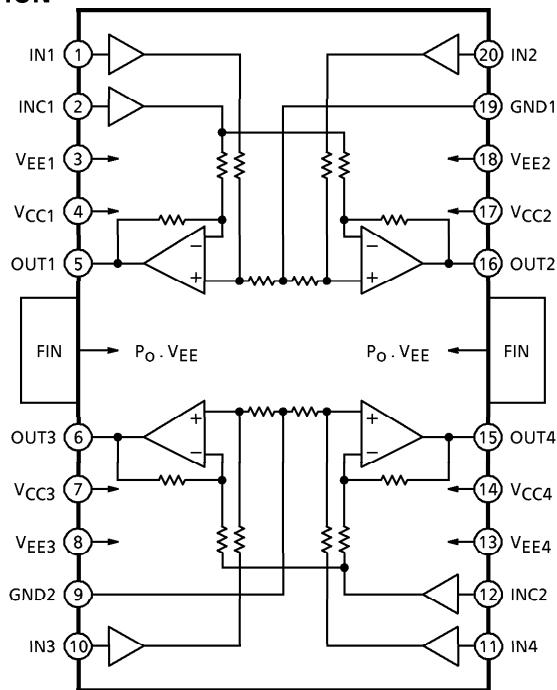


TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8212F**4ch POWER DRIVER IC FOR CD PLAYER**


TA8212F is a 4ch power driver IC developed for controlling a pickup focus actuator coil, tracking actuator coil, disc motor and feed motor of CD players. In addition, the TA8212F is also best suited for use as a power driver for general purpose motors.

Weight : 0.8g (Typ.)

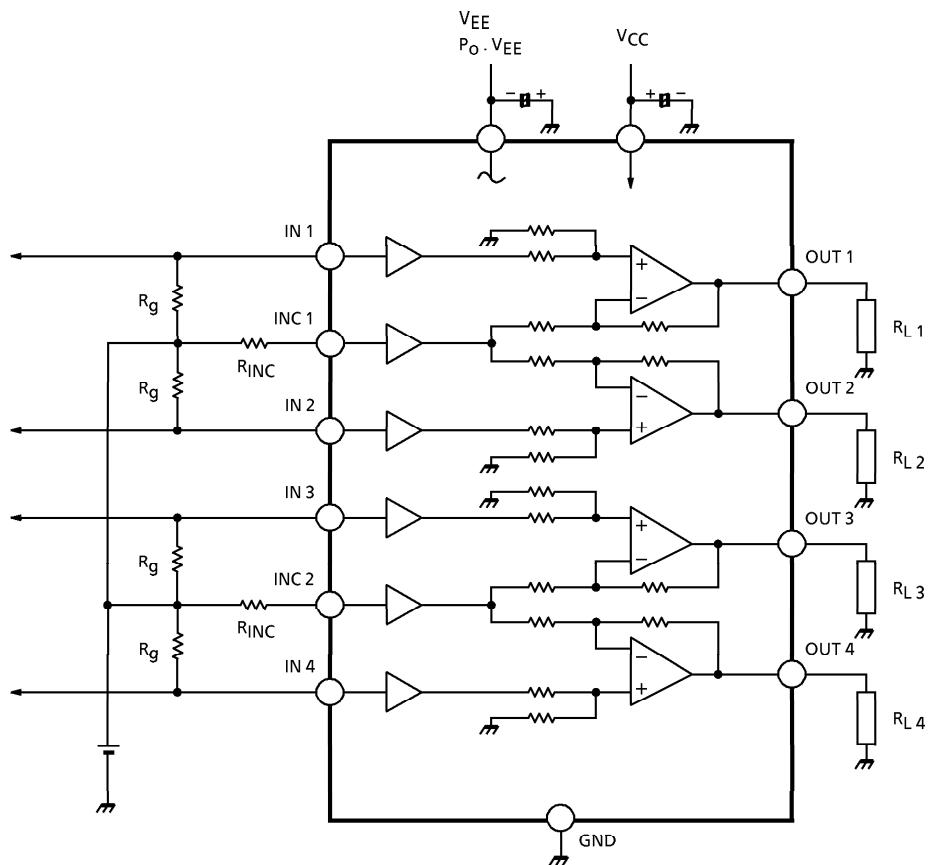
FEATURES

- Built-in 4ch power amplifiers (for driving disc motor, feed motor, focus coil and tracking coil).
- Built-in thermal shut down circuit.
- High input impedance realized by built-in buffer amplifier.
- HSOP20 pin package enabling a compact design.

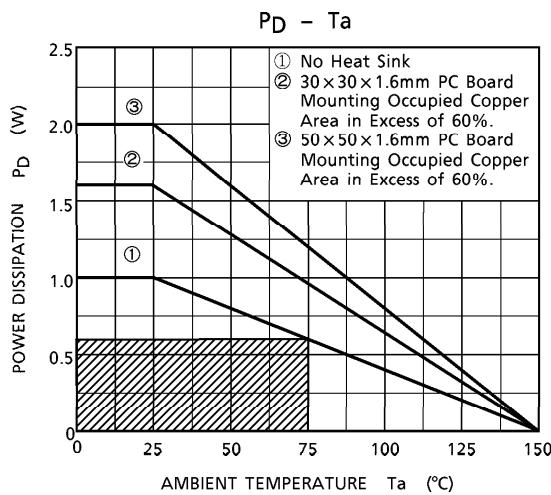
BLOCK DIAGRAM / PIN CONNECTION

FUNCTION OF EACH PIN

PIN No.	SYMBOL	I/O	FUNCTIONAL DESCRIPTION	REMARKS
1	IN1	I	Power amp-1 control signal input terminal.	
2	INC1	I	Power amp-1, 2 common control signal input terminal.	
3	V _{EE1}	—	Negative supply voltage terminal.	Connect to terminals ⑧, ⑬, ⑯ and FIN.
4	V _{CC1}	—	Positive supply voltage terminal.	Connect to terminals ⑦, ⑭ and ⑯.
5	OUT1	O	Power amp-1 output terminal. IN1 and INC1 error signal amp output.	
6	OUT3	O	Power amp-3 output terminal. IN3 and INC2 error signal amp output.	
7	V _{CC3}	—	Positive supply voltage terminal.	Connect to terminals ④, ⑭ and ⑯.
8	V _{EE3}	—	Negative supply voltage terminal.	Connect to terminals ③, ⑬, ⑯ and FIN.
9	GND2	—	Ground terminal.	Connect to terminal ⑯.
10	IN3	I	Power amp-3 control signal input terminal.	
11	IN4	I	Power amp-4 control signal input terminal.	
12	INC2	I	Power amp-3, 4 common control signal input terminal.	
13	V _{EE4}	—	Negative supply voltage terminal.	Connect to terminals ③, ⑧, ⑯ and FIN.
14	V _{CC4}	—	Positive supply voltage terminal.	Connect to terminals ④, ⑦ and ⑯.
15	OUT4	O	Power amp-4 output terminal. IN4 and INC2 error signal amp output.	
16	OUT2	O	Power amp-2 output terminal. IN2 and INC1 error signal amp output.	
17	V _{CC2}	—	Positive supply voltage terminal.	Connect to terminals ④, ⑦ and ⑯.
18	V _{EE2}	—	Negative supply voltage terminal.	Connect to terminals ③, ⑧, ⑬ and FIN.
19	GND1	—	Ground terminal.	Connect to terminal ⑨
20	IN2	I	Power amp-2 control signal input terminal.	
FIN	P _o .V _{EE}	—	Heat Sink and negative supply voltage terminal.	Connect to terminals ③, ⑧, ⑬ and ⑯.

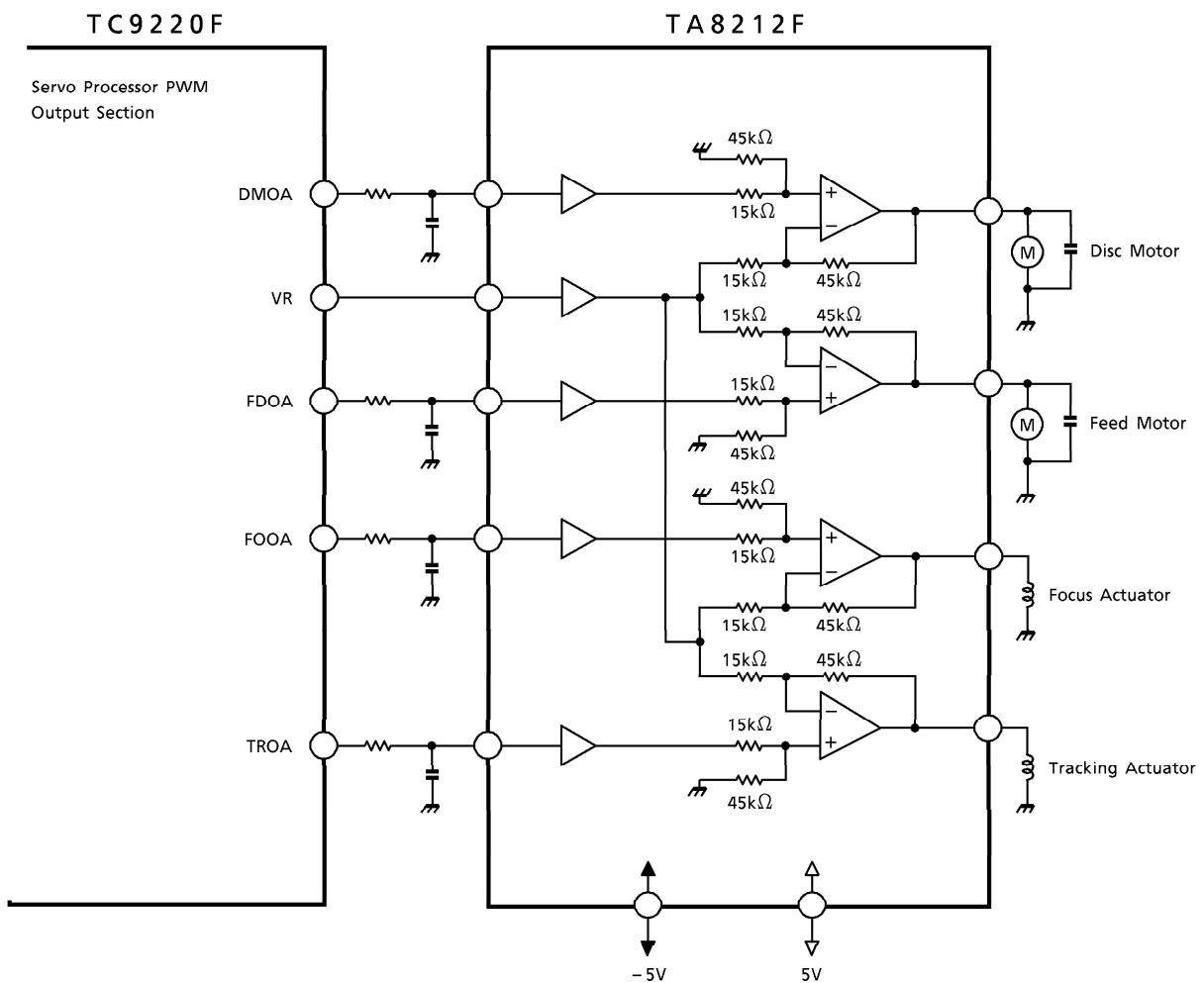

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	V _{CC} – V _{EE}	14.5	V
Output Current	I _O (peak)	700	mA
Power Dissipation	P _D	1 (No Heat Sink)	W
		2 (Heat Sink)	
Operating Temperature	T _{opr}	– 25 ~ 75	°C
Storage Temperature	T _{stg}	– 55 ~ 150	°C


ELECTRICAL CHARACTERISTICS (Unless otherwise specified, V_{CC} = 5V, V_{EE} = – 5V, R_L = 5Ω, Ta = 25°C)

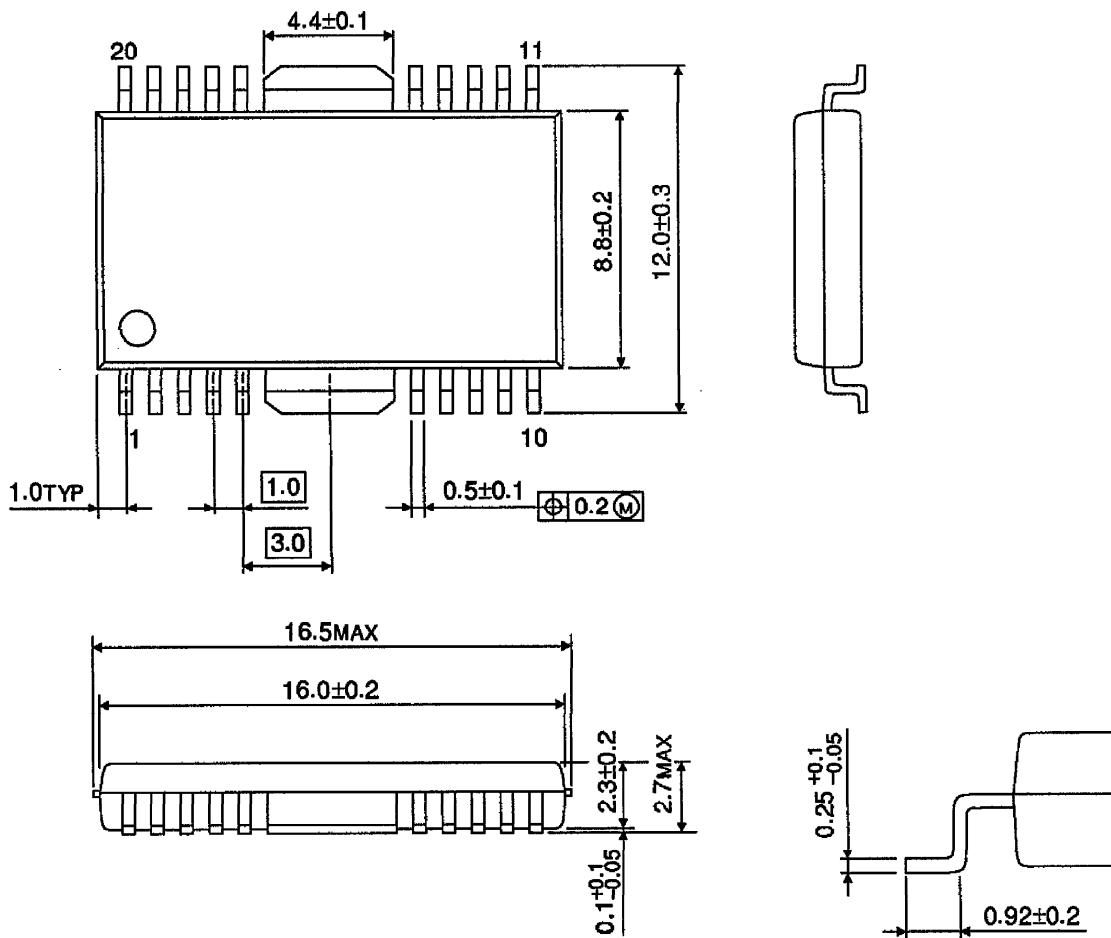
CHARACTERISTIC	SYMBOL	TEST CIR-CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Power Supply Voltage	V _{CC} – V _{EE}	—		8	10	12	V
Power Supply Current	I _{CCQ}	—	IN = INC = 2V, R _L = ∞	5	17	29	mA
Input Offset Current	I _O	—		—	100	300	nA
Input Bias Current	I _I	—		—	0.5	—	μA
Output Offset Voltage	V _{IO}	—	R _g = 10kΩ, R _{INC} = 10kΩ	—	—	60	mV
Output Voltage	V _{OH}	—		2.7	3.3	—	V
	V _{OL}			—	–3.3	–2.8	
Gain	G _V	—	V _{IN} = 100mV _{rms} , f = 1kHz	8.5	9.5	10.5	dB
Frequency Band Range	f _C	—	V _{IN} = 100mV _{rms} , G = – 3dB	50	—	—	kHz
Total Harmonic Distortion	THD	—	f = 1kHz, V _{OUT} = 5V _{p-p}	—	–50	—	dB
Slew Rate	SR	—	V _{OUT} = 2V _{p-p}	—	0.5	—	V/μs
Output Noise Voltage	V _{NO}	—	R _g = 10kΩ	—	0.1	—	mV _{rms}
Cross-talk	C. T	—	R _g = 10kΩ, f = 1kHz V _O = 775mV _{rms} (0dBm), for each ch	—	–60	—	dB
Ripple Rejection Ratio	RR	—	R _g = 10kΩ f _R = 100Hz, 77.5mV _{rms} (– 20dBm)	—	–65	—	dB
Thermal Shutdown Operation Temperature	T _j (ON)	—		150	—	—	°C

TEST CIRCUIT



POWER DISSIPATION

Note : In case of normal use, power dissipation of IC only is oblique line portion.


APPLICATION CIRCUIT

Gain $G_V = 9.5\text{dB}$ (Typ.) fixed

PACKAGE DIMENSIONS

HSOP20-P-450-1.00

Unit : mm

Weight : 0.8g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.