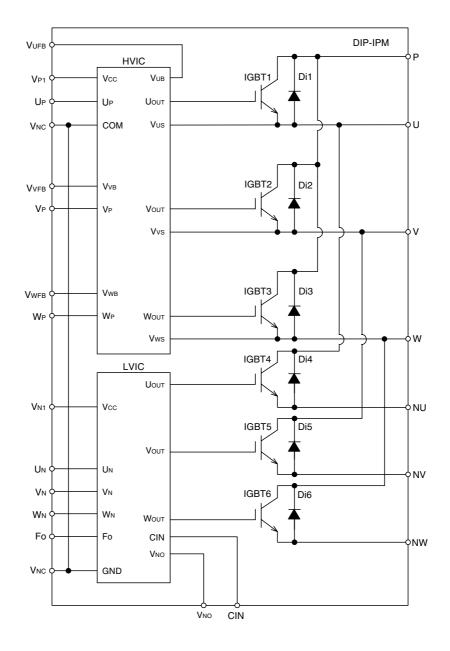
Dovometer	Condition		Limits			Limit
Parameter	Con	Min.	Тур.	Max.	Unit	
Mounting torque	Mounting screw : M3 (Note 6)	Recommended : 0.69 N·m		_	0.78	N⋅m
Weight			_	10	_	g
Heat-sink flatness		(Note 7)	-50	_	100	μm

Note 6: Plain washers (ISO 7089~7094) are recommended.

Note 7: Flatness measurement position

RECOMMENDED OPERATION CONDITIONS

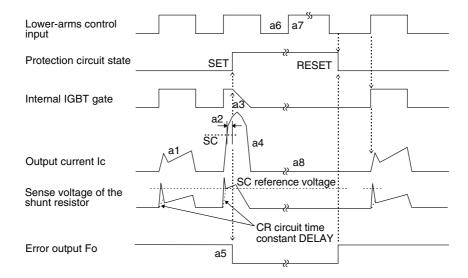
Cumahal	Parameter	Condition		Reco	mmended	value	Unit
Symbol Parameter		Condition		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW		0	300	400	V
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC		13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between Vufb-U, Vvfb-V, Vwfb-V	N	13.0	15.0	18.5	V
ΔV D, ΔV DB	Control supply variation				_	1	V/μs
tdead	Arm shoot-through blocking time	For each input signal, Tc ≤ 100°C		1.5	_	_	μs
	A.I	VCC = 300V, VD = VDB = 15V,		_	_	5.0	
lo	Allowable r.m.s. current	$\begin{aligned} & \text{P.F} = 0.8, \text{ sinusoidal output,} \\ & \text{T}_{\text{j}} \leq 125^{\circ}\text{C, Tc} \leq 100^{\circ}\text{C} \end{aligned} \tag{Note 8}$	fPWM = 15kHz	_	_	3.0	Arms
PWIN(on)	Allowable minimum input		0.5	_	_		
PWIN(off)	pulse width		0.5	_	_	μs	
Vnc	VNC variation	Between VNC-NU, NV, NW (including sur	ge)	-5.0	_	5.0	V


Note 8: The allowable r.m.s. current value depends on the actual application conditions.

^{9:} IPM might not make response if the input signal pulse width is less than the recommended minimum value.

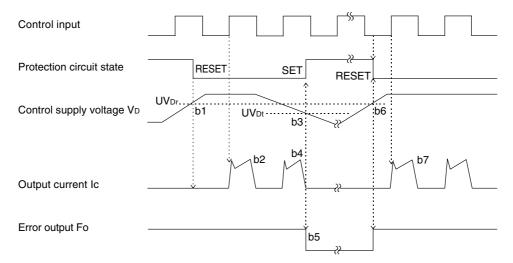
TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 2 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 3 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS


[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo output (tFO(min) = 20μ s).
- a6. Input "L": IGBT OFF.
- a7. Input "H": IGBT ON.
- a8. IGBT OFF in spite of input "H".

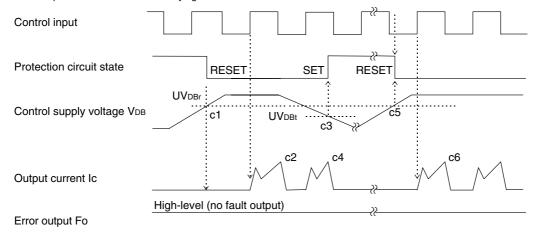
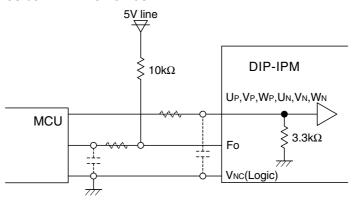
[B] Under-Voltage Protection (Lower-arm, UVD)

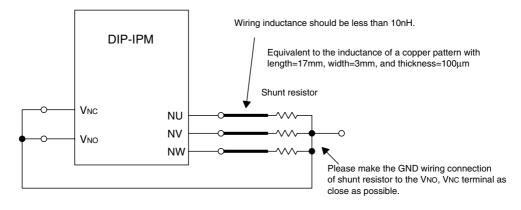
- b1. Control supply voltage rises : After the voltage level reaches UVDr, the circuits start to operate when next input is applied. b2. Normal operation : IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo output (tFo ≥ 20μs and Fo output continuously during UV period). b6. Under voltage reset (UVDr).
- b7. Normal operation: IGBT ON and carrying current.

TRANSFER-MOLD TYPE **INSULATED TYPE**

[C] Under-Voltage Protection (Upper-arm, UVDB)

- c1. Control supply voltage rises: After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation: IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input signal level, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr).
- c6. Normal operation: IGBT ON and carrying current.

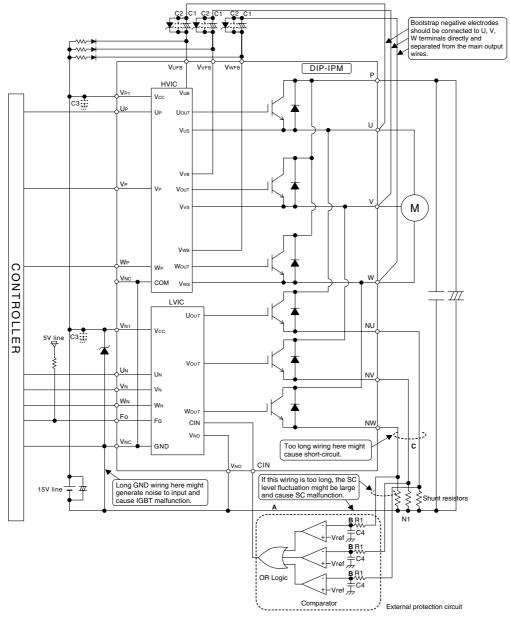




Fig. 4 RECOMMENDED MCU I/O INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a $3.3k\Omega$ (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.

Fig. 5 WIRING CONNECTION OF SHUNT RESISTOR



TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 6 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

C1:Tight tolerance temp-compensated electrolytic type C2,C3: 0.22~2µF R-category ceramic capacitor for noise filtering

- Note 1 : To prevent malfunction, the wiring of each input should be as short as possible (2~3cm).
 - 2 : By virtue of integrating HVIC inside, direct coupling to MCU without opto-coupler or transformer isolation is possible.
 - 3 : Fo output is open drain type. It should be pulled up to a 5V supply with an approximately $10k\Omega$ resistor.
 - 4 : The logic of input signal is high-active. The DIP-IPM input signal section integrates a 3.3kΩ (min) pull-down resistor. If using external filtering resistor, ensure the voltage drop of ON signal not below the threshold value.
 - 5 : To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
 - Flease set the filter R1•C4 time constant such that the IGBT can be interrupted within 2μs.
 - 7 : Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
 - 8 :To prevent surge destruction, the wiring between the smoothing capacitor and the P-N1 pins should be as short as possible. Approximately a 0.1~0.22μF snubber capacitor between the P-N1 pins is recommended.
 - 9 : Make external wiring connection between VNO and VNC terminals as shown in Fig.5.
 - 10 : Two VNc terminals (9 & 16 pin) are connected inside DIP-IPM, please connect either one to the 15V power supply GND outside and leave another one open.
 - 11 : To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) between each control supply terminals.
 - 12 : The reference voltage Vref of comparator should be set up the same rating of short circuit trip level (Vsc(ref): min.0.43V to max.0.53V).
 - 13: OR logic output level should be set up the same rating of short circuit trip level (Vsc(ref): min.0.43V to max.0.53V).

