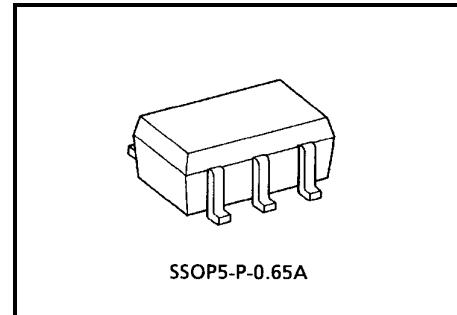


TC7SBL384AFU

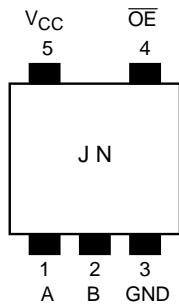

Single Low-Voltage Bus Switch

The TC7SBL384AFU is a low ON-resistance, high-speed CMOS 1-bit bus switch with low-voltage operation. The low ON-resistance of the switch allows connections to be made with minimal propagation delay.

The device comprises a single-bit low-impedance switch with output-enable (\overline{OE}) input. When \overline{OE} is low, the switch is on and data can flow from port A to port B, or vice versa. When \overline{OE} is high, the switch is open and a high-impedance state exists between the two ports.

P-MOS and N-MOS channel blocks also render the device suitable for analog signal transmission.

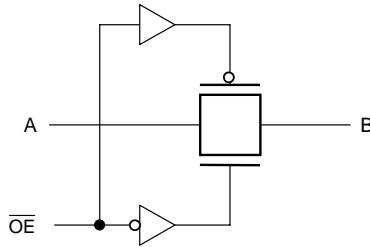
All inputs are equipped with protection circuits to guard against static discharge.


SSOP5-P-0.65A

Weight: 0.006 g (typ.)

Features

- Operating voltage: $V_{CC} = 2\sim 3.6$ V
- High speed operation: $t_{pd} = 0.31$ ns (max) @3 V
- Low ON-resistance: $R_{ON} = 5 \Omega$ (typ.) @3 V
- ESD performance: machine model $> \pm 200$ V
human body model $> \pm 2000$ V
- Power-down protection for inputs. (\overline{OE} input only)
- Package: USV


Pin Assignment (top view)

Truth Table

Input	Function
OE	
L	A port = B port
H	Disconnect

System Diagram

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Power supply range	V _{CC}	-0.5~4.6	V
Control pin input voltage	V _{IN}	-0.5~4.6	V
Switch terminal I/O voltage	V _S	-0.5~V _{CC} +0.5	V
Clump diode current Control input pin	I _{IK}	-50	mA
Switch terminal	I _{IK}	±50	
Switch I/O current	I _S	128	mA
Power dissipation	P _D	200	mW
DC V _{CC} /GND current	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristic	Symbol	Rating	Unit
Power supply voltage	V _{CC}	2.0~3.6	V
Control pin input voltage	V _{IN}	0~3.6	V
Switch I/O voltage	V _S	0~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	0~10	ns/V

Electrical Characteristics

DC Characteristics (Ta = -40~85°C)

Characteristic		Symbol	Test Condition	V _{CC} (V)	Min	Typ.	Max	Unit
Control pin input voltage	"H" level	V _{IH}	—	2.0~3.6	0.7 × V _{CC}	—	—	V
	"L" level	V _{IL}	—	2.0~3.6	—	—	0.3 × V _{CC}	
Control pin Input leakage current		I _{IN}	V _{IN} = 0~3.6 V	2.0~3.6	—	—	±1.0	μA
Power off leakage current		I _{OFF}	OĒ = 0~3.6 V	0	—	—	±1.0	μA
Off-state leakage current (switch off)		I _{SZ}	A, B = 0~V _{CC} , OĒ = V _{CC}	2.0~3.6	—	—	±1.0	μA
ON resistance (Note 2)	R _{ON}	V _{IS} = 0 V, I _S = 30 mA	(Note 1)	3.0	—	3	7	Ω
		V _{IS} = 3.0 V, I _S = 30 mA	(Note 1)	3.0	—	4	9	
		V _{IS} = 2.4 V, I _S = 15 mA	(Note 1)	3.0	—	5	15	
		V _{IS} = 0 V, I _S = 24 mA	(Note 1)	2.3	—	4	10	
		V _{IS} = 2.3 V, I _S = 24 mA	(Note 1)	2.3	—	5	15	
		V _{IS} = 2.0 V, I _S = 15 mA	(Note 1)	2.3	—	6	25	
Quiescent supply current	I _{CC}	V _{IN} = V _{CC} or GND, I _{OUT} = 0		3.6	—	—	10	μA

Note 1: The typical values are at Ta = 25°C.

Note 2: Measured by the voltage drop between A and B pins at the indicated current through the switch.

ON-resistance is determined by the lower of the voltages on the two pins (A or B).

AC Characteristics (Ta = -40~85°C)

Characteristic	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH}	Figure 1, Figure 2 (Note 3)	3.3±0.3	—	0.31	ns
	t _{pHL}		2.5±0.2	—	0.52	
Output enable time	t _{pZL}	Figure 1, Figure 3	3.3±0.3	—	5	ns
	t _{pZH}		2.5±0.2	—	7	
Output disable time	t _{pLZ}	Figure 1, Figure 3	3.3±0.3	—	6	ns
	t _{pHZ}		2.5±0.2	—	7	

Note 3: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical ON-resistance of the switch and the 50 pF load capacitance when driven by an ideal voltage from the source (zero output impedance).

Capacitive Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	V _{CC} (V)	Typ.	Unit
Control pin input capacitance	C _{IN}		3.3	3	pF
Switch terminal capacitance	C _{I/O}	OĒ = V _{CC}	3.3	17	pF

AC Test Circuit

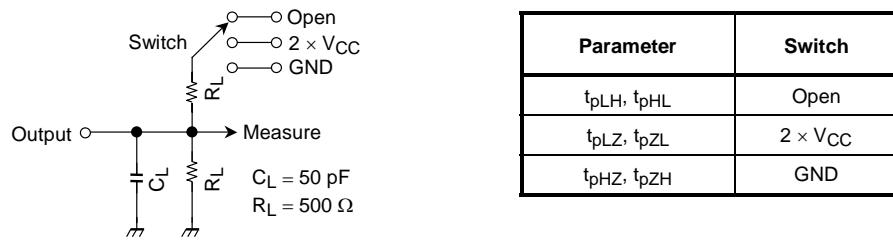
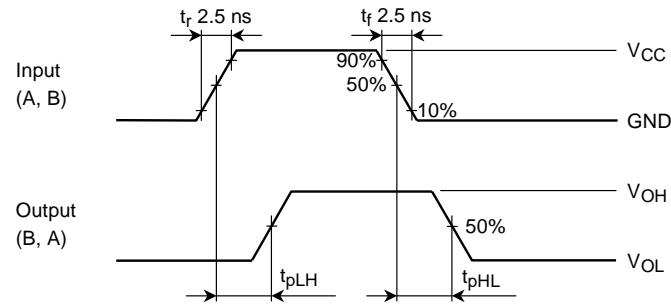
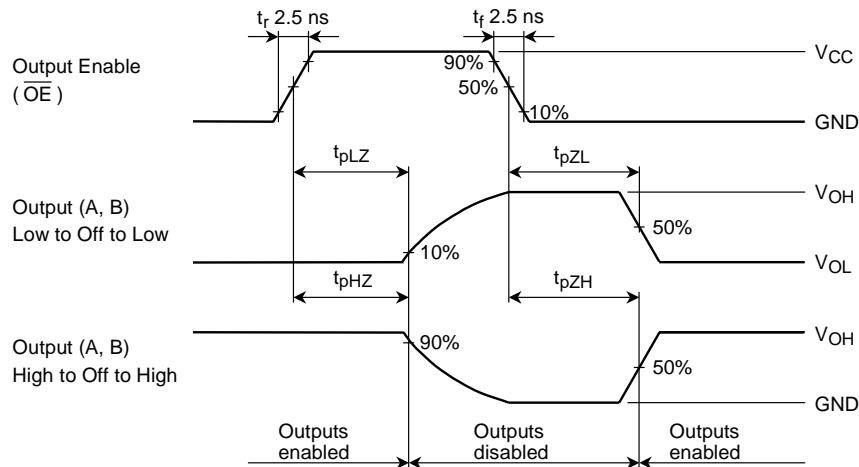




Figure 1

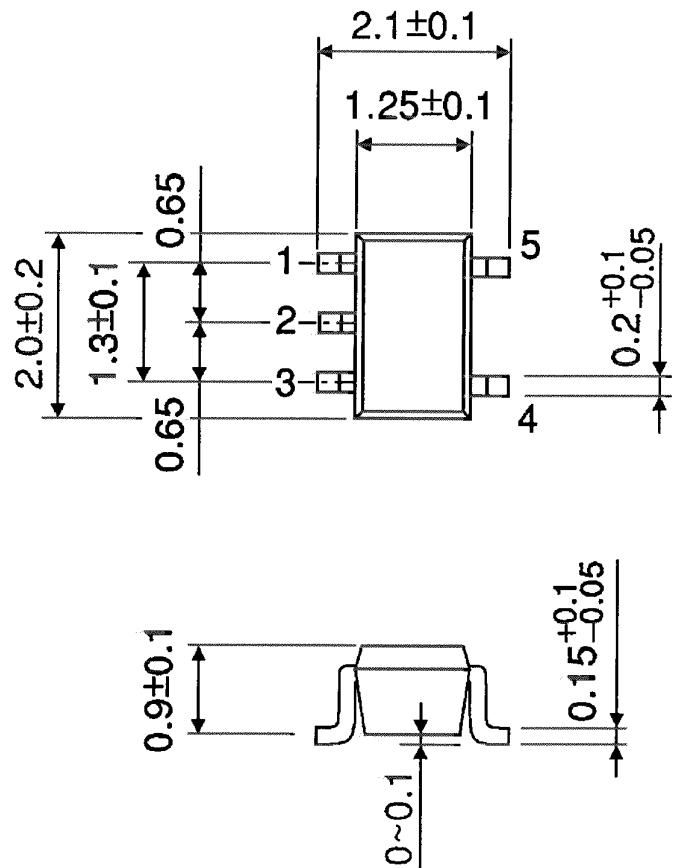

AC Waveform

Figure 2 t_{pLH}, t_{pHL} Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$

Package Dimensions

SSOP5-P-0.65A

Unit : mm

Weight: 0.006 g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.