

FOUR-CHANNEL IMAGE SENSOR ANALOG FRONT-END

Check for Samples: VSP7500, VSP7502

FEATURES

- Four-Channel Signal Paths
 - VSP7500: Supports CDS Input
 - VSP7502: Supports SH Input
- **Maximum Data Throughput: 56 MHz**
- **Dual Inputs for Each Signal Path**
- 16-Bit A/D Conversion:
 - No Missing Codes Ensured
- **Programmable Gain Amplifier (PGA):**
 - Analog Front Gain: 0 dB to +9.6 dB (0.28-dB Step)
 - Digital Gain: 0 dB to +32 dB (0.032-dB Step)
- Wide Range of Input Common Voltage
- **Operation Voltage and Power Consumption:**
 - Voltage: 1.65 V to 1.95 V and 2.7 V to 3.6 V
- Power: 400 mW (at VDD = 1.8 V, $f_{\text{MCLK}} = 50 \text{ MHz}$)

APPLICATIONS

- **Digital Video Cameras (DVCs)**
- Digital Still Cameras (DSCs)
- **Front End for Multichannel Sensors**
- **High-Speed Machine Vision**
- **High-Resolution Surveillance Cameras**
- **High-Speed/High-Resolution Scanners**
- Medical

DESCRIPTION

The VSP7500/VSP7502 are four-channel analog front-ends (AFEs) for imaging signals. These devices double include a correlated sampler programmable gain amplifier (PGA), analog-to-digital converter (ADC), input clamp, optical black (OB) level clamp loop, serial interface, and adjustable sampling timing control. The VSP7502 provides the same functionality with a sample/hold (S/H) mode to **CMOS** support and CIS sensors. The VSP7500/VSP7502 are offered in a BGA-159 package.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

PRODUCT	PACKAGE- LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUATITY
VSP7500	BGA-159	ZWV	-25°C to +85°C	\/CD75007\\\\	VSP7500ZWV	Tray, 360
VSP7500	BGA-159	ZVVV		VSP7500ZWV	VSP7500ZWVR	Tape and Reel, 3000
VSP7502	DCA 150	7\\\\	–25°C to +85°C	VSP7502ZWV	VSP7502ZWV	Tray, 360
V5P7502	BGA-159	ZWV	-25°C 10 +65°C	VSP/502ZVVV	VSP7502ZWVR	Tape and Reel, 3000

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature range, unless otherwise noted.

дет при	VSP7500, VSP7502	UNIT
Supply voltage (AVDD2, DLLVDD2, REFVDD, DRVDD2, DVDD2, DVDD2_SPI)	2.4	V
Supply voltage (AVDD3, RGVDD3, H1VDD3, H2VDD3, DVDD3, DVDD3_SPI)	4	V
Supply voltage differences (among power-supply pins)	±0.1	V
Ground voltage differences (among GND pins)	±0.1	V
Digital input voltage (ATPG, MN_DM, MN_KBLK, MN_OB, MN_PBLK)	-0.15 to (DVDD2 + 0.15)	V
Digital input voltage (HD, VD, MCLK, RST, SCLK, SCS, SDI)	-0.3 to (DVDD3 + 0.3)	V
Analog input voltage (IN_W, IN_X, IN_Y, IN_Z, IP_W, IP_X, IP_Y, IP_Z)	-0.3 to (AVDD3 + 0.3)	V
Input current (all pins except supplies)	±10	mA
Ambient temperature under bias	-40 to +125	°C
Storage temperature	-55 to +150	°C
Junction temperature	+150	°C
Package temperature (reflow, peak)	+260	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

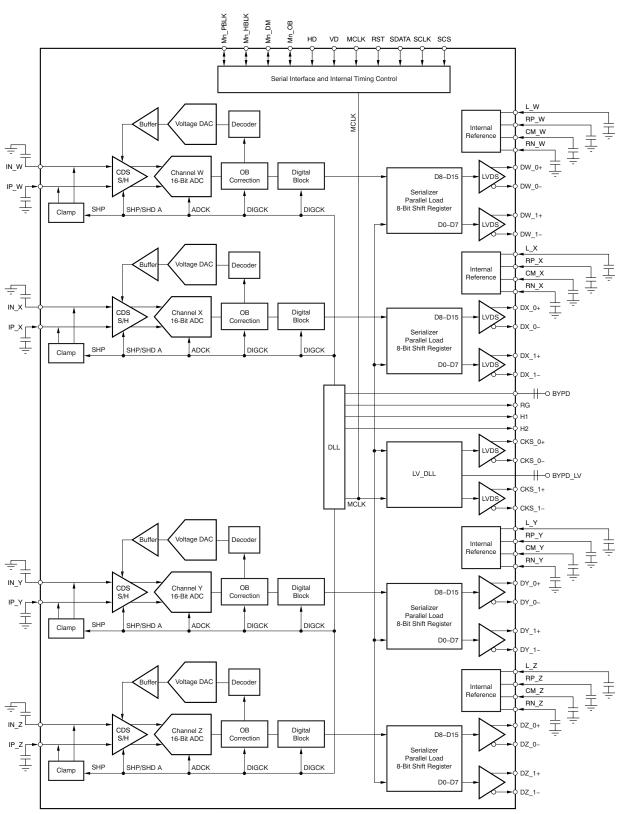
ELECTRICAL CHARACTERISTICS(1)

All specifications at $T_A = +25$ °C, all power-supply voltages = +3 V, and conversion rate = 36 MHz, unless otherwise noted.

			VSP7	500, VSP750	02	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPL	LY					
	AVDD2					
	REFVDD					
Analog supply	DLLVDD2		1.65	1.8	1.95	V
voltage	LVAVDD					
	LVDLLVDD					
	AVDD3		2.7	3	3.6	V
	DVDD2					
	DVDD2_SPI					
	DRVDD2					
Digital supply	DVDD2_SPI		1.65	1.8	1.95	V
voltage	LVDVDD					
	DRVDD2					
	DVDD3					
	DVDD3_SPI		2.7	3	3.6	V
H-TG supply voltage	HVDD3		2.7	3	3.6	V
		VDD = typ, f _{MCLK} = 50MHz		400		mW
Power dissipation	on	Power-down mode (f _{MCLK} = 0 MHz)		10		mW
RESOLUTION						
Resolution				16		Bits
THROUGHPUT						
Maximum data t				50	56	MHz
SIGNAL PATHS	5					
Signal paths		VCC = 3 V		4		Channels
DIGITAL INPUT	ıs					
Logic family				CMOS		
I _{IH}	Input current	Logic high, V _{IN} = +1.8 V			1	μΑ
I _{IL}		Logic low, V _{IN} = 0 V			1	μΑ
MCLK clock dut	· ·		40	50	60	%
Input capacitano				5		pF
	UT (CMOS Buffer RG, H1, H2, LH)					
V _{OH}	Output voltage	Logic high, I _{OH} = −2 mA	VDD – 0.3			V
V _{OL}		Logic low, I _{OL} = 2 mA			VDD + 0.3	V
ANALOG INPU						
Input signal leve	el for full-scale out	Gain = 0 dB		1		V _{PP}
Input voltage	for INP pin				VCC	V
	for INN pin		GND			V
Input capacitano	ce			10		pF
Input limit			GND - 0.3		VCC + 0.3	V
REFERENCE						
Positive referen				1.25		V
Negative referen	nce voltage			0.75		V
INPUT CLAMP						
Clamp-on resist	ance			2		kΩ
Clamp level				1.8	T	V

⁽¹⁾ All values listed are preliminary. Final values to be determined after evaluation.

ELECTRICAL CHARACTERISTICS(1) (continued)


All specifications at $T_A = +25$ °C, all power-supply voltages = +3 V, and conversion rate = 36 MHz, unless otherwise noted.

			VSP7	VSP7500, VSP7502		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TRANSFER CH	ARACTERISTICS				'	
Differential nonlin	nearity (DNL)			±1		LSB
Integral nonlinea	arity (INL)			±32		LSB
No missing code	es			Ensured		
Step response s	ettling time	Full-scale step input		1		Pixels
Overload recove	ery time	Step input from 1.8 V to 0 V		2		Pixels
Data latency					11	Clocks
Signal-to-noise r	ratio ⁽²⁾	Grounded input capacitor		77		dB
Sensor offset co	rrection range		-200		200	mV
Channel isolation	n	Among each channel		-77		dB
PROGRAMMAB	BLE GAIN (Analog)	<u>'</u>			"	
Analog gain prog	grammable range		0		+9.6	dB
Analog gain prog	grammable step			0.28		dB
Analog gain step	monotonocity			Ensured		
Analog gain erro	or	For setting gain			0.5	dB
PROGRAMMAB	BLE GAIN (Digital)				-	
Digital gain prog	rammable range		0		32	dB
Digital gain prog	rammable step			0.032		dB
OPTICAL BLAC	CK CLAMP (OBCLP) LOOP	<u> </u>			+	
Loop time constant				40.7		μS
		Programmable range of clamp level	1024		3072	LSB
Optical black cla	imp level	OBCLP level at code = 1000 0000 0000b (center)		2048		LSB
		OB level program step	1			LSB
PRIMARY ANAL	LOG OB CLAMP LOOP					
OB DAC resoluti	ion			6		Bits
OB DAC full-sca	le voltage			±250		mV
LVDS BUFFER	(D0, D1, CKS)					
R_L	Differential load impedance		90	100	110	Ω
V _{OD}	Differential steady-state output voltage magnitude	R _L = 100 Ω	90		110	mV
$\Delta V_{OD} $	Change in the steady-state differential output voltage magnitude between opposite binary states	R _L = 100 Ω			15	mV
\/	Ctandy state common made cutaut valtage	COM_SEL = 0 (0.9 V mode)	0.7		1.1	V
V _{OC(SS)}	Steady-state common-mode output voltage	COM_SEL = 1 (1.2 V mode)	1		1.4	V
V _{OC(PP)}	Peak-to-peak common-mode output			20	50	mV
I _{os}	Short-circuit output current	Output = GND	-6		6	mA
l _{oz}	High-impedance state output current	V _O = 0 V to VCC	-10		10	μΑ
TEMPERATURE	E RANGE					
Operating tempe	erature		-25		+85	°C

⁽²⁾ SNR = 20 log (full-scale voltage/rms noise).

FUNCTIONAL BLOCK DIAGRAM

NOTE: VSP7500 = CDS, VSP7502 = SH.

SYSTEM DESCRIPTION

SAMPLE-AND-HOLD (S/H) MODE

In S/H mode, the VSP7502 input circuit is configured for sample-and-hold operation by the serial interface setting. Figure 1 shows a simplified input circuit of the S/H mode. In this mode, the input signal is sampled by the SHD signal.

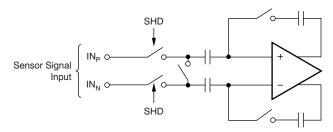


Figure 1. S/H Input Mode Block Diagram

CORRELATED DOUBLE SAMPLER (CDS) MODE

In CDS mode, the VSP7500/VSP7502 input circuit is reconfigured as a CDS by the serial interface setting. Figure 2 shows a simplified input circuit of the CDS mode.

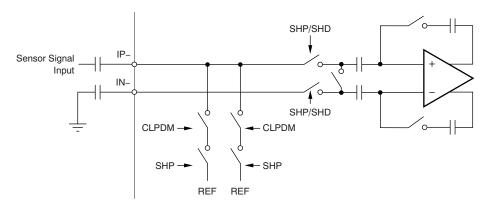


Figure 2. CDS Input Mode Block Diagram

INPUT CLAMP

In the charge-coupled device (CCD) input mode, the IN_P pin of the VSP7500/VSP7502 are connected to the buffered CCD output through capacitive coupling; therefore, an input clamp is necessary. The purpose of the input clamp is to restore the dc component of the input signal that is lost during ac coupling and establish the desired dc bias point for CDS. Figure 2 also illustrates the input clamp. The input level is clamped to the internal reference voltage during the dummy pixel interval. More specifically, the clamping function becomes active when both CLPDM and SHP are active.

16-BIT ADC

The VSP7500/VSP7502 also provide a high-speed, 16-bit ADC. This ADC uses a fully-differential, pipelined architecture with a correction feature. This architecture achieves better linearity at lower signal levels because large linearity errors tend to occur at specific points in the full-scale range, and linearity improves for a signal level below that specific point. The ADC ensures 16-bit resolution for the entire full-scale range.

OPTICAL BLACK (OB) LOOP AND OB CLAMP (OBCLP) LEVEL

The VSP7500/VSP7502 have a built-in optical black (OB) offset self-calibration circuit (OB loop) that compensates the OB level by using OB pixels that are output from the CCD image sensor. This device also provides a digital OB clamp loop. CCD offset is compensated by converging both OB loops while activating CLPOB during a period when OB pixels are output from the CCD. 20 pixels of the CLPOB period may be enough for stable OB loop operation.

CLOCKING AND DLL

The VSP7500/VSP7502 require the following clocks for proper operation: MCLK, the system clock; CLPOB, the optical black level clamp; and CLPDM, the input clamp.

The HBLK timing signal transmits the horizontal blanking period timing. In this period, high-speed HTG pulses are masked. The PBLK timing signal transmits the data output blanking period timing. In this period, outputting the ADC data is masked.

The VSP7500/VSP7502 have built-in DLL circuits that enable the required sampling clocks and the horizontal timing pulse and logic clocks for outputting LVDS data to be generated.

VOLTAGE REFERENCE

All reference voltages and bias currents used on the VSP7500/VSP7502 are created from internal bandgap circuitry. The device has a symmetrically independent voltage reference for each channel.

Both channels of the S/H, CDS, and the ADC use three primary reference voltages: REFP (1.25 V), REFN (0.75 V), and CM (1 V) of individual references. REFP and REFN are buffered on-chip. CM is derived as the midrange voltage of the resistor chain internally connecting REFP and REFN. The ADC full-scale range is determined by twice the difference voltage between REFP and REFN.

REFP, REFN, and CM should be heavily decoupled with appropriate capacitors.

HOT PIXEL REJECTION

Sometimes, OB pixel output signals from the CCD include unusual level signals that are caused by pixel defection. If this level reaches a full-scale level, it may affect OB level stability. The VSP7500/VSP7502 have a function that rejects the unusually large pixel levels (hot pixels) in the OB pixel. This function may contribute to CCD yield improvement that is caused by OB pixel failure.

Rejection level for hot pixels is programmable through the serial interface. When hot pixels come from the CCD, the VSP7500/VSP7502 omit them and replace the previous pixel level with the OB level calculation.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	hanges from Original (December 2010) to Revision A	Page
•	Added last four bullets to Applications section	1

PACKAGE OPTION ADDENDUM

19-Feb-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins P	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
VSP7500ZWV	ACTIVE	NFBGA	ZWV	159		Pb-Free (RoHS)	SNAGCU	Level-2-260C-1 YEAR	-25 to 85	VSP7500	Samples
VSP7502ZWVR	ACTIVE	NFBGA	ZWV	159		Pb-Free (RoHS)	SNAGCU	Level-2-260C-1 YEAR	-25 to 85	VSP7502	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

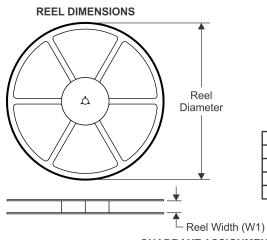
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

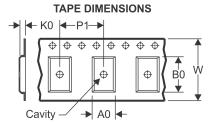
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

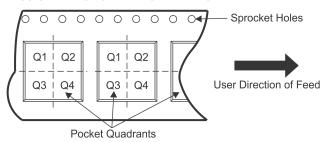
PACKAGE OPTION ADDENDUM


19-Feb-2014

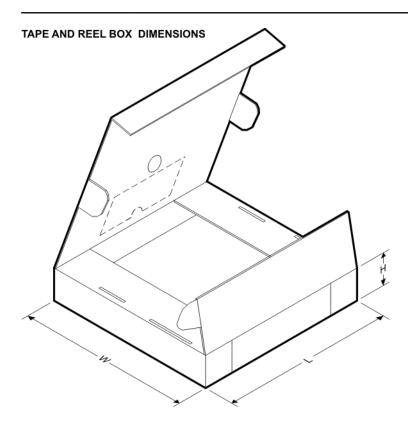

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 19-Feb-2014


TAPE AND REEL INFORMATION

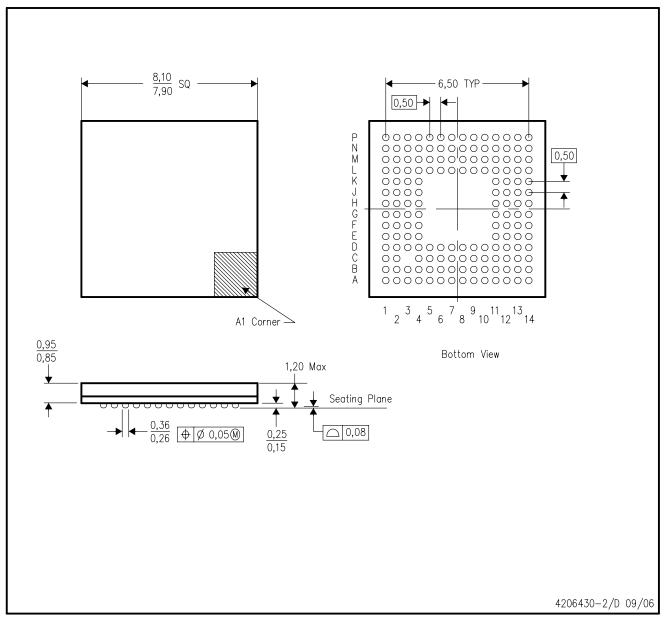
_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ſ	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
VSP7502ZWVR	NFBGA	ZWV	159	0	330.0	16.4	8.3	8.3	1.85	12.0	16.0	Q1

www.ti.com 19-Feb-2014



*All dimensions are nominal

	Device	Device Package Type		Pins	SPQ	Length (mm)	Length (mm) Width (mm)	
I	VSP7502ZWVR	NFBGA	ZWV	159	0	342.0	336.0	34.0

ZWV (S-PBGA-N159)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. This is a lead-free solder ball design.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>