
VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Typical Applications

The HMC996LP4E is ideal for:

- Point-to-Point Radio
- Point-to-Multi-Point Radio
- EW & ECM Subsystems
- X-Band Radar
- Test Equipment & Sensors

Functional Diagram

Features

Wide Gain Control Range: 22 dB Single Control Voltage: -1 to -4.5V Output IP3 @ Max Gain: +34 dBm

Output P1dB: +22 dBm

Low Noise Figure 2dB @ max gain

No External Matching

24 Lead 4x4 mm SMT Package: 16 mm²

General Description

The HMC996LP4E is a GaAs PHEMT MMIC analog variable gain amplifier and / or driver amplifier which operates between 5 and 12 GHz. Ideal for microwave radio applications, the amplifier provides up to 18.5 dB of gain, output P1dB of up to +23 dBm, and up to +34 dBm of output IP3 at maximum gain, while requiring only 170 mA from a +5V supply. Gain control voltage pin (Vctrl) is provided to allow variable gain control up to 22 dB. Gain flatness is excellent making the HMC996LP4E ideal for EW, ECM and radar applications. The HMC996LP4E is housed in a RoHS compliant 4 x 4 mm QFN leadless package and is compatible with high volume surface mount manufacturing.

Electrical Specifications, $T_A = +25$ °C, Vdd1, 2= 5V, Vctrl= -4.5V, Idd= 120 mA*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		5 - 8.5			8.5 - 12		GHz
Gain	16	18.5		13	16		dB
Gain Flatness		±0.5			±1		dB
Gain Variation Over Temperature		0.006			0.006		dB/ °C
Gain Control Range	15	22		15	20		dB
Noise Figure		2.5			2		dB
Input Return Loss		17			9		dB
Output Return Loss		23			7		dB
Output Power for 1 dB Compression (P1dB)	19	22		20	23		dBm
Saturated Output Power (Psat)		23			24		dBm
Output Third Order Intercept (IP3)		34			34		dBm
Total Supply Current (Idd)		120			120		mA

^{*}Set Vctrl = -4.5V and then adjust Vgg1, 2 between -2V to 0V to achieve Idd = 120 mA typical.

HMC996* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

· HMC996LP4E Evaluation Board

DOCUMENTATION

Data Sheet

· HMC996 Data Sheet

TOOLS AND SIMULATIONS

• HMC996 S-Parameter

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LP3, LP4, LP5 & LP5G (QTR: 2014-00145)
- Semiconductor Qualification Test Report: PHEMT-F (QTR: 2013-00269)

DESIGN RESOURCES

- HMC996 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC996 EngineerZone Discussions.

SAMPLE AND BUY 🖵

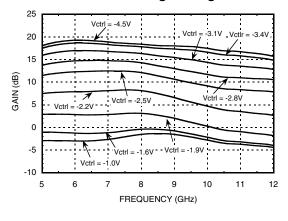
Visit the product page to see pricing options.

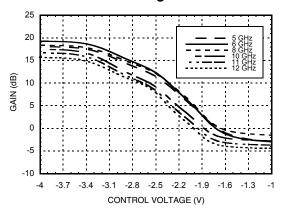
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

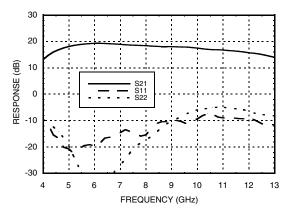
DOCUMENT FEEDBACK \Box

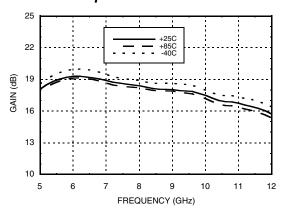
Submit feedback for this data sheet.

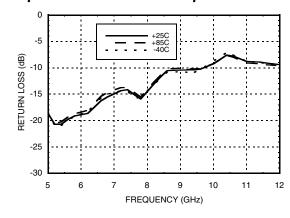

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

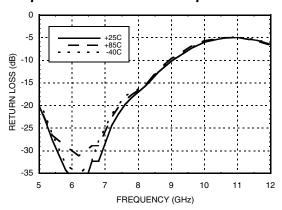


VARIABLE GAIN AMPLIFIER 5 - 12 GHz


Gain vs. Control Voltage Range

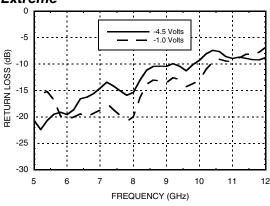

Gain vs. Control Voltage


Broadband Gain & Return Loss

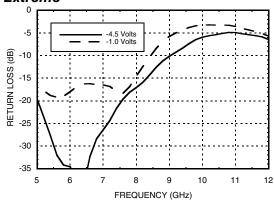

Gain vs. Temperature

Input Return Loss vs. Temperature

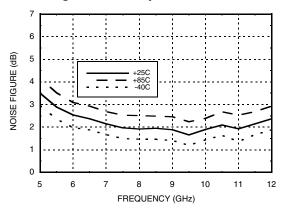
Output Return Loss vs. Temperature

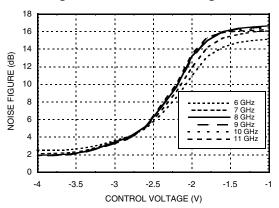


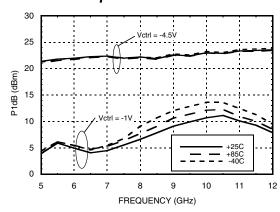
ANALOG

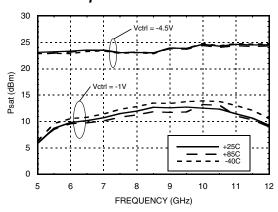

v01.0112

VARIABLE GAIN AMPLIFIER 5 - 12 GHz


Input Return Loss @ Control Voltage **Extreme**

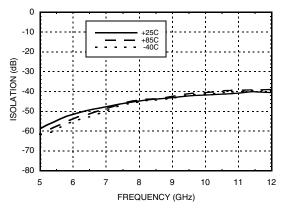

Output Return Loss @ Control Voltage Extreme

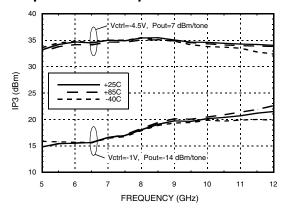

Noise Figure vs. Temperature


Noise Figure vs. Control Voltage

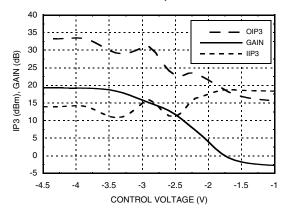
P1dB vs. Temperature

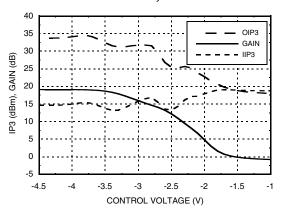
Psat vs. Temperature

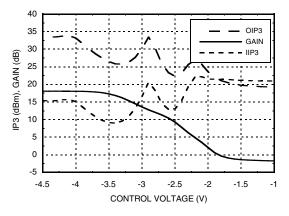

VARIABLE GAIN AMPLIFIER - SMT



VARIABLE GAIN AMPLIFIER 5 - 12 GHz


Reverse Isolation vs. Temperature


Output IP3 vs. Temperature

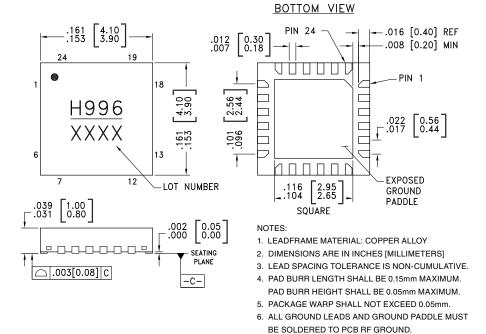

IP3 and Gain @ 6 GHz, Pin = -10 dBm

IP3 and Gain @ 8 GHz, Pin = -10 dBm

IP3 and Gain @ 10 GHz, Pin = -10 dBm

VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Absolute Maximum Ratings


Drain Bias Voltage (Vdd1, 2)	+5.5V		
Gate Bias Voltage (Vgg1, 2)	-3 to 0V		
Gain Control Voltage (Vctrl)	-5 to 0V		
RF Power Input	+20 dBm		
Channel Temperature	175 °C		
Continuous Pdiss (T = 85 °C) (derate 11.5 mW/°C above 85 °C) [1]	1.03 W		
Thermal Resistance (Channel to ground paddle)	86.7 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
ESD Sensitivity (HBM)	Class 0 Passed 150V		

Bias Voltage

Idd Total (mA)	
120 mA	
Igg Total (mA)	
<0.1 mA	

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC996LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [1]	H996 XXXX

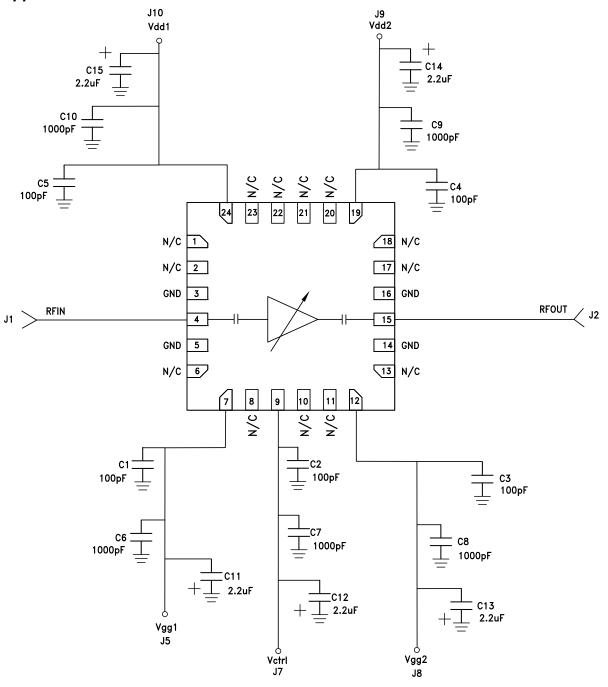
7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

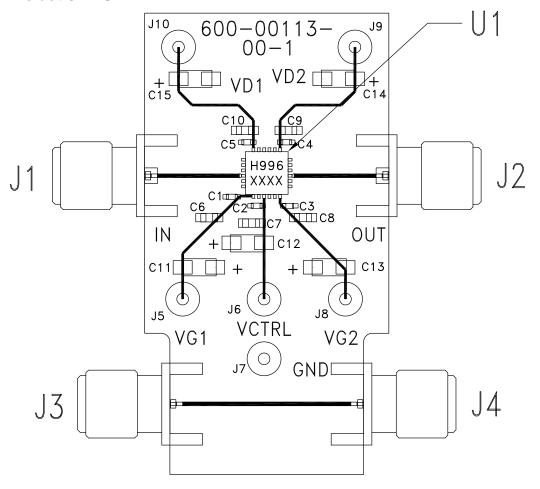
VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 2, 6, 8, 10, 11, 13, 17, 18, 20, 21, 22, 23	N/C	The pins are not connected internally: however all data shown herein was measured with these pins connected to RF/DC ground externally	
3, 5, 14, 16	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	GND
4	RFIN	This pad is AC coupled and matched to 50 Ohm.	RFIN O ESD
7, 12	Vgg1, 2	Gate control for amplifier. Adjust voltage to achieve typical Idd. Please follow "MMIC Amplifier Biasing Procedure" application note.	Vgg1,2 0
9	Votrl	Gain control Voltage for the amplifier. See assembly diagram for required external components.	VctrlO
15	RFOUT	This pad is AC coupled and matched to 50 Ohm.	ESD
19, 24	Vdd1, 2	Drain Bias Voltage for the amplifier. See assembly diagram for required external components	

VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Application Circuit



VARIABLE GAIN AMPLIFIER 5 - 12 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC996LP4E [1]

Item	Description
J1, J4	PCB Mount SMA RF Connectors
J5 - J10	DC Pin
C1 - C5	100 pF Capacitor, 0402 Pkg.
C6 - C10	1000 pF Capacitor, 0603 Pkg.
C11 - C15	2.2 µF Capacitor, CASE A
U1	HMC996LP4E Variable Gain Amplifier
PCB [2]	600-00113-00 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.