

Customer

POWERTIP TECH. CORP.

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

Specification For Approval

Model Type		: LCD	LCD MODULE						
Sample Code	e	:							
Mass Produc	ction Code	: <u>PG2</u>	: PG24064WRU-AYA-HL1						
Revision :0									
Customer Sign	Sales Sign	Checked By (QA)	Approved	By	Prepared	Ву			

Revision Record

Date(y/m/d)	Rev.	Description	Note	Page
2003/01/30	0			

1. SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2. MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command
- 2.5 Character Pattern

3. QUALITY ASSURANCE SYSTEM

- 3.1 Quality Assurance Flow Chart
- 3.2 Inspection Specification

4. RELIABILITY TEST

4.1 Reliability Test Condition

5. PRECAUTION RELATING PRODUCT HANDLING

- 5.1 Safety
- 5.2 Handling
- 5.3 Storage
- 5.4 Terms of Warranty

1. SPECIFICATIONS

1.1 Features

Item	Standard Value
Display Type	240*64 Dots
LCD Type	FSTN, Transflective, Positive, Extended Temp.
Driver Type	1/64 Duty , 1/9 Bias
Viewing Direction	6 O'clock
Backlight	LED Backlight
Weight	-
Other	_

1.2 Mechanical Specifications

Item	Standard Value	Unit
Outline Dimension	180.0 (L) * 65.0 (w) * 9.1 (H)(Max)	mm
Viewing Area	134.0 (L) * 40.4 (w)	mm
Active Area	127.16 (L) * 33.38 (w)	mm
Dot Size	0.49 (L) * 0.49 (w)	mm
Dot Pitch	0.53 (L) * 0.53 (w)	mm

1.3 Absolute Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	V_{DD}	-	-0.3	7.0	V
LCD drive Supply voltage	V_{DD} - V_{EE}	-	V _{DD} +0.3	20	V
Input voltage	V _{IN}	-	-0.3	V _{DD} +0.3	V
Operating temperature	T _{OPR}	-	-20	70	°C
Storage temperature	T _{STG}	-	-30	80	°C
Humidity	HD	-	-	90	%RH

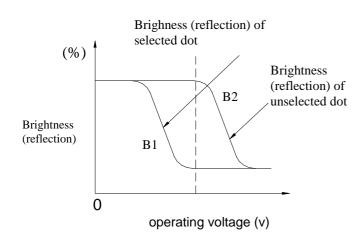
1.4 DC Electrical Characteristics

V_{DD}=+5V<u>+</u>10%,V_{SS}=0V,TA=25°C

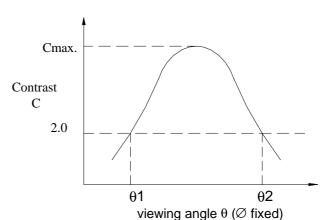
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply voltage	V_{DD}	-	4.75	-	5.25	V
"H" input voltage	V _{IH}	-	2.2	-	V_{DD}	V
"L" input voltage	V _{IL}	-	0	-	0.8	V
"H" output voltage	V _{OH}	-	2.4	-	V_{DD}	V
"L" output voltage	V _{OL}	-	0	-	0.4	V
Supply current	I _{DD}	-	-	36.7	44.4	mA
LCD driving voltage	V _{OP}	VDD-VO	-	10.2	12.0	V

1.5 Optical Characteristics

1/64 duty, 1/9 bias, V_{OPR}=12.7V, Ta=25°C

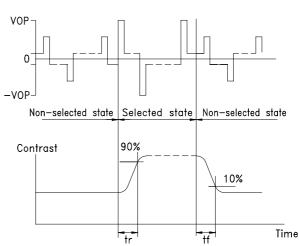

			· · · · · · · · · · · · · · · · · · ·	,	OFK I-II	,
Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Viewing angle	θ	C <u>></u> 2.0,∅=0	30°	-	-	Notes 1 & 2
		0				
Contrast	С	θ=5°, Ø=0°	-	3	-	Note 3
Response time(rise)	T _r	θ=5°, Ø=0°	-	140ms	200ms	Note 4
Response time(fall)	T _f	θ=5°, Ø=0°	-	300ms	500ms	Note 4

Note 1: Definition of angles θ and \emptyset


Light (when reflected) z (θ = 0°) Sensor $Y'(\emptyset$ = 180°) LCD panel X' Z'Light (when transmitted) $Y(\emptyset$ = 0°) $(\theta$ = 90°)

Note 3: Definition of contrast C

C = Brightness (reflection) of unselected dot (B2) Brightness (reflection) of selected dot (B1)



Note 2: Definition of viewing angles θ 1 and θ 2

Note: Optimum viewing angle with the naked eye and viewing angle θ at Cmax. Above are not always the same

Note 4: Definition of response time

Note: Measured with a transmissive LCD panel which is displayed 1 cm²

 V_{OPR} : Operating voltage f_{FRM} : Frame frequency t_{r} : Response time (rise) t_{f} : Response time (fall)

1.6 Backlight Characteristics

LCD Module with LED Backlight

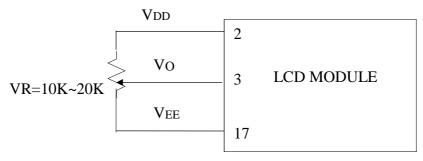
Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Forward current	IF	TA=25°C	-	100	mA
Reverse voltage	VR	TA=25°C	-	5	V
Power dissipation	РО	TA=25°C	-	0.3	W
Operating Temperature	TOPR	-	-20	70	°C
Storage temperature	TSTG	-	-40	80	°C

•.Electrical \ Optical Characteristics

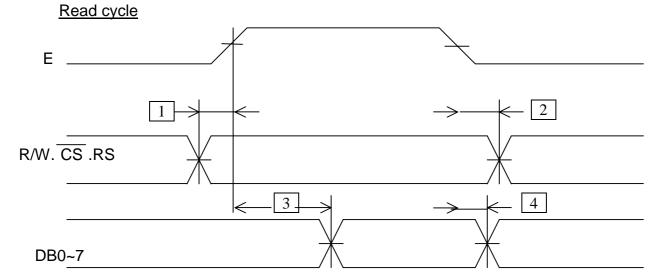
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward voltage	VF	IF=80mA	-	3.3	3.8	V
Reverse current	IR	VR=5V	-	-	10	μΑ
Luminous intensity	IV	IF=80mA	-	60	-	cd/m ²
Chromaticity	X	IF=80mA	-	0.28	-	
Coordinates	Y	IF=80mA	-	0.29	-	
Color	White					

2. MODULE STRUCTURE

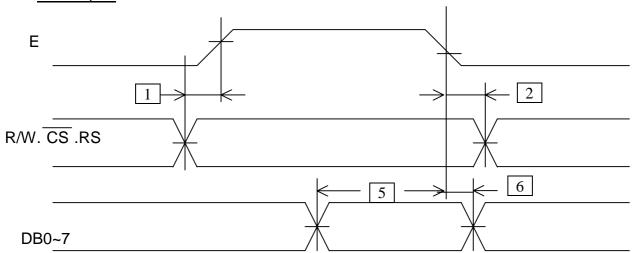

2.1 Counter Drawing

* See Appendix

2.2 Interface Pin Description


Pin No.	Symbol	Function
1	V_{SS}	Power Supply (Vss=0)
2	V_{DD}	Power Supply (V _{DD} >V _{SS})
3	Vo	Operating voltage for LCD
		Register selection input
4	RS	High = Data register
4	K3	Low = Instruction register (for write)
		Busy flag address counter (for read)
5	_	R/W signal input is used to select the read/write mode
5	R/W	High = Read mode, Low = Write mode
6	Е	Start enable signal to read or write the data
7-14	DB0~DB7	Data bus
15	CS	Chip select Active low
16	RESET	Controller reset (module reset)
17	V _{EE}	Negative voltage power supply –10V
18	NC	Not connection
19	А	Power supply for LED B/L (+)
20	K	Power supply for LED B/L (-)

Contrast Adjust



2.3 Timing Characteristics

• Bus read/write timing

Write cycle

TA=-20 to +75°C, VDD= 5V+5%, GND= 0V

		1			· · · · · · · · · · · · · · · · · · ·		
No	Item	Symbol	Min.	typ	Max.	Unit	Conditions
1	Address set-up time	t _{AS}	90	-	-	ns	-
2	Address hold time	t _{AH}	10	ı	-	ns	-
3	Data delay time(read)	t _{DDR}	•	ı	140	ns	CL=50pF
4	Data hold time (read)	t _{DHR}	10	-	-	ns	-
5	Data set-up time (write)	t _{DSW}	220	-	-	ns	-
6	Data hold time (write)	t _{DHW}	20	-	-	ns	-

Display command

Display control instruction

Display is controlled by writing data into the instruction register and 13 data registers. The instruction register and the data register are distinguished by the RS signal. First, write 4-bit data

in the instruction register when RS=1, then specify the code of the data register. Next with RS=0, write 8-bit data in the data register, which executes the specify instruction. A new instruction cannot be accepted while an old instruction is being executed. As the Busy flag is set under this condition, write an instruction only after reading the Busy flag and making sure that it is 0.

However, the next instruction can be executed without checking the Busy flag when the maximum read cycle time or the write cycle time has been exceeded after execution of the previous data read instruction or the data write instruction. The Busy flag does not change when data is written into the instruction register (RS=1) .Therefore, the Busy flag need not be checked immediately after writing data into the instruction register.

(1)Mode control

Write code "00H" (in hexadecimal notation) in the instruction register and specify the mode control register.

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	0	0	0	0
Mode control Reg	0	0	0	0	MODE Data					

					_			
DB5	DB4	DB3	DB2	DB1	DB0	Cursor / blink	CG	Graphic/character display
		0	0			Cursor OFF	CG	
		0	1		0	Cursor ON		
		1	0		0	Cursor OFF	Built-in	
1	1	1	1			Cursor blink	Bu	
<i>'</i>	/	0	0	0		Cursor OFF	CG	Character display
0	0	0	1			Cursor ON		
		1	0		1	Cursor OFF character blink	External	
		1	1			Cursor blink	Ĥ	
		0	0	1	0		><	Graphic mode
Display ON/OFF	Master/slav e	Blink	Cursor	Mode	External/ builtin CG			

1: master mode

0: slave mode

1: display ON

0: display OFF

(2)Setting the character pitch

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Instruction Reg	0	1	0	0	0	0	0	0	0	1	
Character pitch Reg	0	0		(Vp-1) Binary				(Hp	(Hp-1) Binary		

Vp is the number of vertical dots per character. Determine Vp with the pitch between two vertically placed characters taken into consideration. This value is meaningful only in the character display mode: It is invalid in the graphic mode.

In character mode, Hp indicates the number of horizontal dots per character, from the leftmost part of one character to the leftmost part of the next. In the graphic mode, Hp indicates how many bits (or dots) from RAM appear in a 1-byte display. Hp must take one of the following three values.

Нр	DB2	DB1	DB0	
6	1	0	1	Horizontal character pitch 6
7	1	1	0	Horizontal character pitch 7
8	1	1	1	Horizontal character pitch 8

(3)Setting the number of characters

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Instruction Reg	0	1	0	0	0	0	0	0	1	0	
Character number	0	0	(Hn -1) Binary (239)								
Reg											

In the character display mode, HN indicates the number of characters in the horizontal direction. In the graphic mode, it indicates the number of bytes in the horizontal direction. The total number of dots positioned horizontally on the screen n is given by the formula n=Hp *HN. Even numbers in the range 2 to 256 (decimal) can be set as HN.

(4) Setting the time division number (display duty)

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	0	0	1	1
Time division Reg 0 0 (Nx -1) Binary (127)										

Consequently, 1/Nx is the display duty.

Decimal numbers within the range 1 to 256 can be set as Nx.

(5)Setting the cursor position

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	0	1	0	0
Cursor position Reg	0	0	0	0	0	0	(Cp - 1) Binar	y

In the character display mode, Cp indicates the line at which the cursor is displayed. For example, when Cp=8 (decimal) is specified, the cursor is displayed beneath the character of the 5*7 dot-font. The horizontal length of the cursor equals Hp (the horizontal character pitch). Decimal values in the range 1 to 16 can be assigned to Cp. When the value is less than the vertical character pitch Vp (Cp≤Vp), display priority is given to the cursor (provided the cursor display is ON). The cursor is not displayed when CP) Vp. The horizontal length of the cursor equals Hp.

(6)Setting the display start lower address

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	1	0	0	0
Mode control Reg	0	0	(start address lower byte) binary							

(7)Setting the display start upper address

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	1	0	0	1
Display start address	0	0	0 (start address upper buts) biner.							
Reg (lower byte)			(start address upper byte) binary							

This instruction writes the display start address value in the display start address register. The display start address at which data to be displayed at the leftmost position of the top line of the screen is stored.

The start address consists of 16 bit (upper and lower).

(8) Setting the cursor (lower) address (RAM read/write lower address)

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	1	0	1	0
Cursor address	0	0								
counter (lower byte)		(cursor address lower byte) binary								

(9) Setting the cursor (upper) address (RAM read/write lower address)

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Instruction Reg	0	1	0	0	0	0	1	0	1	1	
Cursor address	0	0									
counter (upper byte)			(cursor address upper byte) binary								

This instruction writes the cursor address value in the cursor address counter. The cursor address indicates the address for exchanging display data and character codes with RAM. In other words, data at the address specified by the cursor address is read from or written into RAM. In character display, the cursor is displayed at the position specified by the cursor address. The cursor address is divided into a lower address (8 bits) and an upper address (8 bits). It should be set in accordance with the following rules.

	To rewrite (set) both lower and upper addresses:	First set the lower address, then the upper.
2		Always reset the upper address after setting the lower address.
		address.
3	To rewrite the upper address only:	Set the upper address. It is necessary to reset the
		lower address.

The cursor address counter is a 16-bit up-counter with set/reset functions: when the Nth bit goes from 1 to 0, the count of the (N + 1)th bit increments by one. Accordingly, when the lower address is set so that the lower MSB (8th bit) changes from 1 to 0, the LSB (1st bit) of the upper counter must increment by one. When setting the cursor address, set the lower and upper addresses as a 2-byte continuous instruction.

(10)Writing display data

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	1	1	0	0
RAM	0	0	MSB (pattern data, character code)							LSB

Write code "0DH" in the instruction register. Then, Write 8-bit data with RS=0, and the data is written into RAM as display data or character codes at the address specified by the cursor address counter. After writing, the count of the cursor address counter increments by 1.

(11)Reading display data

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	1	1	0	1
RAM	1	0	MSB (pattern data, character code)					LSB		

Write "0CH" in the instruction register. Then, establish the read status with RS=0, and data in the RAM can be read. The procedure for reading data is as follows:

This instruction outputs the contents of the data output register to DB0 to 7, then transfers the RAM data indicated by the cursor address to the data output register. It then increments the cursor address by 1, which means that correct data cannot be read in the first read operation. The specified value is output in the second read operation. Accordingly, a dummy read operation must be performed once when reading data after setting the cursor address.

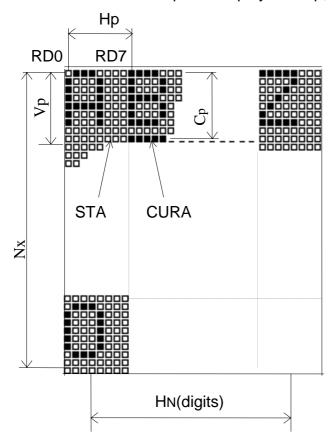
(12)Bit clear

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	1	1	1	0
Bit clear	0	0	0	0	0	0	0	(NB -1) Binary		nary

(13)Bit set

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Reg	0	1	0	0	0	0	1	1	1	1
Bit set	0	0	0	0	0	0	0	(N _B -1) Binary		nary

As the bit-clear or bit-set instruction, 1 bit of a 1 byte of data in display RAM is set to 0 or 1. The bit specified by NB is set to 0 for the bit-clear instruction and 1 for the bit-set instruction. The RAM address is specified by the cursor address, which is automatically incremented by 1 at the completion of the instruction. NB is a value in the range from 1 to 8. The LSB is indicated by NB=1, and the MSB by NB=8.

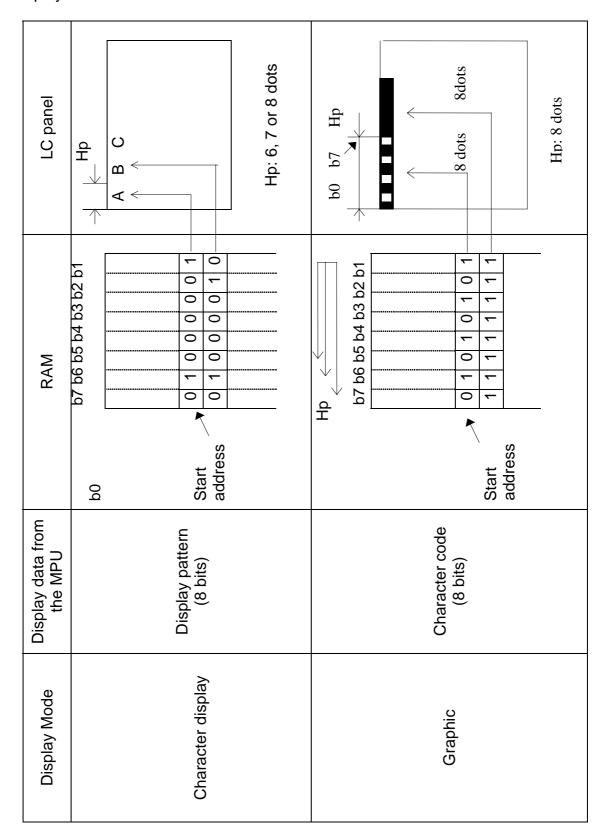

(14)Reading the BUSY flag

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
busy flag	1	1	1/0				*			

The Busy flag is output to DB7 when read mode is established with RS=1. The Busy flag is set to 1 while any of the instructions (1) through (13) is being executed. It is set to 0 at the completion of the execution, allowing the next instruction to be accepted. No other instruction can be accepted when the Busy flag is 1. Accordingly, before writing an instruction and data, it is necessary to ensure that the Busy flag is 0. However, the next instruction can be executed without checking the Busy flag when the maximum read cycle time or the write cycle time has been exceeded after execution of the previous data read instruction or the data write instruction.

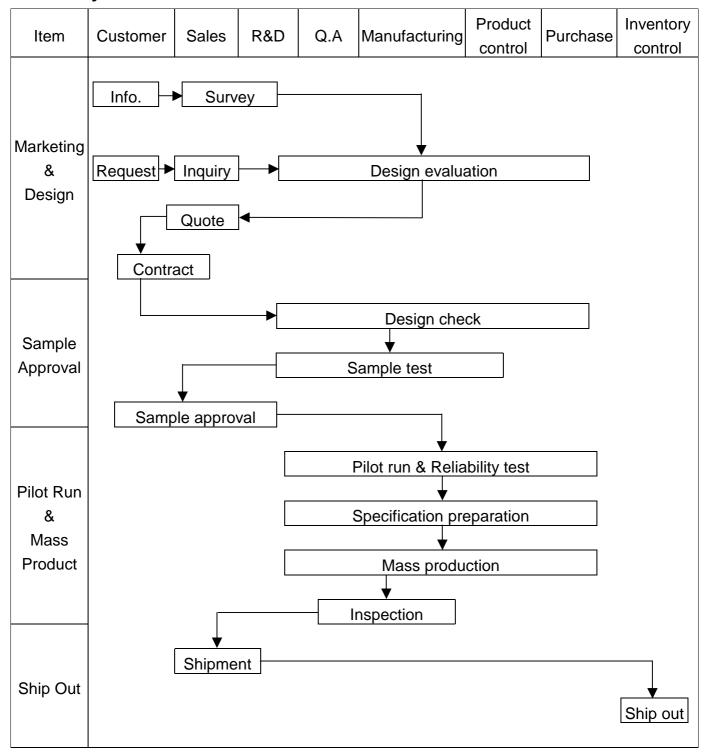
The Busy flag does not change when data is written into the instruction register (RS=1). Therefore, the Busy Specification of the instruction register is unnecessary to read the Busy flag.

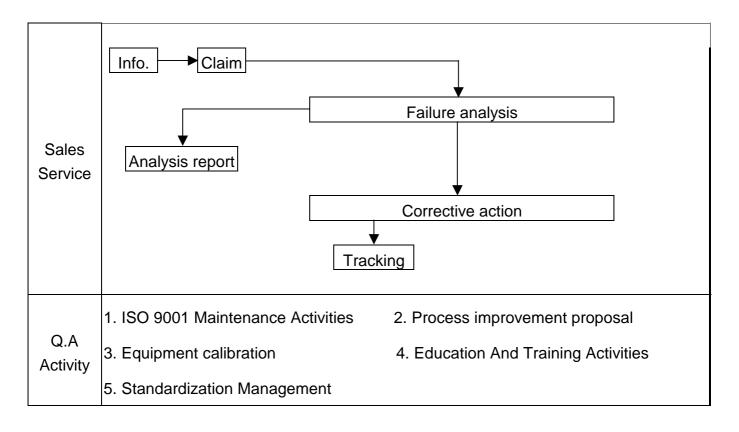
The relation between the LCD panel display and Hp, Hn, Vp, Cp, Nx



Symbol	Description	Contents	Value
Нр	Horizontal character' pitch	Character pitch in the horizontal direction	6 to 8 dots
HN	Number of characters in the horizontal direction	Number of characters (digits) per horizontal line or the number of words per line (graphic)	Even digits in the range 2 to 256
Vp	Vertical character pitch	Character pitch in the vertical direction	1 to 16 dots
Ср	Cursor position	The line number at which the cursor is to be display	1 to 16 line
Nx	Number of lines in the vertical direction	Display duty	1 to 256 lines

(Note)


When the number of vertical dots on the screen is m and that of horizontal dots is n, 1/m=1/Nx= display duty n=Hp*HN m/Vp=number of display lines $Cp\leq Vp$



3. QUALITY ASSURANCE SYSTEM

3.1 Quality Assurance Flow Chart

3.2 Inspection Specification

Equipment : Gauge · MIL-STD · Powertip Tester · Sample ·

IQC Defect Level: Major Defect AQL 0.65; Minor Defect AQL 1.0 ∘

FQC Defect Level: 100% Inspection • OUT Going Defect Level: Sampling •

Specification:

ΝO	Item	Specification	Judge	Level
1	Part Number	Inconsistent with the P/N on the flow chart of production	N.G.	Major
2	Quantity	Inconsistent Q'TY with the flow chart of production	N.G.	Major
		Display short	N.G.	Major
	Electronic	Missing line	N.G.	Major
3	characteristics	Dot missing A>1/2 Dot size	N.G.	Major
	A=(L + W)÷2	No function	N.G.	Major
	71-(L 1 VV) . Z	Out put data error	N.G.	Major
		Material difference with flow chart	N.G.	Major
	Appearance	LCD Assembled in opposite direction	N.G.	Major
		Bezel assembled in opposite direction	N.G.	Major
	A=(L + W)÷2	Shadow within LCD V./A + 1.0 mm	N.G.	Major
4		Dirty particle A>0.4 mm	N.G.	Minor
4	Dirty particle (Include scratch · bubble)	Dirty particle length >3.0mm		
		And 0.01 mm $<$ Width ≤ 0.05 mm (Width $>$	N.G.	Minor
		0.05mm Measure by area)		
		Without protective film	N.G.	Minor
		Conductive rubber over bezel	N.G.	Minor
		Burned PCB	N.G.	Major
		Green paint stripped & visible circuit A>1.0mm	N.G.	Minor
		(Finish coat not counted in)	N.G.	IVIIIIOI
	PCB Appearance	A particle across the circuit	N.G	Minor
5		Circuit split >1/2 Circuit width	N.G	Minor
	A=(L + W)÷2	Any circuit risen	N.G	Minor
		0.2mm <tin area="" a≦0.4mm<="" ball="" td=""><td>N.G</td><td rowspan="2">Minor</td></tin>	N.G	Minor
		And Q'TY>4 Pieces	IN.G	
		Tin ball area A>0.4mm	N.G	Minor

ΝO	Item	Specification	Judge	Level
		Too soft : Shape by touch changed	N.G.	Major
	Molding	Insufficient epoxy: IC circuit or IC pad visible	N.G.	Minor
6 appearance A=(L + W)÷2		Excessive epoxy: Diameter > 20mm Or High > 2.5mm	N.G.	Minor
		Pin hole through to IC and A>0.2mm	N.G.	Minor
		Angle between frame and TAB $>$ 45 $^{\circ}$ +10 $^{\circ}$	N.G.	Minor
7	Bezel appearance	Electroplate strip A $>$ 1.0mm (Top view only)	N.G.	Minor
'	A=(L + W)÷2	Rust (Top view only)	N.G.	Minor
		Crack	N.G.	Minor
	De aldielet alaateia	Error backlight color	N.G.	Major
	Backlight electric	No function	N.G.	Major
8	characteristics	Any LED dot no function	N.G.	Major
	A=(L + W)÷2	PIN soldering without tin A > 1/2 solder pad	N.G.	Minor
		Solder PIN high > 1.5mm	N.G.	Minor
9	LCD Appearance A=(L + W)÷2	Polarize rise over V/A	N.G.	Minor
		Components mark unclearly	N.G.	Minor
		Components' distance more than 0.7mm firm the PCB	N.G.	Minor
10	Assembly parts A=(L + W)÷2	Pad Non- solder area > Twice solder area Flux area A > 1/4 solder area	N.G. N.G.	Minor Minor Minor
		Component broken	N.G.	Minor

4. RELIABILITY TEST

4.1 Reliability Test Condition

NO	Item	Test Co	ondition	Applicable Standard		
1	High Temperature Storage	Surrounding Tempera	Storage At 80 ±2°C 96~100 hrs Surrounding Temperature, Then Storage At Normal Condition 4hrs.			
2	Low Temperature Storage	Storage At -30 ±2°C S Surrounding Tempera At Normal Condition 4	MIL-202E			
3	High Temperature Humidity Storage	1.Storage 96~100 hrs Surrounding Tempera At Normal Condition fail in this environmen or 2.Storage 96~100 hrs Surrounding Tempe At Normal Condition	MIL-202E			
4	Temperature Cycling	-20°C → 25°C − (30Mins) (5Mins) 10 C	MIL-202E			
5	Vibration	10~55Hz(1 Minute)1.5mm X,Y And Z Direction * (Each 2hrs)		MIL-202E		
6	Drop Test	Packing Weight (Kg) 0 ~ 45.4 45.4 ~ 90.8 90.8 ~ 454 Over 454	Drop High (Cm) 122 76 61 46	MIL-810E		

5. PRECAUTION RELATING PRODUCT HANDLING

5.1 SAFETY

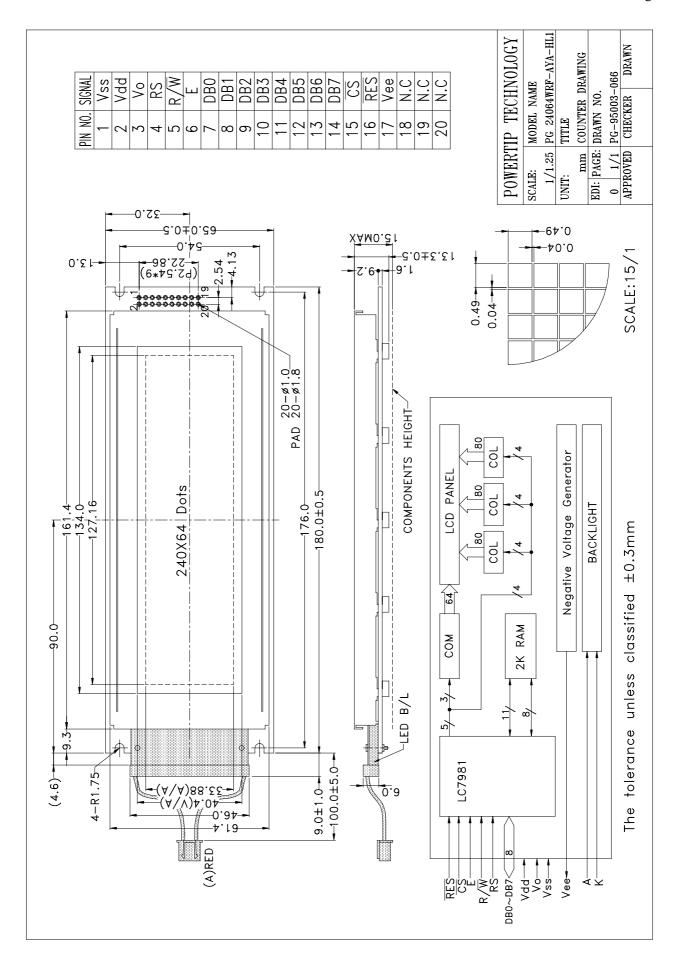
- 5.1.1 If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 5.1.2 If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

5.2 HANDLING

- 5.2.1 Avoid any strong mechanical shock which can break the glass.
- 5.2.2 Avoid static electricity which can damage the CMOS LSI—When working with the module , be sure to ground your body and any electrical equipment you may be using.
- 5.2.3 Do not remove the panel or frame from the module.
- 5.2.4 The polarizing plate of the display is very fragile. So , please handle it very carefully , do not touch , push or rub the exposed polarizing with anything harder than an HB pencil lead (glass , tweezers , etc.)
- 5.2.5 Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5.2.6 Do not touch the display area with bare hands, this will stain the display area.
- 5.2.7 Do not use ketonics solvent & aromatic solvent. Use with a soft cloth soaked with a cleaning naphtha solvent.

5.3 STORAGE

- 5.3.1 Store the panel or module in a dark place where the temperature is 25° C $\pm 5^{\circ}$ C and the humidity is below 65% RH.
- 5.3.2 Do not place the module near organics solvents or corrosive gases.
- 5.3.3 Do not crush, shake, or jolt the module.


5.4 TERMS OF WARRANTY

5.4.1 Applicable warrant period

The period is within thirteen months since the date of shipping out under normal using and storage conditions.

5.4.2 Unaccepted responsibility

This product has been manufactured to your company's specification as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in medical devices, nuclear power control equipment, aerospace equipment, fire and security systems or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required.

