

Processor Power Management Subsystem

DESCRIPTION

WM8321 is an integrated power-management subsystem which provides a cost-effective, flexible, single-chip solution for power management, specifically targeted at the requirements of a range of low-power portable applications. WM8321 is specifically designed to operate as a system PMIC supporting the ARM9 $^{\rm TM}$, ARM11 $^{\rm TM}$ and ARM Cortex-A $^{\rm TM}$ series processors at the heart of a range of low-power applications.

The start-up behaviour and configuration is fully programmable in an integrated OTP non-volatile memory. This highly flexible solution helps reduce time-to-market, as changing application requirements can be very easily accommodated in the OTP contents. An external EEPROM can be used to configure the WM8321 for development purposes.

The WM8321 power management subsystem comprises four programmable DC-DC converters and eleven LDO regulators (four of which are low-noise for supplying sensitive analogue subsystems). The integrated OTP bootstrap circuitry controls the start-up sequencing and voltages of the converters and regulators as well as the sequencing of system clocks.

The DC-DC converters deliver high performance and high efficiency across a wide range of operating conditions. They are optimised to support the high load current transients seen in modern processor core domains. DC-DC3 / DC-DC4 can be connected together and operated in 'dual' mode to support an increased current load of up to 1.6A.

An on-chip regulator provides power for always-on PMIC functions such as register map and the RTC. The device provides autonomous backup battery switchover. A low-power LDO is included to support 'Alive' processor power domains external to the WM8321.

A 12-bit Auxiliary ADC supports a wide range of applications for internal as well as external analogue sampling, such as voltage detection and temperature measurement.

WM8321 includes a crystal oscillator and an internal RC oscillator to generate all clock signals for autonomous system start-up and processor clocking. A Secure Real-time Clock (S-RTC) and alarm function is included, capable of waking up the system from low-power modes. A watchdog function is provided to ensure system integrity.

To maximise battery life, highly-granular power management enables each function in the WM8321 subsystem to be independently powered down through a control interface or alternatively through register and OTP-configurable GPIOs. The device offers a standby power consumption of <10uA, making it particularly suitable for portable applications.

The WM8321 is supplied in an 8x8mm 81-lead QFN package, ideal for use in portable systems. The WM8321 forms part of the Wolfson series of audio and power management solutions, and is widely register compatible with the WM831X family of PMIC devices.

FEATURES

Power Management

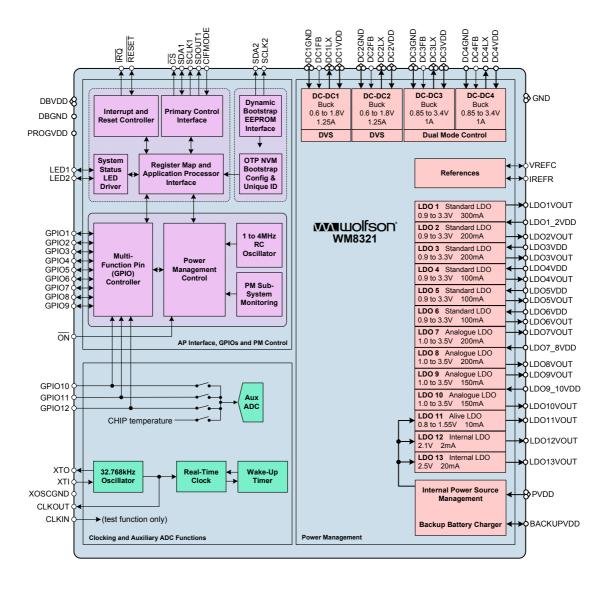
- 2 x DC-DC buck converter (0.6V 1.8V, up to 1.25A, DVS)
- 2 x DC-DC buck converter (0.85V 3.4V, up to 1A)
- 1 x LDO regulator (0.9V 3.3V, 300mA, 1Ω)
- 2 x LDO regulators (0.9V 3.3V, 200mA, 1Ω)
- 3 x LDO regulators (0.9V 3.3V, 100mA, 2Ω)
- 2 x Low-noise LDO regulators (1.0V 3.5V, 200mA, 1Ω)
- 2 x Low-noise LDO regulators (1.0V 3.5V, 150mA, 2Ω)
 1 x 'Alive' regulator (0.8V 1.55V, up to 10mA)

System Control

- I²C or SPI compatible primary control interface
- Comprehensive interrupt scheme
- Watchdog timer and system reset control
- Autonomous power sequencing and fault detection
- OTP memory bootstrap configuration function

Additional Features

- Auxiliary ADC for multi-function analogue measurement
- 128-bit pseudo-random unique ID
- Secure Real-Time Clock with wake-up alarm
- 12 x configurable multi-function (GPIO) pins
- Comprehensive clocking scheme: low-power 32kHz RTC crystal oscillator, GPIO clock output and 4MHz RC clock for power management
- System LED outputs indicating device power state, and fault status


Package Options

8x8mm, 0.85mm thick, 81-lead QFN package

APPLICATIONS

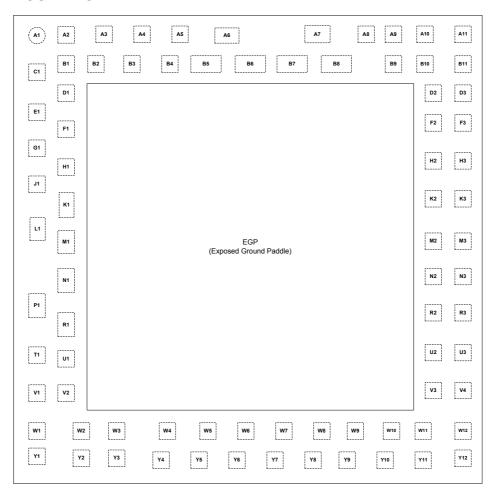
- Cellular Handsets
- Smartphones
- Electronic Books
- Portable Media Players
- Mobile Internet Devices
- Electronic Gaming Devices
- Netbooks
- Set Top Box

BLOCK DIAGRAM

TYPICAL APPLICATIONS

The WM8321 is designed as a system PMIC device that generates configurable DC supplies to power processors and associated peripherals within a system. The WM8321 provides four step-down DC-DC converters. Two of these can operate in dual mode, providing an increased current capability. Eleven LDO regulators provide a high degree of flexibility to provide power to multiple devices, with the capability to power-up and power-down different circuits independently.

Two of the DC-DC step-down converters are specifically designed to handle rapid changes in load current, as required by modern application processors; selectable operating modes allow the converters to be optimally configured for light, heavy or transient load conditions; they can also be tailored for minimum PCB area, maximum performance, or for maximum efficiency. The analogue LDOs provide low-noise outputs suitable for powering sensitive circuits such as RF / Wi-Fi / cellular handset applications.


The WM8321 powers up the converters and LDOs according to a programmable sequence. A configurable 'SLEEP' state is also available, providing support for an alternate configuration, typically for low-power / standby operation. The power control sequences and many other parameters can be stored in an integrated user-programmable OTP memory or may be loaded from an external memory. The WM8321 supports the programming and verification of the integrated OTP memory.

A backup battery supply can be connected to the WM8321 in order to maintain the Real Time Clock (RTC) in the absence of the primary supply. The WM8321 provides a battery charger for the backup battery.

Programmable GPIO pins may be configured as hardware inputs for general use or for selecting different power management configurations. As outputs, the GPIOs can provide indications of the device status, or may be used as control signals for other power management circuits. The WM8321 also provides two LED drivers, which can be controlled manually or configured as status indicators for the OTP memory programmer or operating power state.

PIN CONFIGURATION

Top View - WM8321

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE (T _A)	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8321GEFL/V	-40°C to +85°C	81-lead QFN (8 x 8mm) (Pb-free)	MSL3	260°C
WM8321GEFL/RV	-40°C to +85°C	81-lead QFN (8 x 8mm) (Pb-free, tape and reel)	MSL3	260°C

Note:

Reel quantity = 2,200

PIN DESCRIPTION

Notes:

- 1. Pins are sorted by functional groups.
- 2. The power domain associated with each pin is noted; VPMIC is the domain powered by LDO12 for the 'always-on' functions internal to the WM8321.

PIN	NAME	TYPE	POWER DOMAIN	DESCRIPTION		
Clocking a	nd Real Time Cloc	ζ .				
Y12	XTO	Analogue Output	VDMIC	Crystal Drive Output		
Y11	XTI	Analogue Input	VPMIC	Crystal Drive Input or 32.768kHz CMOS Clock Input		
W11	XOSCGND	Supply		Crystal Oscillator Ground		
H1	CLKOUT	Digital Output		CMOS Clock Output		
G1	CLKIN	Digital Input	DBVDD2	CMOS Clock Input (test fund connected to GND)	ction only; this pin should be	
General Pu	rpose Input / Outp	ut and Auxiliary ADC				
D3	GPIO1	Digital I/O	DD\/DD4	GPIO Pin 1		
F2	GPIO2	Digital I/O	DBVDD1 or VPMIC	GPIO Pin 2		
F3	GPIO3	Digital I/O	VIIVIIO	GPIO Pin 3		
W4	GPIO4	Digital I/O		GPIO Pin 4		
Y4	GPIO5	Digital I/O	DBVDD1 or PVDD	GPIO Pin 5		
W5	GPIO6	Digital I/O	FVDD	GPIO Pin 6		
H2	GPIO7	Digital I/O		GPIO Pin 7		
Н3	GPIO8	Digital I/O	DBVDD1 or VPMIC	GPIO Pin 8		
K3	GPIO9	Digital I/O	VPIVIIC	GPIO Pin 9		
Y5	GPIO10	Digital I/O		GPIO Pin 10 / Auxiliary ADC	input	
Y6	GPIO11	Digital I/O	DBVDD1 or	GPIO Pin 11 / Auxiliary ADC input GPIO Pin 12 / Auxiliary ADC input		
W6	GPIO12	Digital I/O	PVDD			
Processor	Interface and IC Co	ontrol		•		
W9	ON	Digital Input	VPMIC	ON Request Pin		
****	011	Digital Input	VIIVIIO	(Internal pull-up)		
B10	RESET	Digital I/O	DBVDD1	System Reset Input and Open Drain Output. (Internal pull-up)		
				PMIC Interrupt Flag Output.		
A11	IRQ	Digital Output	DBVDD1	Configurable Open Drain / C		
				(Internal pull-up in Open Dra	•	
				Primary Control Interface Mo		
E1	CIFMODE	Digital Input	DBVDD2	0 = I ² C Compatible Control I		
				1 = SPI Compatible Control	Τ .	
	T			SPI Compatible Control Interface Mode	l ² C Compatible Control Interface Mode	
D2	SDOUT1	Digital Output		Control Interface Serial Data Out	No Function	
В9	SCLK1	Digital Input	DBVDD1	Control Interface Serial Clock	Control Interface Serial Clock	
A9	SDA1	Digital I/O		Control Interface Serial Data In	Control Interface Serial Data Input and Open Drain Output. (Output can extend above DBVDD1 domain.)	
A10	CS	Digital Input		Control Interface Chip Select	I ² C Address Select: 0 = 68h 1 = 6Ch	

PIN	NAME	TYPE	POWER DOMAIN	DESCRIPTION
Y10	SCLK2	Digital I/O		Control Interface Serial Clock for external DBE EEPROM
			VPMIC	(Internal pull-down)
W10	SDA2	Digital I/O		Control Interface Serial Data to/from external DBE EEPROM (Internal pull-down)
B11	DBVDD1	Supply		Digital Buffer Supply
F1	DBVDD1			
		Supply		Digital Buffer Supply
OTP Memor	PROGVDD	Supply		High-voltage input for OTP programming.
				Thigh-voltage input for OTT programming.
DC-DC Coll	verters and LDO R	Regulators		
EGP	Exposed Ground Paddle	Analogue Ground		Ground
B7	DC1GND	Supply		DC-DC1 Power Ground
A8	DC1FB	Analogue Input	DC1VDD	DC-DC1 Feedback Pin
A7	DC1LX	Analogue I/O		DC-DC1 Inductor Connection
B8	DC1VDD	Supply		DC-DC1 Power Input (System VDD Supply)
B6	DC2GND	Supply		DC-DC2 Power Ground
A5	DC2FB	Analogue Input	DC2VDD	DC-DC2 Feedback Pin
A6	DC2LX	Analogue I/O	502185	DC-DC2 Inductor Connection
B5	DC2VDD	Supply		DC-DC2 Power Input (System VDD Supply)
M1	DC3GND	Supply		DC-DC3 Power Ground
J1	DC3FB	Analogue Input	DC3VDD	DC-DC3 Feedback Pin
L1	DC3LX	Analogue I/O	DC3VDD	DC-DC3 Inductor Connection
K1	DC3VDD	Supply		DC-DC3 Power Input (System VDD Supply)
N1	DC4GND	Supply		DC-DC4 Power Ground
T1	DC4FB	Analogue Input	DC4VDD	DC-DC4 Feedback Pin
P1	DC4LX	Analogue I/O	DC4VDD	DC-DC4 Inductor Connection
R1	DC4VDD	Supply		DC-DC4 Power Input (System VDD Supply)
A3	LDO1_2VDD	Supply		LDO1 & LDO2 Power Input
B2	LDO1VOUT	Analogue Output	LDO1VDD	LDO1 Power Output
В3	LDO2VOUT	Analogue Output	LDO2VDD	LDO2 Power Output
B4	LDO3VDD	Supply		LDO3 Power Input
A4	LDO3VOUT	Analogue Output	LDO3VDD	LDO3 Power Output
W3	LDO4VDD	Supply		LDO4 Power Input
Y2	LDO4VOUT	Analogue Output	LDO4VDD	LDO4 Power Output
Y1	LDO5VDD	Supply		LDO5 Power Input
W2	LDO5VOUT	Analogue Output	LDO5VDD	LDO5 Power Output
W1	LDO6VDD	Supply		LDO6 Power Input
V1	LDO6VOUT	Analogue Output	LDO6VDD	LDO6 Power Output
R3	LDO7_8VDD	Supply		LDO7 & LDO8 Power Input
N2	LDO7VOUT	Analogue Output	LDO7VDD	LDO7 Power Output
R2	LDO8VOUT	Analogue Output	LDO8VDD	LDO8 Power Output
M2	LDO9_10VDD	Supply		LDO9 Power Input
M3	LDO9VOUT	Analogue Output	LDO9VDD	LDO9 Power Output
N3	LDO10VOUT	Analogue Output	LDO10VDD	LDO10 Power Output
V3	LDO11VOUT	Analogue Output	PVDD2	LDO11 (Alive) Power Output
Y8	LDO12VOUT	Analogue I/O	PVDD2	LDO12 (Internal VPMIC) Output; not for general use
W7	LDO13VOUT1	Analogue I/O	PVDD2	LDO13 (Internal INTVDD) Output; not for general use
K2	LDO13VOUT2	Analogue I/O	PVDD2	LDO13 - Connect to LDO13VOUT1 (W7)

PIN	NAME	TYPE	POWER DOMAIN	DESCRIPTION			
Voltage and	Voltage and Current References						
W8	VREFC	Analogue I/O	VPMIC	Voltage Reference capacitor connection point			
Y9	IREFR	Analogue I/O	VPIVIIC	Current Reference resistor connection point			
System Pov	wer						
U1	PVDD1	Supply		System VDD Supply			
Y7	PVDD2	Supply		System VDD Supply			
V4	PVDD3	Supply		System VDD Supply			
W12	BACKUPVDD	Supply		Secondary (Backup) Battery Supply			
System LEI	System LED Drivers						
U3	LED1	Digital Output	D) (DD2	Status LED Driver 1. Open Drain Output			
U2	LED2	Digital Output	PVDD3	Status LED Driver 2. Open Drain Output			
Do Not Connect							
A1, A2, B1, C1, D1, V2	DNC			Do Not Connect			

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

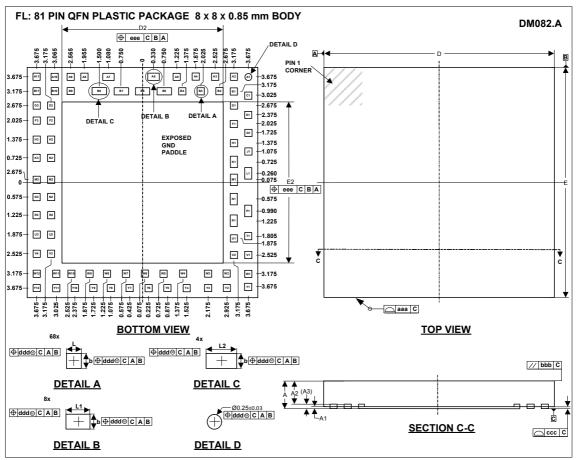
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The WM8321 has been classified as MSL3.

CONDITION	MIN	MAX		
OTP Programming Supply (PROGVDD)	-0.3V	7.0V		
System supply (PVDD)	-0.3V	7.0V		
Input voltage for LDO regulators	-0.3V	7.0V		
Input voltage for DC-DC converters	-0.3V	7.0V		
Digital buffer supply (DBVDD)	-0.3V	4.5V		
Voltage range for digital inputs	-0.3V	DBVDD + 0.3V		
Operating Temperature Range, T _A	-40°C	+85°C		
Junction Temperature, T _J	-40°C	+125°C		
Thermal Impedance Junction to Ambient, θ_{JA}		TBC		
Storage temperature prior to soldering	30°C max	30°C max / 60% RH max		
Storage temperature after soldering	-65°C	+150°C		
Soldering temperature (10 seconds)		+260°C		
Note: These ratings assume that all ground pins are at 0V.	,	•		

RECOMMENDED OPERATING CONDITIONS


PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
System power source	PVDD	2.7		5.5	V
Backup Battery power source	BACKUPVDD			3.6	V
Digital buffer supply	DBVDD	1.71		3.6	V
OTP Programming Supply	PROGVDD	6.25	6.5	6.75	V
(see note)	LDO12VOUT		3.3		V
Ground	GND		0		V

Note:

The OTP Programming Supply PROGVDD should only be present when programming the OTP. At other times, this pin should be left unconnected. The LDO12VOUT must be overdriven by an external supply when programming the OTP. At other times, the voltage at this pin is driven by the internal circuits of the WM8321.

PACKAGE DIAGRAM

Symbols	Dimensions (mm)					
	MIN	NOM	MAX	NOTE		
Α			0.85			
A1	0.02	0.05	0.08			
A2	0.64	0.675	0.71			
A3	0.12	0.13	0.14			
b	0.22	0.25	0.28			
D		8 BSC				
D2	5.55	5.60	5.65			
E		8 BSC				
E2	5.55	5.60	5.65			
L	0.22	0.25	0.28			
L1	0.37	0.4	0.43			
L2	0.47	0.5	0.53			
	Tolerances of Form and Position					
aaa	0.10					
bbb	0.20					
ccc	0.05					
ddd	0.08					
eee	0.10					
REF	JEDEC, MO-220					

- NOTES:

 1. ALL DIMENSIONS ARE IN MILLIMETRES

 2. THE TERMINAL #1 IDENTIFIES AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-002.

 3. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

 4. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc Westfield House 26 Westfield Road Edinburgh EH11 2QB United Kingdom

Tel :: +44 (0)131 272 7000 Fax :: +44 (0)131 272 7001 Email :: sales@wolfsonmicro.com

