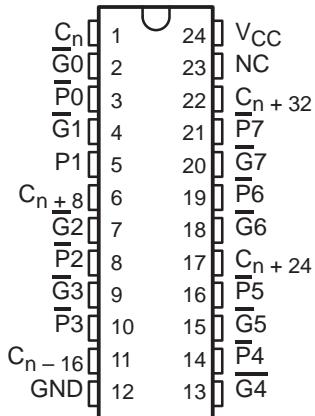
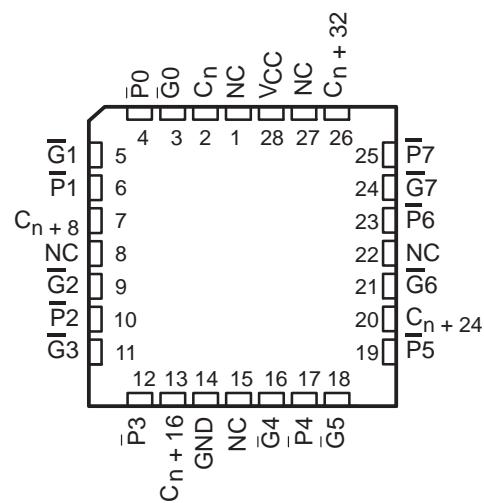


- Directly Compatible With 'AS181B, 'AS1181, 'AS881B, and 'AS1881 ALUs
- Package Options Include Plastic Small Outline Packages, Both Plastic and Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Capable of Anticipating the Carry Across a Group of Eight 4-Bit Binary Adders
- Cascadable to Perform Look-Ahead Across n-Bit Adders
- Typical Carry Time, C_n to Any C_{n+i} , is Less Than 6 ns
- Dependable Texas Instruments Quality and Reliability

description


The 'AS882A is a high-speed look-ahead carry generator capable of anticipating the carry across a group of eight 4-bit adders permitting the designer to implement look-ahead for a 32-bit ALU with a single package or, by cascading 'AS882As, full look-ahead is possible across n-bit adders.

The SN54AS882A is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74AS882A is characterized for operation from 0°C to 70°C .


'AS882A LOGIC EQUATIONS

$$\begin{aligned}
 C_{n+8} &= G_1 + P_1 G_0 + P_1 P_0 C_n \\
 C_{n+16} &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 \\
 &\quad + P_3 P_2 P_1 P_0 C_n \\
 C_{n+24} &= G_5 + P_5 G_4 + P_5 P_4 G_3 + P_5 P_4 P_3 G_2 \\
 &\quad + P_5 P_4 P_3 P_2 G_1 + P_5 P_4 P_3 P_2 P_1 G_0 \\
 &\quad + P_5 P_4 P_3 P_2 P_1 P_0 C_n \\
 C_{n+32} &= G_7 + P_7 G_6 + P_7 P_6 G_5 + P_7 P_6 P_5 G_4 \\
 &\quad + P_7 P_6 P_5 P_4 G_3 + P_7 P_6 P_5 P_4 P_3 G_2 \\
 &\quad + P_7 P_6 P_5 P_4 P_3 P_2 G_1 + P_7 P_6 P_5 P_4 P_3 P_2 P_1 G_0 \\
 &\quad + P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0 C_n
 \end{aligned}$$

SN54AS882A . . . JT PACKAGE
SN74AS882A . . . DW OR NT PACKAGE
(TOP VIEW)

SN54AS882A . . . FK PACKAGE
SN74AS882A . . . DW OR NT PACKAGE
(TOP VIEW)

NC – No internal connection

SN54AS882A, SN74AS882A 32-BIT LOOK-AHEAD CARRY GENERATORS

SDAS235 – D2661, DECEMBER 1982 – REVISED NOVEMBER 1985

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for DW, JT, and NT packages.

SN54AS882A, SN74AS882A
32-BIT LOOK-AHEAD CARRY GENERATORS

SDAS235 – D2661, DECEMBER 1982 – REVISED NOVEMBER 1985

**FUNCTION TABLE
FOR $C_n + 32$ OUTPUT**

INPUTS																	OUTPUT
G_7	G_6	G_5	G_4	G_3	G_2	G_1	G_0	P_7	P_6	P_5	P_4	P_3	P_2	P_1	\bar{P}_0	C_n	$C_n + 32$
L	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	H
X	L	X	X	X	X	X	X	L	X	X	X	X	X	X	X	X	H
X	X	L	X	X	X	X	X	L	L	X	X	X	X	X	X	X	H
X	X	X	L	X	X	X	X	L	L	L	X	X	X	X	X	X	H
X	X	X	X	L	X	X	X	L	L	L	X	X	X	X	X	X	H
X	X	X	X	L	X	X	X	L	L	L	X	X	X	X	X	X	H
X	X	X	X	X	L	X	X	L	L	L	X	X	X	X	X	X	H
X	X	X	X	X	X	L	X	L	L	L	X	X	X	X	X	X	H
X	X	X	X	X	X	X	X	L	L	L	L	L	L	L	X	X	H
X	X	X	X	X	X	X	X	L	L	L	L	L	L	L	L	H	H
All other combinations																	L

**FUNCTION TABLE
FOR C_{n+24} OUTPUT**

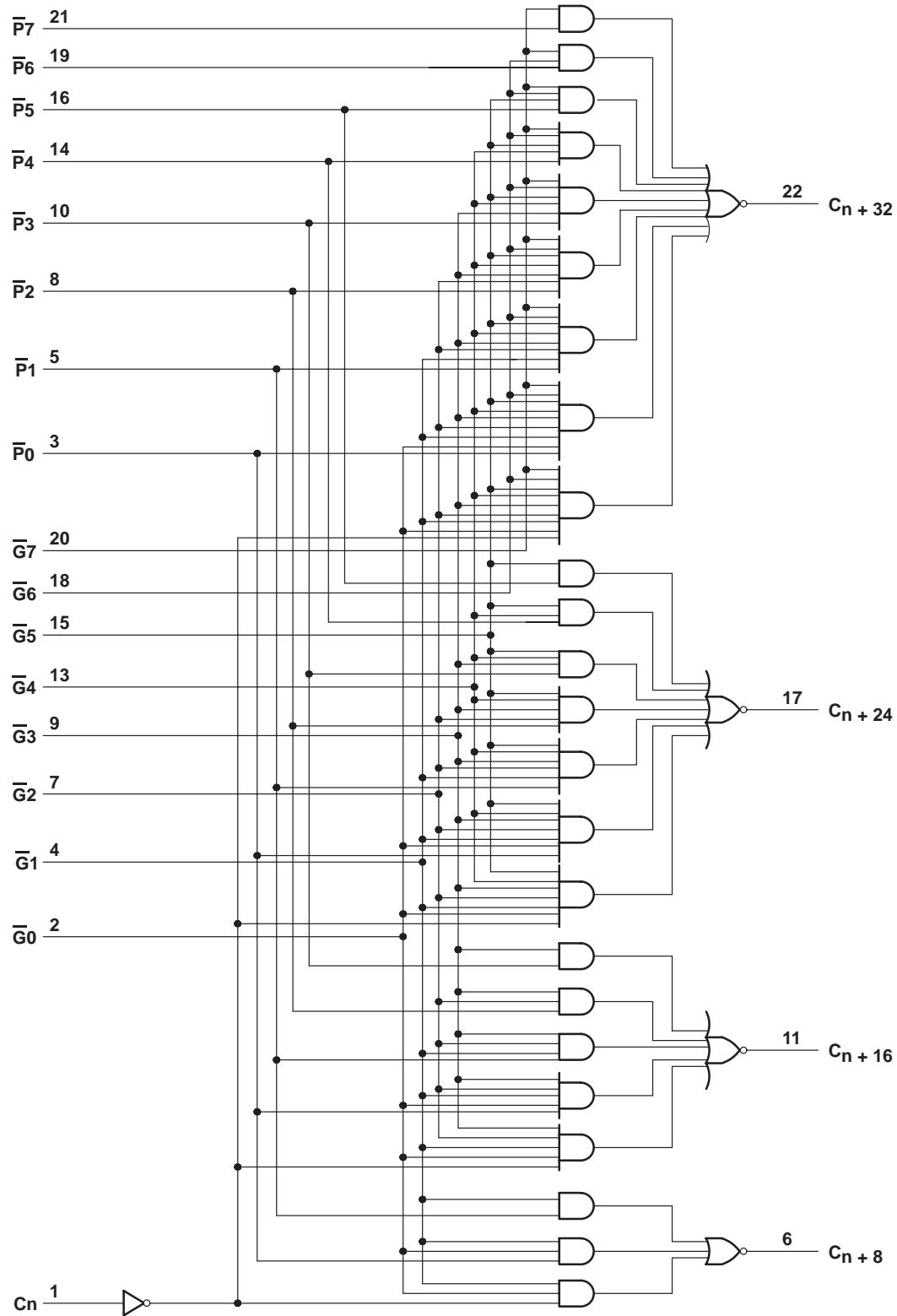
INPUTS														OUTPUT
G_5	G_4	G_3	G_2	G_1	G_0	P_5	P_4	P_3	P_2	P_1	\bar{P}_0	C_n	C_{n+24}	
L	X	X	X	X	X	X	X	X	X	X	X	X	X	H
X	L	X	X	X	X	L	X	X	X	X	X	X	X	H
X	X	L	X	X	X	L	L	X	X	X	X	X	X	H
X	X	X	L	X	X	L	L	L	X	X	X	X	X	H
X	X	X	X	L	X	L	L	L	L	X	X	X	X	H
X	X	X	X	X	L	L	L	L	L	X	X	X	X	H
X	X	X	X	X	X	L	L	L	L	L	X	X	X	H
X	X	X	X	X	X	X	L	L	L	L	L	L	H	H
All other combinations														L

Function Tables

FOR C_{n+16} OUTPUT

INPUTS								OUTPUT	
G_3	G_2	G_1	G_0	\bar{P}_3	\bar{P}_2	\bar{P}_1	\bar{P}_0	C_n	C_{n+16}
L	X	X	X	X	X	X	X	X	H
X	L	X	X	L	X	X	X	X	H
X	X	L	X	L	X	X	X	X	H
X	X	X	L	L	L	X	X	X	H
X	X	X	X	L	L	L	L	H	H
All other combinations									L

FOR C_{n+8} OUTPUT


INPUTS					OUTPUT
G_1	G_0	\bar{P}_1	\bar{P}_0	C_n	C_{n+16}
L	X	X	X	X	H
X	L	L	X	X	H
X	X	L	L	H	H
All other combinations					L

Any inputs not shown in a given table are irrelevant with respect to that output.

SN54AS882A, SN74AS882A 32-BIT LOOK-AHEAD CARRY GENERATORS

SDAS235 – D2661, DECEMBER 1982 – REVISED NOVEMBER 1985

logic diagram (positive logic)

Pin numbers shown are for DW, JT, and NT packages.

TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54AS882A, SN74AS882A 32-BIT LOOK-AHEAD CARRY GENERATORS

SDAS235 – D2661, DECEMBER 1982 – REVISED NOVEMBER 1985

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	7 V
Input voltage	7 V
Operating free-air temperature range:	SN54AS882A
	SN74AS882A
	−55°C to 125°C
	0°C to 70°C
Storage temperature range	−65°C to 150°C

recommended operating conditions

		SN54AS882A			SN74AS882A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-level input voltage		2		2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
I _{OH}	High-level output current			-2			-2	mA
I _{OL}	Low-level output current			20			20	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

SN54AS882A, SN74AS882A 32-BIT LOOK-AHEAD CARRY GENERATORS

SDAS235 – D2661, DECEMBER 1982 – REVISED NOVEMBER 1985

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54AS882A			SN74AS882A			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 4.5 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $I_{OH} = -2 \text{ mA}$	$V_{CC}-2$			$V_{CC}-2$			V
V_{OL}	$V_{CC} = 4.5 \text{ V}$, $I_{OL} = 20 \text{ mA}$		0.3	0.5		0.3	0.5	V
I_I	$C_n, \bar{P}0, \bar{P}1$ $G0, G6$ $G1, G2, G4$ $G3, G5$ $G7$ $P2, P3$ $P4, P5$ $P6, P7$	$V_{CC} = 5.5 \text{ V}$, $V_I = 7 \text{ V}$			0.4		0.4	mA
					0.8		0.8	
					1.2		1.2	
					1.5		1.5	
					0.9		0.9	
					0.3		0.3	
					0.2		0.2	
					0.1		0.1	
I_{IH}	$C_n, \bar{P}0, \bar{P}1$ $G0, G6$ $G1, G2, G4$ $G3, G5$ $G7$ $P2, P3$ $P4, P5$ $P6, P7$	$V_{CC} = 5.5 \text{ V}$, $V_I = 2.7 \text{ V}$			80		80	μA
					160		160	
					240		240	
					300		300	
					180		180	
					60		60	
					40		40	
					20		20	
I_{IL}	$C_n, \bar{P}0, \bar{P}1$ $G0, G6$ $G1, G2, G4$ $G3, G5$ $G7$ $P2, P3$ $P4, P5$ $P6, P7$	$V_{CC} = 5.5 \text{ V}$, $V_I = 0.4 \text{ V}$			-2		-2	mA
					-4		-4	
					-6		-6	
					-7.5		-7.5	
					-4.5		-4.5	
					-1.5		-1.5	
					-1		-1	
					-0.5		-0.5	
I_{O^\ddagger}	$V_{CC} = 5.5 \text{ V}$, $V_O = 2.25 \text{ V}$		-30	-130	-30	-30	-30	mA
I_{CC}	$V_{CC} = 5.5 \text{ V}$		44	70	44	70	44	mA

† All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

SN54AS882A, SN74AS882A
32-BIT LOOK-AHEAD CARRY GENERATORS

SDAS235 – D2661, DECEMBER 1982 – REVISED NOVEMBER 1985

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$, $T_A = \text{MIN to MAX}$				UNIT	
			SN54AS882A		SN74AS882A			
			MIN	MAX	MIN	MAX		
t_{PLH}	C_n	Any output	2	10	2	9	ns	
t_{PHL}			3	15	3	14		
t_{PLH}		$C_n + 8$	2	8	2	7		
t_{PHL}			2	8	2	7		
t_{PLH}		$C_n + 16$	2	8	2	7		
t_{PHL}			2	8	2	7		
t_{PLH}		$C_n + 24$	2	8	2	7		
t_{PHL}			2	11	2	10		
t_{PLH}		$C_n + 32$	1.5	9	2	8		
t_{PHL}			2	13	2	12		

NOTE 1: Load circuits and voltage waveforms are shown in Section 1.

SN54AS882A, SN74AS882A 32-BIT LOOK-AHEAD CARRY GENERATORS

SDAS235 – D2661, DECEMBER 1982 – REVISED NOVEMBER 1985

TYPICAL APPLICATION DATA

The application given in Figure 1 illustrates how the 'AS882A can implement look-ahead carry for a 32-bit ALU (in this case, the popular 'AS881A) with a single package. Typical carry times shown are derived using the standard Advanced Schottky load circuit.

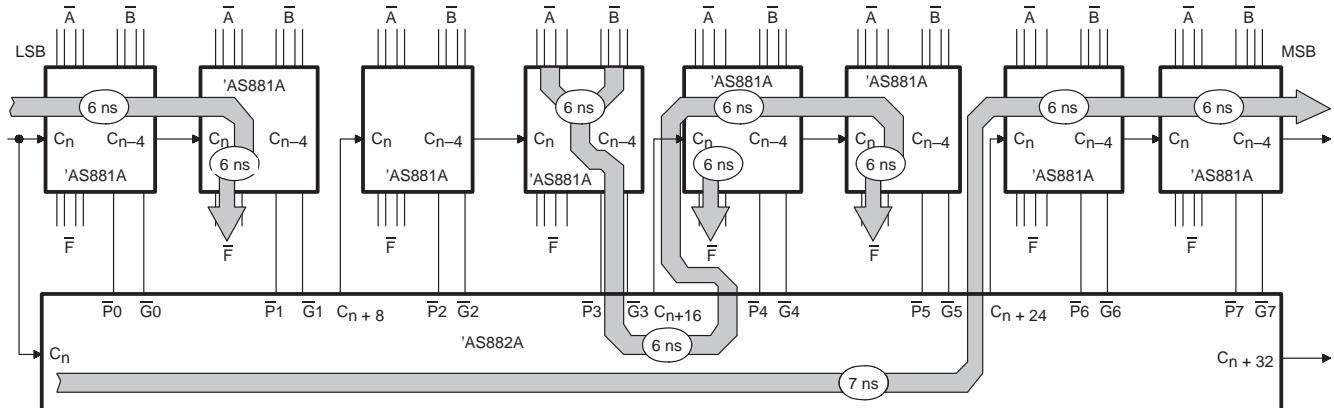


Figure 1

Likewise, Figure 2 illustrates the same 32-bit ALU using two 'AS882s. This shows the worst-case delay from LSB to MSB to be 19 ns as opposed to 25 ns in Figure 1.

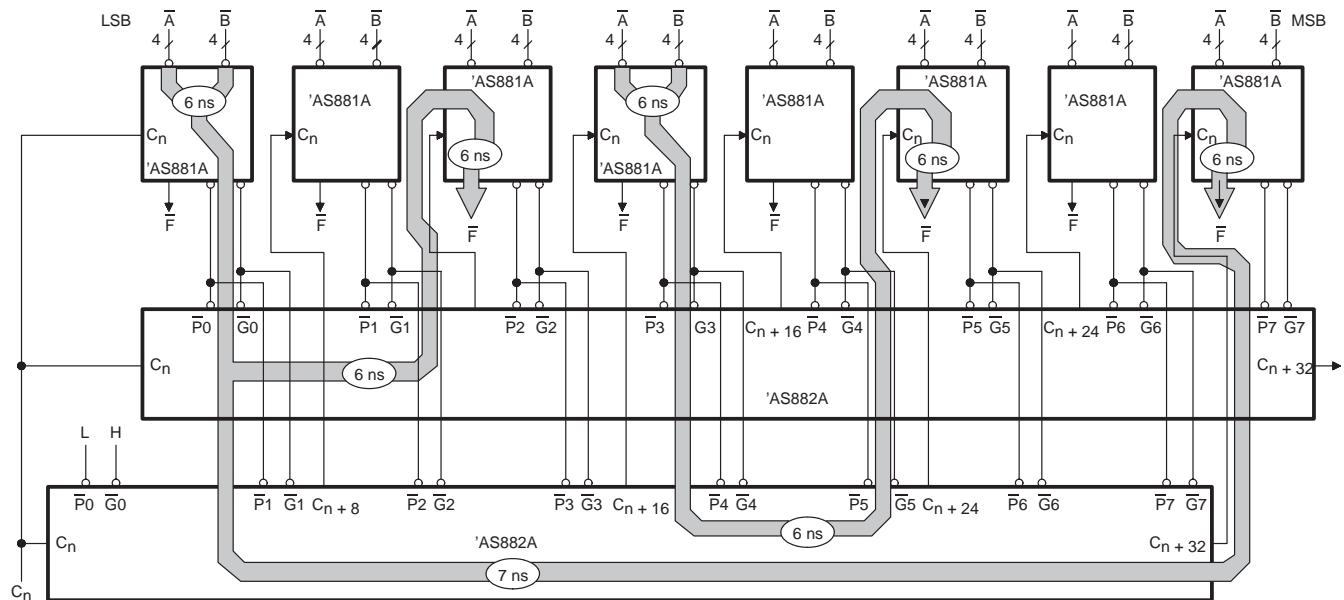


Figure 2

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated