Lattice

Semiconductor
Corporation

Lattice

Block Viterbi Decoder User’s Guide

June 2010
IPUG32_02.7

= attice

m o EEESemiconductor Table Of Contents
== nn s CoOrporation

L0 T=T o1 (=T gl I 10 Yo 11T 1 e o 4

(@ 0] To1 Q) = o PSP USURUPPRPR 4

22 11U £ PSR 6

Chapter 2. Functional DeSCriPtioNceeceeccececrr s e e s e e e s s eerereeereenrenennneeensnsnnsss 7

LCT=T =T = LI I 1=ty o] (o] o S PEERRTR 7

(070]0)Y/o 111} o] F=1 I = g ToTe o [1o To JHSRRPPUTPRRTN 7

Punctured Codes and DEPUNCIUININGuuieiiiiiiiiee it eee ettt eie e e s st e e s st e e e s s nbee e e e s snnbeeaeeanreeeaesanneeas 8

AV AL g oI B L= oo T [1 0o PP O TP PPPPRPPPP 8

(W] o (oY 0 F= I I 1=] 1 T} o 9

Branch Metric UNit (BMU)oooiiiiii ittt e e e e e e e e e s s ee e e e e e aaeees e s snnsntaaaeeeeaaaeeessaannnnnnns 9

Add, Compare, and SeleCt UNit (ACS).....cccciiiiiciiiiiiee et e e e e e e e s s e e e e e e e e e e e eassnnnreaneaeeeaaes 10

I = (o= o T= o 1L T3 G (1 =L P 10

=Y g TV LY.L =1 SR 10

Memory Management Unit (MIMU)oo it s e e e s nbe e e s s enbee e e e e 10

Bit Error Rate Monitor (BER).........coiiiiiiiiie e ettt et e e e e e e e s et e e e e e e e e e s e e s ananeeeeeeaaaaeeeeenannnnrnnnnes 10

L0 {aT=T 1V oo 111 L= PP PP 10

Configuring the BIOCK Viterbi DECOUETueiiiiiiiiiiiie ettt st e st e e e s st e e e s saeae e e e s snaseeeesannneeeas 10

PUNCIUIE SEHINGS ... e e s s e e e e e b b e e e s e nat e e e e s e nbee e e e ennbeeeesennnes 10

(070]0111a[UTeTUI3=Tqlo l =1 oTe7 QB T=ToTo o] oo [P URRSORIRIN 10

Termination MOGES ... e e e e e e e e e s s e e e e s e e e e e s e e e e nnne s 11

Number of Tracebacks and Traceback LENGhcuuiiiiiiiiiie e 11

=1 ToTed 1ql =T o To | 1 o ISP PP PRSPPI 11

I 7= = T Y/ o - 12

ST To [qE= Ul D= TTex] o o] o < SRR 12

Interfacing with the BIOCKk Viterbi DECOUETcoiiiiiiiiii e 14

THIMING DIAQGIAIMS ...ttt ettt e e e oo e e ettt et e e e e e e e e e s e be ettt et e e e e e e aa e e an bbb beeeeeeeeeeeeeaaaannsbnreeeeaeeeeeeaaanns 15

(070] I OFe] a1 T[] =1 1T0] 4 I3RS 17

Chapter 3. Parameter Settingsccccccciiiiiiriiineeneeeesnnnesssesnceee e n e s e n e e n e e reeneeenenees 18

PrIMAry OPLONS TaD ..ottt ettt ettt e e e s b e e b b e e e sa bt e e sab e e e st et e sabe e e s ane e e e anneeeanreeesnreeenne 19

PrIMEAIY OPTONS ...ttt ettt h et e e h et e e eh b e e b be e e sab e e e eabe e e sabe e e s beeeebe e e e anne e e nreeeanbeeeanneeean 19

(@ oT=Y =0T g TN 1V o T = RS SRRRRIN 19

=] oo 2q @70} i o] o = RPN 19

TracebaCk LENGIN ... e e e 20

(U] 0 Te] 18 g1 oo PSP PRPP 20

PUNCIUIE SEHINGS ... ettt e e st e e e s b e e e s be e e e nbe e e nre e eanbeeesnneeean 20

P Yo V7= TaTot=Yo IO o] 1o) F= 1= o F PP 20

GENEratOr POIYNOMIAIS.eeii ettt ettt b e e e s bt e e s b e e e ss e e et ee e e snbeeeanbe e e enreeesnneas 20

GPO, GP1, GP2, GP3, GP4, GP5, GPB......cccoitiiiiiiieiiie ettt ettt be e ne e e e enneas 21

IMplementation METNOG............ooe e e e e s e e e e e eeaaaaeeeaeeeeeeeesessennrnnes 21

0T 0 £SO 21

BER (Bit EFTOr RALE).......cuuiiiiiiiiiiee ettt ettt e e e e e e e e e et e e e e e eaeeeeeeaaannseeeeeeeeeeaeeeeaeannnnrnrnnes 21

Chapter 4. IP Core Generation............ccccccirsiisssisssssssssssssssssssssssmmssssssssssmmssmsssssssnmsssssmsssssnsnsnnsssseneseesseees 22

[Tt E] T Lo N (L= | O S TR 22

LG LY (1] oo IS £= g (=T TP PUURRURRN 22

IPexpress-Created Files and Top Level DireCtory StrUCIUIEcoiiiiiiiiii e 25

INSTANLATING thE COTE ...ttt e a bt e e s bt e e eab e e e st e e e e abee e s aae e e e aaseesanbeeesabeeenee 26

Running FUNCHioNal SIMUIALIONoouiii ettt st e e s bt e e s be e e e sab e e e snre e e sareeeaee 26

Synthesizing and Implementing the Core in a Top-Level DeSignccooiiiiiiiiiiiie e 26

HArdware EVAIUGLION ...ttt ettt e e e e oo e e ettt et e e e e e e e e e s e e nnnseeeeeeeeaaaaeeeaaaannnenreees 27

© 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

IPUG32_02.7, June 2010 2 Block Viterbi Decoder User’s Guide

Lattice Semiconductor Table of Contents

Enabling Hardware Evaluation in DiamONd:........ccoouuiiiiiiiiii et 27
Enabling Hardware Evaluation in iSPLEVER:.......cooo e 27
Updating/Regenerating the [P COre ...ttt e et e e e s e e e e e e s abeeeeeeeas 27
Regenerating an [P Core in DIGMONGcoooiiiiiiiiiieee e e e e e e e e 27
Regenerating an [P Core in iSPLEVER ... 28
Chapter 5. SUPPOIt RESOUICESuuuuuuinnnnnnnnnnnnnnnnnnnnnmmnnmmnnmmmmmmmmmmsmemmsmmmsemseenmsemmmrnsrensrnnnsenrnnnssessnees 29
I L (oI I =To o g o= U] o) o o SRR 29
ONIINE FOTUIMS. ...ttt e e s e e st e st e s ar et e s R e e e e ne e e s ane e e e sr e e saree e e amreeeanreenanrneennneas 29

I =Y o] Lo g TSI U] o) oo o A o) 1 TP 29
0 0= V] IS T o] Lo S 29

[Tor= LIRS0 o] o o] o SR 29

1] (=1 0 T= PSR 29

(R TST {=T =T g oY PRSP 29
LAlCEEC/ECNP ... ettt sttt s e et e s E et e e n et e e ne e e e e R r e e e e nr e e e e e e e e e e an e e e nne e 29
LAtlCEECP2IMottt e en e et e s e e e e s R et e e r e e e e R e e e e ne e e a e e e e e e e e nne e 30
LAtlICEECPS ...ttt st e n e st e e e et e n et e e e e e e Re e e e e e e n e e e anre e e nne e 30
LALHCESC/M.....ceeeeee ettt e e aa e et e Rt e e e e n R e e e e Re e e e e e e e e e e e nne e 30

I 1110 > TSR PRP 30

IR 1Ao7 TR PRP 30
LAY o o £ (o] o 30
Appendix A. Resource ULIliZationoccooveiiie e s s s s s s en s s n s 31
LatticeECP and LatiCEEC FPGASooi ettt e e n e e s nnre e sne e 31
LAtliCEECP2 FPGAS.ci ittt ettt ettt et e et e e n et e s s e e e s R e e e sase e e sar et e ene e e s anr e e e eare e e anre e e nreeenne 31
Ordering Part NUMDETooi ettt ettt e e e e ea bt e e e s sttt e e e e s anteeeeessanbeeeeesanbeeeeeeaas 32
LattiCEECP2M FPGAS.......eeii ittt ettt et et e s e et e e et e s st e e e aa R e e e sase e e amr e e e sne e e e ame e e e snneeeanre e e sareeenns 32
Ordering Part NUMDETooi ettt e e ettt e e e st e e e e e s sttt e e e e sanbeeeeessanbeeeeesanbeeeeasaas 32
LattiCEECPS FPGAS.ei ittt ettt ettt e s n et e s s e e s R e e e eane e e aar et e e ne e e e anr e e e nane e e anre e e nreeenne 32
Ordering Part NUMDETooiieiee ettt e e ettt e e e e sttt e e s sttt e e e e s aabeeeeeseanbeeeeesanbeeeeanans 32
LatticeSC and LatiCESCM FPGASooi ittt st sn e e snn e e s ene e smne e s anre e e sne e e 33
Ordering Part NUMDETooiiiie ettt e e ettt e e e e eab et e e e s sttt e e e e saateeeeeseanbeeeeesanreeeeeeans 33

= a 0=l o Y PP 33
Ordering Part NUMDETooi et e e ettt e e e e et et e e e s sttt e e e e saneeeeeesaanbeeeeesanbeeeeanaas 33
LAtlCEXP2 FPGAS ...ttt ettt ettt e e st e s r e e e s Re e e e s et e s R e e e e ne e e an e e e e ene e e e e ree e en e e e nre e e e e e 34
Ordering Part NUMDETooi ettt e e ettt e e e et bttt e e s sttt e e e e santeeeeessanbeeeeesanbeeeeeeans 34

IPUG32_02.7, June 2010 3 Block Viterbi Decoder User’s Guide

1 L ﬂ- ° Chapter 1:
EEE:::Qmico!dgctg Introduction

== nn s CoOrporation

The Block Viterbi Decoder IP core is a parameterizable Viterbi Decoder for decoding different combinations of con-
volutionally encoded sequences. The decoder supports various code rates, constraint lengths, and generator poly-
nomials. It also allows soft-decision decoding and is capable of decoding punctured codes. The core can operate in
continuous or block modes, whichever is required by the channel. Either Tail Biting or Zero Flushing convolutional
codes can be decoded in the block mode. All the configurable parameters, including operation mode, generator
polynomials, punctured block size, and puncture pattern can be defined by the user to suit the needs of their appli-
cation. The code rate and puncture pattern can also be changed dynamically through input ports during the opera-
tion of the decoder. Lattice’s Block Viterbi Decoder IP is compatible with many networking and wireless standards
that use different methods of convolutional encoding at the encoder.

Quick Facts

Table 1-1 through Table 1-4 give quick facts about the Block Viterbi Decoder IP core for LatticeEC™, Lat-
ticeECP™, LatticeECP2™, LatticeECP2M™, LatticeECP3™, LattticeSC™, LatticeSCM™, LatticeXP™, and
LatticeXP2™ devices.

Table 1-1. Block Viterbi Decoder IP Core for LatticeEC/ECP/XP Devices Quick Facts

Block Viterbi IP Configuration
IEEE 802.16-
IEEE 2004-OFDM | IEEE 802.16-
802.16 DVB-S PHY 2004-OFDM
2004- SC IEEE (dynamic PHY (fixed
PHY 3GPP 802.11A puncturing) puncturing)
FPGA Families Supported LatticeEC/ECP/XP
Core . LFEC1E LFEC10E LFEC3E LFEC3E LFEC6E
Requirements Minimal Device Needed LFECP6E LFECP10E | LFECPS6E LFECP6E LFECP6E
LFXP3C LFXP10C LFXP3C LFXP3C LFXP6C
Targeted Device LFEC20E-5F672C/ LFECP20E-5F672C/ LFXP20E-5F256C
Resource LUTs 500 9950 2600 2750 3300
Utilization sysMEM EBRs 2 16 4 4 4
Registers 250 3200 900 1050 1200
Lattice Implementation Diamond® 1.0 or ispLEVER® 8.1
Design Tool Synthesis Synopsys® Synplify® Pro for Lattice D-2009.12L-1
Support . . Aldec® Active-HDL® 8.2 Lattice Edition
Simulation - -
Mentor Graphics® ModelSim® SE 6.3F

IPUG32_02.7, June 2010 4 Block Viterbi Decoder User's Guide

at: www.latticesemi.com/software.

Lattice Semiconductor

Introduction

Table 1-2. Block Viterbi Decoder IP Core for LatticeECP2/ECP2M/XP2 Devices Quick Facts
Block Viterbi IP Configuration

IEEE 802.16-
2004-OFDM | IEEE 802.16-
IEEE 802.16 DVB-S PHY 2004-OFDM
2004- SC IEEE (dynamic PHY (fixed
PHY 3GPP 802.11A puncturing) | puncturing)
FPGA Families Supported LatticeECP2/ECP2M/XP2
Core LFE2-6E | LFE2-12E | FEREE | FEo6E LFE2-6E
Requirements | \jinimal Device Needed LFE2M20E | LFE2M20E E LFE2M20E LFE2M20E
LFXP2-5E | LFXP2-17E LEXP2-5E LFXP2-5E LFXP2-5E
Targeted Device LFE2-50E-7F484C/ LFE2M35E-7F672C/ LFXP2-30E-7F484C
Resource LUTs 500 11800 3050 3250 3500
Utilization sysMEM EBRs 2 16 4 4 4
Registers 250 3200 900 1050 1200
Lattice Implementation Diamond 1.0 or ispLEVER 8.1
Design Tool Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1
Support _ _ Aldec Active-HDL 8.2 Lattice Edition
Simulation - -
Mentor Graphics ModelSim SE 6.3F
Table 1-3. Block Viterbi Decoder IP Core for LatticeSC/SCM Devices Quick Facts
Block Viterbi IP Configuration
IEEE 802.16- IEEE
IEEE 2004-OFDM 802.16-
802.16 DVB-S PHY 2004-OFDM
2004- SC IEEE (dynamic PHY (fixed
PHY 3GPP 802.11A puncturing) puncturing)
Core FPGA Families Supported LatticeSC/SCM
Requirements [\inimal Device Needed LFSC3GA15E/LFSCM3GA15EP1
Targeted Device LFSC3GA25E-7F900C/ LFSCM3GA25EP1-7F900C
Resource LUTs 450 9450 2450 2650 3250
Utilization sysMEM EBRs 2 16 4 4 4
Registers 250 3400 900 1050 1200
Lattice Implementation Diamond 1.0 or ispLEVER 8.1
Design Tool Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1
Support] . Aldec Active-HDL 8.2 Lattice Edition
Simulation

Mentor Graphics ModelSim SE 6.3F

IPUG32_02.7, June 2010

Block Viterbi Decoder User's Guide

Lattice Semiconductor Introduction

Table 1-4. Block Viterbi Decoder IP Core for LatticeECP3 Devices Quick Facts

Block Viterbi IP Configuration
IEEE 802.16- IEEE
IEEE 2004-OFDM 802.16-
802.16 DVB-S PHY 2004-OFDM
2004- SC IEEE (dynamic PHY (fixed
PHY 3GPP 802.11A puncturing) | puncturing)
Core FPGA Families Supported LatticeECP3
Requirements | \inimal Device Needed LFE3-35EA
Targeted Device LFE3-95E-8FN672CES
Utilization sysMEM EBRs 2 16 4 4 4
Registers 250 3200 900 1050 1200
Lattice Implementation Diamond 1.0 or ispLEVER 8.1
Design Tool Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1
Support _ _ Aldec Active-HDL 8.2 Lattice Edition
Simulation . .
Mentor Graphics ModelSim SE 6.3F

Features
* Compatible with IEEE 802.16-2004 SC PHY/ OFDM PHY, IEEEE802.11a, 3GPP, 3GPP2, and DVB standards

» Supports multiple code rates: 1/2, 1/3, ... 1/7 for non-punctured codes, 2/3, 3/4, ..., 12/13 for punctured codes,
and from m/(m+1) to m/(2m-1), where m is from 1 to 12, for dynamic punctured codes

* Variable constraint length from 3 to 9

» Supports dynamically variable code rates and puncture patterns
* Dynamic BER estimation option

* One-clock synchronous design

* Hard or parameterizable soft decision decoding. Hard and soft decision for non-punctured codes and soft deci-
sion for punctured codes

* Fully parallel or hybrid implementations. For a hybrid implementation, the degree of parallelism is parameteriz-
able

» Parameterizable trace-back length

* Signed and unsigned representations for soft decision data

» Supports parameterized puncturing patterns

» Supports both continuous and block data input

» Supports both Tail Biting and Zero Flushing block convolutional codes

» Supports both one and two traceback schemes to cater to different coding scenarios

IPUG32_02.7, June 2010 6 Block Viterbi Decoder User's Guide

EEE Laﬂi c e® Chapter 2:
S12151Semiconductor Functional Description

== nn s CoOrporation

This chapter provides a functional description of the Block Viterbi Decoder IP core.

Figure 2-1 shows the interface diagram for Block Viterbi Decoder. The diagram shows all of the available ports for
the IP. It should be noted that not all the I/O ports are available for all configurations.

Figure 2-1. Block Viterbi Decoder Interface Diagram

din0
din1
din2
din3
din4
din5
din6
clk
rstn
pbstart
ibstart
ibend
ppset
inrate
outrate
pp0
pp1

—p» dout
—» outvalid
—» obvalid

- ber
—» bervalid
Block » rfib

Viterbi Decoder

LA ALALLL)

General Description

Viterbi decoding is an efficient algorithm for decoding convolutionally encoded sequences corrupted by channel
noise back to the original sequence. A digital transmit-receive system shown in Figure 2-2 uses a Viterbi decoder
for decoding the convolutionally encoded data. The digital data stream (e.g., voice, image, or any packetized data)
is encoded, modulated, and transmitted through a wired or wireless channel. A “noise” block connected to the
channel symbolically denotes the channel noise. The data received from the channel at the receiver side is first
demodulated and then decoded using the Viterbi decoder. The decoded output is equivalent to the transmitted dig-
ital data stream.

Figure 2-2. Digital Transmit-Receive System

Transmitted IConvqutionaI_, Modulator | Channel —»Demodulator—»BbCk Viterbi) Received
Data Stream Encoder Decoder Data Stream

?

Noise

Convolutional Encoding

Figure 2-3 shows an example of convolutional encoding. In this example, each input symbol has two corresponding
output symbols; hence the encoding is called 1/2 rate convolutional encoding. To generate the output, the encoder
uses seven values of the input signal, one present and six past. The set of past values of input data is called the
“state” of the encoder. The number of input data values used to generate the code is called the constraint length
(K). In this case, the constraint length is 7. Each set of outputs is generated by XOR-ing a pattern of current and
shifted values of input data. The patterns used to generate the coded output value can be expressed as binary
strings called generator polynomials (GP). In this example, the generator polynomials are 171 and 133 (in octal).

IPUG32_02.7, June 2010 7 Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

The MSB of the generator polynomial corresponds to the input and the LSBs correspond to the state as shown in
Figure 2-3. A bit value of ‘1’ in the generator polynomial represents a used bit and a value of ‘0’ signifies an unused
bit.
Figure 2-3. Convolutional Encoding

GPO =171 octal

XOR
WAL »() W /N » —
U U U U >
A A A A
data in
» reg »| reg » reg » reg » reg »| g ~ data out
b 4 v A4 A4
» w1 N w1 »
U U U U >

GP1 = 133 octal

Punctured Codes and Depuncturing

After convolutional encoding, some of the encoded symbols can be selectively removed before transmission. This
process, called “puncturing,” is a data compression method used to reduce the number of bits transmitted.
Figure 2-4 shows an example of the puncturing process.

Figure 2-4. Puncturing Process

After convolutional coding

Input data
ay| a,| | a5| a,| a;| a4
o | Ty] i | Igf ig| is| i —>
2 el bo| b,| b,| bs| b,| by| b
Puncture pattern i
Puncture pattern superimposed
Final punctured output
110] 1 a, a,| a, ag| ag
—p |a,|b,| byl a,| a,| by| b,|a
1 1 0 bo b1 b3 b4 be 0 0 1 2 3 3 4 5

If puncturing is employed in the encoder, the decoder will have to “depuncture” the data before decoding. Depunc-
turing is done by inserting NULL symbols for the punctured symbols. NULL symbols are equidistant from both ‘0’
and ‘1. A pair of binary strings, called a “puncture pattern,” is used to identify punctured symbols. A “1” in a pattern
means the corresponding symbol was not punctured in the encoder, while a “0” means the symbol has been punc-
tured.

Viterbi Decoding

The convolutional encoding mentioned above can be considered as a series of state transitions for every input
symbol. The input and the resulting state transitions can be shown in a special state transition diagram called a
“trellis tree” or simply a “trellis” A sample trellis tree is shown in Figure 2-5.

IPUG32_02.7, June 2010 8 Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

Figure 2-5. Trellis Tree

Trellis for 3 stages and constraint length = 3
Branches corresponding to input seq. 101 is highlighted

In the above trellis, the branches for three transitions are drawn. The path of the trellis for a typical input sequence,
101, is highlighted in the figure. Any transmission error alters the path traversed in the trellis. In Viterbi decoding,
such a trellis is formed in memory, where the metrics corresponding to all paths are recorded. After constructing
the trellis for a sufficient length (called the traceback length, L), the traceback process starts from node 0 in the last
state. During the traceback process, the original sequence is reconstructed from the trellis. In error-prone applica-
tions, however, a trellis of length 2L is constructed and two traceback processes are employed. The first traceback
starts from node 0, traces back L stages of the trellis, and ends up in a node which is more likely to be the right
starting point for the second traceback. The second traceback starts from this reliable starting point and traces
back another L nodes. The data corresponding to the second traceback are decoded to result in the original data
stream.

Functional Description

A simplified implementation of the Lattice Block Viterbi Decoder IP is shown in Figure 2-6. A brief description of the
modules is given below.

Figure 2-6. Internal Architecture of the Viterbi Decoder

» BER =~ BER

din mele—lp(B\|U M ACS M=P| TBU dout

MMU e MEM

Branch Metric Unit (BMU)

This module takes in the input data from the channel and computes a metric for each state and input combination.
The metric is the Hamming distance for hard-decision encoded data and 11 norm (sum of absolute values) for soft
decision encoded data. The BMU also includes a depuncturing unit for punctured codes. This module has three
major sub-modules: state encoder, metric computer, and de-puncture unit.

IPUG32_02.7, June 2010 9 Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

Add, Compare, and Select Unit (ACS)

The ACS unit adds the current metric to the accumulated metric for each path and also determines the least metric
for each state of the trellis. The accumulated metric is fetched from register files and stored back there, after adding
the current metric. ACS also writes the survivor trellis path (the previous state information) in memory.

Traceback Unit (TBU)

The TBU performs decoding of the received data by tracing back the trellis from an appropriate starting node.
Traceback and decoding is performed on a block of sequential nodes whose length is equal to the parameter Trace-
back Length. The Viterbi Decoder IP supports both one and two traceback schemes. In the one traceback scheme,
the traceback starts from node 0 and happens for length L, where L is the traceback length. In the two traceback
scheme, the first traceback starts from node 0 and happens for length L. This traceback determines a reliable start-
ing node for the second traceback process. The second traceback starts from this reliable start node and happens
for another length L.

The number of tracebacks employed and the traceback length are mostly set by the user, but the choice is
restricted by other parameters and rules, as imposed by the Block Viterbi Decoder IP GUI.

Memory (MEM)
The memory stores the accumulated metric and the previous state information (traceback information).

Memory Management Unit (MMU)
The MMU generates addresses and read write signals for the memory during different phases of operation.

Bit Error Rate Monitor (BER)

This optional module is used to estimate the bit error rate of the channel. This is achieved by encoding the decoded
output symbols using the same generator polynomials and comparing them with delayed input to the Viterbi
decoder. Assuming the error in decoding is zero or negligible, the error determined by BER is equal to the channel
error.

Other Modules

In Zero Flushing block decoding, an additional module called “Zero Padding Unit” is used. When the block length is
not a multiple of the traceback length, the Zero Padding Unit automatically adds zero samples at the end of each
block of input data.

Configuring the Block Viterbi Decoder

Puncture Settings

The Viterbi Decoder can be configured as a punctured or non-punctured decoder. A punctured decoder actually
decodes convolutional codes that have been punctured after encoding. The puncture settings consist of the punc-
ture block size (this is derived from code rate) and puncture patterns, PP0 and PP1. The puncture settings are
either fixed using the parameters in the IP GUI or can be dynamically set using input the ports, inrate, outrate,
pp0, ppl and ppset. The values in inrate and outrate correspond to the rate factors k and n, respectively and
they result in a code rate of k/n. The numerator of the code rate representation, k or the inrate is also called as
the puncture block size in this document.

Continuous and Block Decoding

The decoding process can be applied on either continuous stream or blocks of input data. The main difference
between these modes lies in the way the decoder performs the traceback operation. When the decoder is config-
ured in continuous mode, it always performs two length-L tracebacks. The actual traceback length is set by the user
through the IP GUI.

IPUG32_02.7, June 2010 10 Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

On the other hand, if the decoder is configured in block mode, the number of tracebacks and traceback length
depends on the parameters of the decoder. The user has to specify the termination method that was used for the
convolutional coding to enable the decoder to start from the correct initial state.

In dynamic puncturing mode, only block decoding is permitted.

Termination Modes

Convolutional encoders employ two block terminations methods: Zero Flushing and Tail Biting. In Zero Flushing
mode, a series of zeros are added to the end of each block at the input of the convolutional encoder. In Tail Biting
mode, the last few bits of each block are used to initialize the state of the encoder, before encoding that block. Both
modes are widely used in various telecommunication standards.

Lattice’s Block Viterbi decoder IP supports both of these termination methods. The choice of termination method is
decided by the user and it must be exactly the same as what was used in the convolutional encoder.

Number of Tracebacks and Traceback Length

The accuracy of decoding depends to some extent on the starting node of a traceback operation. Usually, if the
data was encoded using the Zero Flushing scheme and if the traceback length is equal to block length, the trace-
back can start at state 0. For all other schemes or for a continuous decoder, starting the traceback from zero state
may not lead to right results. A reliable starting state can be determined by performing an additional traceback
operation. The Block Viterbi Decoder can be configured to perform either 1 or 2 tracebacks by setting the parame-
ter Number of Tracebacks in the IP GUI. For some configurations, the number of tracebacks can be selected
by the user and for others, it is set automatically inside the decoder.

If Number of Tracebacks is equal to 1, the decoder performs length-L traceback starting from state 0 and does
decoding. If the Number of Tracebacks is equal to 2, the decoder performs a length-L traceback from state O to
determine a reliable starting point for second traceback. From that starting point, it performs a second length-L
traceback and does decoding. For continuous decoders and block decoders with Tail Biting termination mode,
Number of Tracebacks is internally set to 2. For block decoders with Zero Flushing termination mode, Number
of Tracebacks can be set to either 1 or 2 by the user.

The traceback length is typically close to 7 to 9 times the constraint length (K) in most applications. Lattice’s Viterbi
Decoder IP allows the user to specify any traceback length between 3k and 14K for most configurations; however,
the Traceback Length is restricted to be a multiple of puncture block size for fixed puncturing decoders. When
the Termination Mode is set to “Tail Biting”, the traceback length is internally set by the core to Block
Length*k/n. When the decoder operates in dynamic puncture mode and Number of Tracebacks is setto 1,
the Traceback Length should be a common multiple of all possible input rates and between 8. and 128. For
example, if Max Input Rate is 4, the possible input rates are 1, 2, 3 and 4. Therefore, the Traceback Length
can only be in the set {12, 24, 36, ..., 116, 128}.

Block Length

For block decoders, the block length is implicitly specified using the input signals ibstart and ibend. All the data
between ibstart and ibend pulses, including both the ends, are taken to be part of the block. When ibstart is
pulled high for one clock cycle the input data is read in as the first data of the block. The decoder continues to read
the data in consecutive clock cycles into a block until it encounters a one clock cycle pulse in the ibend port. The
block size has to be one of the legal values as given in Table 2-1, for the decoder to function correctly.

Table 2-1. Legal Values for Block Size

Termination | Number of Puncturing
Mode Tracebacks| None Fixed Dynamic
Zero Flushing 1 810 128 |8 to 128*k/n, multiples of n > 8, Traceback Length*outrate/inrate
Zero Flushing 2 >8 > 8, multiples of n > 8, multiples of outrate
Tail Biting 2 810 128 |8 to 128*k/n, multiples of n Not Applicable

IPUG32_02.7, June 2010

11

Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

Data Type

The Viterbi Decoder IP supports two commonly used binary representations, namely, sign-magnitude and
unsigned offset, for soft decision data. In sign-magnitude representation, the most significant bit is a sign bit and
the rest of the bits represent the magnitude. The most positive number corresponds to strong logic zero and other
positive numbers are weak logic zeros. The most negative number corresponds to strong logic one and other neg-
ative numbers are weak logic ones. In unsigned offset representation, there is no sign bit in the number and all
numbers are treated positive. The smallest number (all zeros) corresponds to strong logic zero and the biggest
number (all ones) corresponds to strong logic one. The smaller numbers counting up from zero are progressively
weaker logic zeros and bigger numbers counting down from the biggest number are progressively weaker logic
ones.

Table 2-2 shows the data values and their interpretation in “Signed” and “Unsigned” data type configurations when
Soft Widthis 3.

Table 2-2. Interpretation of Signed and Unsigned Data

Signed Binary Unsigned Offset
Data Interpretation Data Interpretation
111 -3 (strong logic 1) 111 7 (strong logic 1)
110 -2 110 6
101 -1 (weaker logic 1s) 101 5 (weaker logic 1s)
100 -0 100 4
000 0 011 3
001 1 (weaker logic 0s) 010 2 (weaker logic 0s)
010 2 001 1
011 3 (strong logic 0) 000 0 (strong logic 0)

Signal Descriptions

The top level interface diagram of the Viterbi Decoder is shown in Figure 2-1. The details of the I/O ports are sum-
marized in Table 2-3.

Table 2-3. Top Level I/O Interface

Port Bits 110 Description
clk 1 | System clock
rstn 1 | System wide asynchronous active-low reset signal
bstart 1 | “Punctured block start” signal to indicate the start of a new block of punctured
p data. This signal is not available while decoding non-punctured codes.
ibstart 1 | Input block start signal. This must be pulled high when the first data of a block is
applied on the input port. This port is available for block decoding only.
Input block end signal. This signal must be pulled high to indicate the last data
ibend 1 | of a block being applied on the input port. This port is available for block decod-
ing only.
din0O, dinil, Data input buses — The buses become one bit inputs for hard decision decoding
din2, din3, 1or3 | and equals to the soft width for soft decision decoding. The number of buses is 1
din4, din5, to 8 (each) for punctured codes and n for non-punctured codes, where n is the code rate
dine6 factor, from 2 to 7.
. Input rate of the convolutional code for next block. This port is available only in
inrate 1-4 | - :
dynamic puncturing mode.
Output rate of the convolutional code for next block. This port is available only in
outrate 2-5 | . -
dynamic puncturing mode.

IPUG32_02.7, June 2010 12 Block Viterbi Decoder User's Guide

Lattice Semiconductor

Functional Description

Table 2-3. Top Level I/O Interface (Continued)

Port

Bits

Ie}

Description

ppo

1-12

Puncture pattern 0 of the convolutional code for next block. This port is available
only in dynamic puncturing mode.

ppl

1-12

Puncture pattern 1 of the convolutional code for next block. This port is available
only in dynamic puncturing mode.

ppset

Puncture rate and puncture pattern set signal. The new input rate, output rate
and puncture patterns are set when ppset goes high. This port is available only
in dynamic puncturing mode.

dout

Output decoded data.

outvalid

Output valid signal. This indicates the output on dout is a valid decoded value.

obvalid

Output block valid signal. This signal remains high for the entire duration of the
output block. This signal is present only for punctured and block decoding.

ber

O] O |0O|O

Bit-error rate output. This port is available for continuous decoding only.

bervalid

@)

Identifies that a new Bit Error Rate (BER) value is available at the ber output
port. This signal goes high once every B clock cycles, where B=2A(BER
Period), is the duration over which BER is computed. This port is available for
continuous decoding only.

rfib

“Ready for input block” signal.

1. This port is not available for non-punctured decoders.

2. For fixed puncturing, this signal goes high every L*(2/c) cycles periodically
counting from ibstart for each input block, where L is the traceback length
and c is the hybrid index. After applying an input block (after ibend going
active), the user has to wait for the next r£ib pulse before he can start giv-
ing the next input block. In fixed puncturing mode, this port is available only
for zero flushing block decoding and Number of Tracebacks is 2.

3. For dynamic puncturing, this port is always available. It goes low one cycle
after an input block starts (after ibstart signal going high). It goes high a
few cycles after an input block ends (after ibend going low).

IPUG32_02.7, June 2010

13 Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

Interfacing with the Block Viterbi Decoder

Lattice’s Block Viterbi Decoder provides several handshake signals for interfacing the decoder with other sub-sys-
tems.

In non-punctured, continuous modes, the input and output data rates are the same and it is straightforward to con-
nect the decoder in a system. The only control output in these modes, outvalid, indicates when the output data
is ready. Initially at reset, outvalid is low and it goes high after several clock cycles depending on the output
latency for the chosen configuration. The latency depends on different decoder parameters, but mainly on trace-
back length. A sample timing diagram for this configuration is shown in Figure 2-7. The hybrid version of the non-
punctured, continuous Viterbi decoder uses similar handshake mechanism as the parallel version. The main differ-
ence is that the data rate is a fraction of the clock rate for hybrid implementations. Figure 2-9 shows the timing dia-
gram for a sample hybrid decoder.

A punctured, continuous mode Viterbi decoder has an additional input signal, pbstart, which is used to specify
the start of each punctured block. This signal is required to synchronize the punctured blocks correctly for depunc-
turing inside the decoder. As in non-punctured mode, the input is assumed to be continuous. The output will have
one gap per puncture block, which is indicated by outvalid going low. This gap is required to account for the data
rate differences between the input and the output of the decoder. Figure 2-8 shows the timing diagram for a sample
punctured, continuous decoder. The hybrid mode for this implementation has similar timing characteristics, except
that the data rate is a fraction of the clock rate and hence the data and output control signals accordingly span mul-
tiple clock cycles. However the input control signals are all single clock cycle pulses as they are scanned only for
one cycle. A sample timing diagram for a hybrid, punctured decoder is shown in Figure 2-10.

When a Viterbi Decoder is configured for block modes, the signals ibstart and ibend are used to specify the
start and end of input blocks. For fixed puncturing decoders, when the decoder is configured for zero flushing termi-
nation mode with two tracebacks, an additional output control signal r£ib is provided. After an ibend signal is
applied signifying the end of a block, the next ibstart can only be applied, after the rfib goes high. To ensure
processing of blocks without discontinuity, the rfib signal goes high at the end of every L cycles, where L is the
traceback length. So if a block ends exactly at a traceback length boundary, r£ib will go high while ibend goes
high, allowing ibstart to be applied in the next clock cycle. This way continuous blocks can be applied to the
decoder. For dynamic puncturing decoders, the rfib port is always present. The signal rfib goes low one cycle
after ibstart is received. It remains low during the time an input block is received. It goes high a few cycles after
ibend comes through. Refer to Figure 2-11 for a sample timing diagram for a block decoder.

When it is required to change the code rate or puncture pattern dynamically during the operation of the decoder,
the Block Viterbi Decoder can be configured as a dynamic puncturing decoder. In this mode, the code rate and
puncture patterns are set through input ports. The code rate is set using the input ports inrate and outrate.
Care should be taken to ensure the following rule is followed for the rates: inrate < outrate < 2*inrate. Other-
wise the decoder will not function correctly. An exception to this rule is when inrate = 1, at which time, the out -
rate has to be 2. Each of the puncture patterns must be inrate bits wide and the total number of ‘1’s in PP0O and
PP1 must be equal to outrate. The values of inrate, outrate, PPO and PP1 are read-in only when ppset
goes high. The new puncture settings are set when ppset goes high and they are effective from the next input
block. Before the decoder is applied with the first block, the puncture settings have to be set. Figure 2-12 shows the
timing diagram for a typical dynamic punctured decoder.

IPUG32_02.7, June 2010 14 Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

Timing Diagrams

The top-level timing diagrams for several cases are given in the Figure 2-7 through Figure 2-12.

Figure 2-7. Timing Diagram for a Continuous, Parallel, Non-Punctured Decoder

outvalid

dir11.—<x 1X2X3X4X5X6X7X8X9X10E

— output latency —bi

/

) &3 8 CI=rS €3 £3 60 €3 63 €3 63 0

Figure 2-8. Timing Diagram for a Continuous, Parallel, Punctured (Rate=2/3) Decoder

clk

pbstart

din0

outvalid

dout

Uy e
/) [\
S 3 S5 €5 3 €5 3 0 3 €3 6 5 £3 O

/ \ N
[0 €3 GE=rS €5 &5 &5 €3 &5 €5 €3 &5 O

Figure 2-9. Timing Diagram for a Continuous, Hybrid (Two Cycles), Non-punctured Decoder

clk

din0
din1

outvalid

dout

T GEEEED GEFIE GEERD GECE G O
;4— output latency —Dg

/
x X X oo x X x ' E X 2 XE

Figure 2-10. Timing Diagram for a Continuous, Hybrid (Two cycles), Punctured (Rate=2/3) Decoder

pbstart

din0

outvalid

dout

B [\

X 1 X 2 X 3 X 4 X s) 6

'
—— output latency ———»
i

/ \ /

IPUG32_02.7, June 2010

15 Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

Figure 2-11. Timing Diagram for a Block, Parallel, Non-punctured Decoder with Two Tracebacks

clk
din0

S 8 D @8 3 0 9 08 3 S8 €3 €

ibstart \ 7 \
ibend / \
' ' L

o pu— pi— R

output latency —»:y

outvalid

doutZXxXxXxX:--:XxXxXxXxX1X2X---XE

Figure 2-12. Timing Diagram for a Block, Parallel, Dynamic Punctured Decoder

ppset \ '
irate x X If x
outrate x x If X

PO X x i x

pp1 x X & X X i X

ibstart [\ v ¥ [
ibend }5[/—\ jj’

o) J

\ Y —

dot J HERERED &R
outvalid 4%/ \ / l K / _/
obvalid 4# }}”—L/

IPUG32_02.7, June 2010 16 Block Viterbi Decoder User's Guide

Lattice Semiconductor Functional Description

Core Configurations

Table 2-4 lists the configurations and parameters for some standard configurations supported by the IP core.
Results for these configurations in each Lattice device family are provided in Appendix A: “Resource Utilization” on

page 31.

Table 2-4. Core Configurations

Configuration 1 2 3 4 5
IEEE 802.16-
Compatible Standard ook Sty 3GPP Ve, [EEE 200‘&355%’:5”\(2<_)|(I)E4E-CE)|§3%/'|1F?HY
puncturing) (fixed puncturing)
Primary Options
Constraint length (K) 3 9 7 7 7
Code Rate (k/n) 2/3 1/2 1/2 1/2 5/6
Operation Mode Block Block Continuous Block Block
Traceback Length 30 63 42 42 90
Block Options
Termination Mode Tail Biting Zero Flushing Zero Flushing Zero Flushing
Number of Tracebacks 2 2 - 2 2
Puncture Settings
Puncturing Fixed None None Dynamic Fixed
Puncture Pattern]? — — Through Port]?(1)(1)(1)
Max Input Rate — — — 5 —
Max Output Rate — — — 6 —
Generator Polynomials
Radix Octal Octal Octal Octal Octal
GP0, GP1l (GP2,... 78 561g 1714 1714 1714
N/A) 5g 753g 133g 133g 133g
Implementation
Implementation Method Parallel Parallel Parallel Parallel Parallel
Hybrid Index — — — — —
Inputs
Decoder Input Soft Decision Soft Decision Soft Decision Soft Decision Soft Decision
Soft Width 3 3 3 3 4
Data Type Signed Signed Signed Signed Unsigned
BER (Bit Error Rate)
BER Monitor No No No No No
BER Period — — — — —
IPUG32_02.7, June 2010 17 Block Viterbi Decoder User's Guide

Lgng!dgtg Parameter Settings

== nn s CoOrporation

Chapter 3:

The IPexpress™ tool is used to create IP and architectural modules in the Diamond or ispLEVER software. Refer to
“IP Core Generation” on page 22 for a description on how to generate the IP.

Table 3-1 provides the list of user configurable parameters for the Block Viterbi Decoder IP core. The parameter
settings are specified using the Block Viterbi Decoder IP core Configuration GUI in IPexpress. The numerous PCI
Express parameter options are partitioned across multiple GUI tabs as shown in this chapter.

Table 3-1. Block Viterbi Decoder Parameter Descriptions

Parameter Range Default

Primary Options

Constraint length (K) 3t09 3

Code Rate (ki) 53, 3/4-- 12113 for Punctured Decoder 213

Operation Mode Continuous/Block Block

Traceback Length 3K to 14K 30

Block Options

Termination Mode Zero Flushing/Tail Biting Tail Biting

Number of Tracebacks 1,2 -

Puncture Settings

Puncturing None/Fixed/Dynamic Fixed

Puncture Pattern PPO and PP1 are each k bits wide binary patterns]8

Max Input Riate %0 6 whon Number of Tracebadks - 1 -

Max Output Rate (Max Input Rate+1) to (2*Max Input Rate-1)

Generator Polynomials

Radix Binary/Octal/Hexadecimal Octal

GPO, GP1, GP2, GP3, GP4, GP5, GP6 K bits wide number for each polynomial g

Implementation

Implementation Method Parallel/Hybrid Parallel

Hybrid Index 1 to (K-1) —

Inputs

Decoder Input Hard Decision/Soft Decision Soft Decision

Soft Width 3 to 8 bits 3

Data Type Signed/Unsigned Signed

BER (Bit Error Rate)

BER Monitor Yes/No} No

BER Period 4 to 32 —
IPUG32_02.7, June 2010 18 Block Viterbi Decoder User’s Guide

Lattice Semiconductor Parameter Settings

Primary Options Tab

Figure 3-1 shows the contents of the Primary Options tab.
Figure 3-1. Primary Options Tab

Primary Options \ &dvanced Dptions \l\

Constraint Length [K] |3 zl —:u::szngﬁ Fived € Dynamic
Code Rate (k/n] [2/3 -l

— Operation kMode
" Continuouz © Block

— Puncture Settings

Puncture Block Size 2

— Puncture Pattern

— Block Options
— Termination kMode il |1 L
{~ Zero Fluzshing ™ T ail Biting
PP |11

— Mumber of Tracebacks

1 (O]

—— Dyrnamic Puncture B ate

Block Length: 45 Ma Input Rate 5]
Traceback Length |3EI— Max Dutput Rate IE KI
[10-42, multiples of 2]

Primary Options
Constraint length (K)

Constraint length is equal to the number of input data values (present and past) used to generate the convolutional
code in the encoder.

Code Rate (k/n)

This is the symbol output rate of the encoder, defined as the number of output bits per input bit in the encoder. For
non-punctured decoder, this can be set from 1/2 to 1/7. For punctured decoder, this can be set to m/m+1, where m
can range from 2 to 12.

Operation Mode
The operation mode of the decoder is either continuous or block.

Block Options

Termination Mode
This is the termination mode used for the convolutional coding of the input block. This parameter is required for
block operation modes.

Number of Tracebacks
Number of tracebacks performed for decoding. This option is available only when zero-flushing termination mode is
used.

IPUG32_02.7, June 2010 19 Block Viterbi Decoder User's Guide

Lattice Semiconductor Parameter Settings

Traceback Length

Traceback length is the number of trellis states the decoder traces back for performing decoding. The traceback
length must be between 3K to 14K, where K is the Constraint Length. The range is further restricted by the value of
some block related parameters. See the Configuring the Block Viterbi Decoder section of this document for details.
Puncturing

This option specifies whether input data is punctured or not. If the input is punctured, the decoder can be set to use
either fixed puncture settings or dynamically variable puncture settings.

Puncture Settings

Puncture Pattern

Puncture pattern for fixed puncturing decoders. For dynamic puncture decoders, this pattern is applied through the
input port.

Max Input Rate

This is the maximum value for the numerator, k, of the code rate, when the puncture rate is dynamically set through
an input port.

Max Output Rate

This is the maximum value for the denominator, n, of the code rate, when the puncture rate is dynamically set
through an port.

Advanced Options Tab

Figure 3-2 shows the contents of the Advanced Options tab.

Figure 3-2. Advanced Options Tab

Prirmary Options \ Advanced Options \

— Generator Polynomiale——————— — Implementation kethod
Radis——— i+ Parallel ™ Hybrid
{” Binary

& Octal Hybrid Index [1]

{~ Hexadecimal

— Decoder [nputs

GFO |7 € Hard Decision

&+ Soft Decision
o Softwidth 3w
A I Datatype——————
GP3 | F Signed " Unsigned
GP4 | B
GPS | ™ BER Manitor

GPE | BER Period [4]

Generator Polynomials

Radix
This parameter specifies the number system in which the generator polynomials are specified.

IPUG32_02.7, June 2010 20 Block Viterbi Decoder User's Guide

Lattice Semiconductor Parameter Settings

GPO, GP1, GP2, GP3, GP4, GP5, GP6

Generator polynomials used for generating the convolutional code. Two polynomials are always used for punctured
decoders (either fixed or dynamic). For non-punctured decoders, the number of polynomials used is equal to n,
where n is denominator of the Code Rate (k/n).The width of each polynomial is equal to constraint length, K.

Implementation Method

The implementation method can be either “parallel” or “hybrid”. In the parallel implementation, the decoder can pro-
duce one output data in one cycle. In hybrid implementations, it takes multiple clock cycles to generate each output
data, but a smaller number of device resources are used.

Hybrid Index
This controls the resource-throughput trade-off in hybrid implementations. It takes 2™ "%x cycles to produce one
output data.

Inputs

Decoder Input
Specifies whether the decoder is fed with a hard decision or soft decision input. For punctured decoders, this option
is not available and decoder has to be fed with soft decision inputs.

Soft Width
Input data width for soft decision inputs.

Data Type
Specifies whether the input data type is represented in sign-magnitude form (signed) or unsigned offset form
(unsigned). See the section “configuring the Block Viterbi Decoder” for details.

BER (Bit Error Rate)

BER Monitor
Specifies whether the optional bit error rate (BER) monitor is added to the Viterbi decoder.

BER Period

This determines the duration for which the BER is accumulated. The BER value starts accumulating from zero for
up to 27(BER Period) clock cycles. After this period, the accumulated value is placed on the BER output port. The
BER value is then reset and the monitor starts accumulating again.

IPUG32_02.7, June 2010 21 Block Viterbi Decoder User's Guide

EEE Laﬂi c e® Chapter 4:
221112 Semiconductor IP Core Generation

== nn s CoOrporation

This chapter provides information on how to generate the Block Viterbi Decoder IP core using the Diamond or isp-
LEVER software IPexpress tool, and how to include the core in a top-level design.

Licensing the IP Core

An IP core- and device-specific license is required to enable full, unrestricted use of the Block Viterbi Decoder IP
corein a complete, top-level design. Instructions on how to obtain licenses for Lattice IP cores are given at:
http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Users may download and generate the Block Viterbi Decoder IP core and fully evaluate the core through functional
simulation and implementation (synthesis, map, place and route) without an IP license. The Block Viterbi Decoder
IP corealso supports Lattice’s IP hardware evaluation capability, which makes it possible to create versions of the

IP core that operate in hardware for a limited time (approximately four hours) without requiring an IP license. See

“Hardware Evaluation” on page 27 for further details. However, a license is required to enable timing simulation, to
open the design in the Diamond or ispLEVER EPIC tool, and to generate bitstreams that do not include the hard-

ware evaluation timeout limitation.

Getting Started

The Block Viterbi Decoder IP core is available for download from Lattice’s IP server using the IPexpress tool. The
IP files are automatically installed using ispUPDATE technology in any customer-specified directory. After the IP
core has been installed, the IP core will be available in the IPexpress GUI dialog box shown in Figure 4-1.

The IPexpress tool GUI dialog box for the Block Viterbi Decoder IP core is shown in Figure 4-1. To generate a spe-
cific IP core configuration the user specifies:

* Project Path — Path to the directory where the generated IP files will be loaded.

* File Name — “username” designation given to the generated IP core and corresponding folders and files.
¢ (Diamond) Module Output — Verilog or VHDL.

* (ispLEVER) Design Entry Type — Verilog HDL or VHDL.

» Device Family — Device family to which IP is to be targeted (e.g. LatticeSCM, Lattice ECP2M, LatticeECP3,
etc.). Only families that support the particular IP core are listed.

» Part Name — Specific targeted part within the selected device family.

IPUG32_02.7, June 2010 22 Block Viterbi Decoder User’'s Guide

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Lattice Semiconductor IP Core Generation

Figure 4-1. The IPexpress Tool Dialog Box (Diamond Version)

-ioix
Filz Design Help
J_||J_| | = ’ % |’a‘ |3:‘,, 25! ||AIIDeviceFamin 'l
N.ame | UELSion —Block Viterbi Decoder 4.5
a Module
B3 P IMacro Type: IUser Configurable IP | Yersion: |4.5
a Communications
: IP Marmne: IBIock Viterbi Decoder
Project Path: lnnd,l’l.D,l’examples,l’blk_vd_test Browse. .. |
File Mame: Iblk_vd_coreﬂ
Module Output; Ih\erilog LI
Device Family: ILatticeECPS LI
PartMame: |LFE3-1SDEA-GFN11S6CES x|
Customize |
4 | _>| %Configuration | gnbout |
Y

Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output (Design Entry in

ispLEVER), Device Family and Part Name default to the specified project parameters. Refer to the IPexpress tool
online help for further information.

To create a custom configuration, the user clicks the Customize button in the IPexpress tool dialog box to display
the Block Viterbi Decoder IP coreConfiguration GUI, as shown in Figure 4-2. From this dialog box, the user can

select the IP parameter options specific to their application. Refer to “Parameter Settings” on page 18for more infor-
mation on the Block Viterbi Decoder IP coreparameter settings.

IPUG32_02.7, June 2010 23 Block Viterbi Decoder User's Guide

Lattice Semiconductor IP Core Generation

Figure 4-2. The IPexpress Tool Dialog Box - Configuration GUI (Diamond Version)

{ Lattice IP Core -- Block Yiterbi Decoder v4.4 -- BT¥ =]

Configuration | Generate Log]

Prirnary Options \ Advanced Options \
Block Viterbi Decoder

dind[2:0] Constraint Length [K] |3—Z| Puncturing

" Mone * Fized € Dynamic
Code Rate (k] |2”3 > —Puncture Settings—————————

oubyalid — Operation Mode Fueiune sl Sz 2
© Cortiruous % Black

|

dout[—

[— Puncture Pattern
—= =
_— C|t< abvald Block Options———————
b Termination Mode FRO |1 0
—pbstart . -
—{ibstart F Zero Flushing % Tail Biting
—*ibend PP I_H—

Mumber of Tracebacks
F 1 « 2 ——Dynamic Puncture B ate

Block Length: 45 Mat Input Rate |5 |
Traceback Length ISD— Max Output Rate IB XI
[10-42, multiples of 2

™ Import IPX to Diamond project Generate | Cloze | Help |

IPUG32_02.7, June 2010 24 Block Viterbi Decoder User's Guide

Lattice Semiconductor

IP Core Generation

IPexpress-Created Files and Top Level Directory Structure

When the user clicks the Generate button in the IP Configuration dialog box, the IP core and supporting files are
generated in the specified “Project Path” directory. The directory structure of the generated files is shown in

Figure 4-3.

Figure 4-3. LatticeECP3 Block Viterbi Decoder IP core Directory Structure

[=1 1) blk_wd_test
=1 120 blk_wd_eval
[=I) blk_wd_cored
=1 inpl
{2) precision
1) swnplify
[=1 1) sim
= I aldec
I el
|2} scripts
| timing
=1 1) modelsim
I el
|2} scripts
| timing
[=] 1) sre
[=1 1) beh_rtl
) ecp3
|Z) params
=yt
=l 1) top
) ecp3

Table 4-1 provides a list of key files and directories created by the IPexpress tool and how they are used. The IPex-
press tool creates several files that are used throughout the design cycle. The names of most of the created files
are customized to the user’s module name specified in the IPexpress tool.

Table 4-1. File List

File

Description

<username>_inst.v

This file provides an instance template for the IP.

<username>.v

This file provides the VITERBI core for simulation.

<username>_beh.v

This file provides a behavioral simulation model for the VITERBI core.

<username>_bb.v

This file provides the synthesis black box for the user’s synthesis.

<username>.ngo
*.ngo

The ngo files provide the synthesized IP core.

<username>.lpc

This file contains the IPexpress tool options used to recreate or modify the core in the
IPexpress tool.

<username>_generate.tcl

Created when GUI “Generate” button is pushed, invokes generation, may be run from
command line.

<username>_generate.log

IPexpress scripts log file.

<username>_gen.log

IPexpress IP generation log file

IPUG32_02.7, June 2010

25 Block Viterbi Decoder User's Guide

Lattice Semiconductor IP Core Generation

Instantiating the Core

The generated Viterbi IP core package includes black-box (<username>_bb.v) and instance (<user-name>_inst.v)
templates that can be used to instantiate the core in a top-level design. An example RTL top-level reference source
file that can be used as an instantiation template for the IP core is provided in

\<project dir>\blk vd evall\<usernames>\src\rtl\top. Users may also use this top-level reference as
the starting template for the top-level for their complete design.

Running Functional Simulation

Simulation support for the Viterbi IP core is provided for Aldec Active-HDL (Verilog and VHDL) simulator, Mentor
Graphics ModelSim simulator. The functional simulation includes a configuration-specific behavioral model of the
Viterbi IP core. The test bench sources stimulus to the core, and monitors output from the core. The generated IP
core package includes the configuration-specific behavior model (<username>_beh.v) for functional simulation in
the “Project Path” root directory. The simulation scripts supporting ModelSim evaluation simulation is provided in
\<project _dir>\blk vd eval\<username>\sim\modelsim\scripts. The simulation script supporting
Aldec evaluation simulation is provided in

\<project dirs>\blk vd evall\<username>\sim\aldec\scripts. Both ModelSim and Aldec simulation
is supported via test bench files provided in \<project dir>\blk vd eval\testbench. Models required for
simulation are provided in the corresponding \models folder. Users may run the Aldec evaluation simulation by
doing the following:

1. Open Active-HDL.
2. Under the Tools tab, select Execute Macro.

3. Browse to folder \<project dir>\blk vd eval\<username>\sim\aldec\scripts and execute one
of the "do" scripts shown.

Users may run the ModelSim evaluation simulation by doing the following:
1. Open ModelSim.

2. Under the File tab, select Change Directory and choose the folder
<project dir>\blk vd evall\<username>\sim\modelsim\scripts.

3. Under the Tools tab, select Execute Macro and execute the ModelSim “do” script shown.

Note: When the simulation completes, a pop-up window will appear asking “Are you sure you want to finish?”
Answer No to analyze the results. Answering Yes closes ModelSim.

Synthesizing and Implementing the Core in a Top-Level Design

The Block Viterbi Decoder IP itself is synthesized and provided in NGO format when the core is generated through
IPexpress. You may combine the core in your own top-level design by instantiating the core in your top-level file as
described in “Instantiating the Core” on page 26 and then synthesizing the entire design with either Synplify or Pre-
cision RTL Synthesis.

The following text describes the evaluation implementation flow for Windows platforms. The flow for Linux and
UNIX platforms is described in the Readme file included with the IP core.

The top-level file <userame>_top.v is provided in

\<project_dir>\blk vd_eval\<username>\src\rtl\top. Push-button implementation of the reference
design is supported via the project file <username>.Idf (Diamond) or .syn (ispLEVER) located in
\<project_dir>\blk vd evall\<username>\impl\ (synplify or precision).

IPUG32_02.7, June 2010 26 Block Viterbi Decoder User's Guide

Lattice Semiconductor IP Core Generation

To use this project file in Diamond:
1. Choose File > Open > Project.

2. Browse to
\<project dir>\blk vd eval\<username>\impl\synplify (or precision) inthe Open Project
dialog box.

3. Select and open <username>.Idf. At this point, all of the files needed to support top-level synthesis and imple-
mentation will be imported to the project.

4. Select the Process tab in the left-hand GUI window.

5. Implement the complete design via the standard Diamond GUI flow.
To use this project file in ispLEVER:

1. Choose File > Open Project.

2. Browse to
\<project dir>\blk vd evall\<username>\impl\synplify (or precision) inthe Open Project
dialog box.

3. Select and open <username>.syn. At this point, all of the files needed to support top-level synthesis and imple-
mentation will be imported to the project.

4. Select the device top-level entry in the left-hand GUI window.

5. Implement the complete design via the standard ispLEVER GUI flow.

Hardware Evaluation

The Block Viterbi Decoder IP supports Lattice’s IP hardware evaluation capability, which makes it possible to create
versions of the IP core that operate in hardware for a limited period of time (approximately four hours) without
requiring the purchase of an IP license. It may also be used to evaluate the core in hardware in user-defined
designs.

Enabling Hardware Evaluation in Diamond:

Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be
enabled/disabled in the Strategy dialog box. It is enabled by default.

Enabling Hardware Evaluation in ispLEVER:

In the Processes for Current Source pane, right-click the Build Database process and choose Properties from the
dropdown menu. The hardware evaluation capability may be enabled/disabled in the Properties dialog box. It is
enabled by default.

Updating/Regenerating the IP Core

By regenerating an IP core with the IPexpress tool, you can modify any of its settings including: device type, design
entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP
core or to create a new but similar one.

Regenerating an IP Core in Diamond
To regenerate an IP core in Diamond:

1. In IPexpress, click the Regenerate button.

2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate.

IPUG32_02.7, June 2010 27 Block Viterbi Decoder User's Guide

Lattice Semiconductor IP Core Generation

3. IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Tar-
get box.

4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The
base of the file name will be the base of all the new file names. The IPX Target File must end with an .ipx exten-
sion.

5. Click Regenerate. The module’s dialog box opens showing the current option settings.

6. In the dialog box, choose the desired options. To get information about the options, click Help. Also, check the
About tab in IPexpress for links to technical notes and user guides. IP may come with additional information. As
the options change, the schematic diagram of the module changes to show the 1/0 and the device resources
the module will need.

7. To import the module into your project, if it's not already there, select Import IPX to Diamond Project (not
available in stand-alone mode).

8. Click Generate.
9. Check the Generate Log tab to check for warnings and error messages.
10.Click Close.

The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP
core required to support simulation, synthesis and implementation. The IP core may be included in a user's design
by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is
already in a design project, double-click the module’s .ipx file in the File List view. This opens |Pexpress and the
module’s dialog box showing the current option settings. Then go to step 6 above.

Regenerating an IP Core in ispLEVER
To regenerate an IP core in ispLEVER:

1. In the IPexpress tool, choose Tools > Regenerate IP/Module.

2. In the Select a Parameter File dialog box, choose the Lattice Parameter Configuration (.Ipc) file of the IP core
you wish to regenerate, and click Open.

3. The Select Target Core Version, Design Entry, and Device dialog box shows the current settings for the IP core
in the Source Value box. Make your new settings in the Target Value box.

4. If you want to generate a new set of files in a new location, set the location in the LPC Target File box. The base
of the .Ipc file name will be the base of all the new file names. The LPC Target File must end with an .Ipc exten-
sion.

5. Click Next. The IP core’s dialog box opens showing the current option settings.

6. In the dialog box, choose desired options. To get information about the options, click Help. Also, check the
About tab in the IPexpress tool for links to technical notes and user guides. The IP core might come with addi-
tional information. As the options change, the schematic diagram of the IP core changes to show the 1/0O and
the device resources the IP core will need.

7. Click Generate.

8. Click the Generate Log tab to check for warnings and error messages.

IPUG32_02.7, June 2010 28 Block Viterbi Decoder User's Guide

EE E Laﬂi c e® Chapter 5:
15151 Semiconductor Support Resources

== nn s CoOrporation

This chapter contains information about Lattice Technical Support, additional references, and document revision
history.

Lattice Technical Support

There are a number of ways to receive technical support.

Online Forums

The first place to look is Lattice Forums (http://www.latticesemi.com/support/forums.cfm). Lattice Forums contain a
wealth of knowledge and are actively monitored by Lattice Applications Engineers.

Telephone Support Hotline

Receive direct technical support for all Lattice products by calling Lattice Applications from 5:30 a.m. to 6 p.m.
Pacific Time.

e For USA & Canada: 1-800-LATTICE (528-8423)
e For other locations: +1 503 268 8001

In Asia, call Lattice Applications from 8:30 a.m. to 5:30 p.m. Beijing Time (CST), +0800 UTC. Chinese and English
language only.

e For Asia: +86 21 52989090
E-mail Support
* techsupport@Ilatticesemi.com

* techsupport-asia@latticesemi.com

Local Support
Contact your nearest Lattice Sales Office.

Internet
www.latticesemi.com

References
[1] 3GPP TS 25.212 V4.2.0 (2001-09)
[2] 3GPP2 C.S0002-A Version 5.0 Date: July 13, 2001

[3] IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless
Access Systems, October 2004 (IEEE Standard 802.16-2004)

[4] IEEE Standard for Information Technology Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications

[5] Digital Video Broadcasting (DVB): Framing Structure, Channel Coding and Modulation for 11/12 GHz Satellite
Services, ETSI- EN 300 421, 1997-98.

LatticeEC/ECP
e HB1000, LatticeEC/ECP Family Handbook

IPUG32_02.7, June 2010 29 Block Viterbi Decoder User’'s Guide

http://www.latticesemi.com/support/forums.cfm
www.latticesemi.com
http://www.latticesemi.com/lit/docs/handbooks/HB1000.pdf

Lattice Semiconductor Support Resources

LatticeECP2M

e HB1003, LatticeECP2M Family Handbook
LatticeECP3

* HB1009, LatticeECP3 Family Handbook
LatticeSC/M

e DS1004, LatticeSC/M Family Data Sheet
LatticeXP

* HB1001, LatticeXP Family Handbook
LatticeXP2

* DS1009, Lattice XP2 Datasheet

Revision History

Document IP
Date Version Versions Change Summary
— — 4.0 Previous Lattice releases.

December 2006 02.3 41 fL;lpr):”e;ted appendices. Added support for LatticeECP2M device
May 2007 02.4 4.2 Updated appendices. Added support for LatticeXP2 device family.
April 2008 02.5 4.3 Updated appendices.

May 2009 02.6 4.4 Updated appendices and added support for the LatticeECP3
device family.

June 2010 02.7 4.5 Added support for Diamond software.
Divided document into chapters. Added table of contents.
Added Quick Facts table in Chapter 1, “Introduction.”
Added new content in Chapter 4, “IP Core Generation.”

IPUG32_02.7, June 2010 30 Block Viterbi Decoder User's Guide

www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
www.latticesemi.com/dynamic/view_document.cfm?document_id=21733
http://www.latticesemi.com/documents/TN1114.pdf
http://www.latticesemi.com/documents/DS1004.pdf
http://www.latticesemi.com/lit/docs/handbooks/HB1001.pdf
http://www.latticesemi.com/documents/DS1009.pdf

| atlice

25122 Semiconductor Resource Utilization

== nn s CoOrporation

This appendix gives resource utilization information for Lattice FPGAs using the Block Viterbi Decoder IP core.

IPexpress is the Lattice IP configuration utility, and is included as a standard feature of the Diamond and ispLEVER
design tools. Details regarding the usage of IPexpress can be found in the IPexpress and Diamond and ispLEVER
help systems. For more information on the Diamond or ispLEVER design tools, visit the Lattice web site at:
www.latticesemi.com/software.

LatticeECP and LatticeEC FPGAs

Table A-1. Performance and Resource Utilization’

SySMEMTM fMAX
Configuration Parameters SLICEs LUTs Registers | 10B EBRs (MHz)
IEEE 802.16a 2004-SC-PHY |56 Table2-4on | 55, 457 232 11 2 126
page 17.
See Table 2-4 on
3GPP page 17. 5041 9922 3160 13 16 101
See Table 2-4 on
DVB-S, IEEE 802.11a page 17. 1310 2562 864 10 4 106
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(dynamic puncturing) page 17. 1474 2742 1032 29 4 108
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(fixed puncturing) page 17. 1735 3254 1185 13 4 108

1. Performance and utilization data are generated targeting an LFEC20E-5F672C device using Lattice Diamond 1.0 and Synplify Pro
D-2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or
speed grade within the LatticeECP/EC family.

Ordering Part Number
The Ordering Part Number (OPN) for the Block Viterbi Decoder IP on the LatticeEC devices is VTERB-BLK-E2-U4.
LatticeECP2 FPGAs

Table A-2. Performance and Resource Utilization’

sysMEM fmax
Configuration Parameters SLICEs LUTs | Registers IoB EBRs (MHz)
IEEE 802.16a 2004-SC-PHY | S56€ Table 2-40on | g, 469 232 11 2 207
page 17.
See Table 2-4 on
3GPP page 17. 6345 11747 3160 13 16 138
See Table 2-4 on
DVB-S, IEEE 802.11a page 17. 1636 3017 864 10 4 178
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(dynamic puncturing) page 17. 1801 3201 1032 29 4 175
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(fixed puncturing) vage 17. 1935 3467 1185 13 4 129

1. Performance and utilization data are generated targeting an LFE2-50E-7F484C device using Lattice Diamond 1.0 and Synplify Pro D-
2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed
grade within the LatticeECP2 family.

IPUG32_02.7, June 2010 31 Block Viterbi Decoder User’'s Guide

http://www.latticesemi.com/products/designsoftware/index.cfm

Lattice Semiconductor Resource Utilization

Ordering Part Number

The Ordering Part Number (OPNs) for the Block Viterbi Decoder IP on the LatticeECP2 devices is VTERB-BLK-
P2- U4.

LatticeECP2M FPGAs

Table A-3. Performance and Resource Utilization’

SySMEM fMAX
Configuration Parameters SLICEs LUTs Registers 0B EBRs (MHz)
IEEE 802.16a 2004-SC-PHY |S6€ Table2-4on | 55, 469 232 11 2 211
page 17.
See Table 2-4 on
3GPP page 17. 6345 11747 3160 13 16 135
See Table 2-4 on
DVB-S, IEEE 802.11a page 17. 1636 3017 864 10 4 179
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(dynamic puncturing) page 17. 1801 3201 1032 29 4 176
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(fixed puncturing) vage 17. 1935 3467 1185 13 4 176

1. Performance and utilization data are generated targeting an LFE2M-35E-7F672C device using Lattice Diamond 1.0 and Synplify Pro D-
2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed
grade within the LatticeECP2M family.

Ordering Part Number

The Ordering Part Number (OPNs) for the Block Viterbi Decoder IP on the LatticeECP2M devices is VTERB-BLK-
PM-U4.

LatticeECP3 FPGAs

Table A-4. Performance and Resource Utilization’

sysMEM | fyax

Configuration Parameters SLICEs LUTs Registers IoB EBRs (MHz)

IEEE 802.16a 2004-SC-PHY gﬁ%ggg'?f_"‘ 285 469 232 11 2 187
3GPP gﬁ%ggg'?f_"‘ 6349 11736 | 3159 13 16 132
DVB-S, IEEE 802.11a gﬁ%ggg'?f_"‘ 1626 3011 864 10 4 168
EEER2 TR0 OMON P (seo 0024 | s | | e | m | 4 |
'(Efe%%%igtiﬁgg)‘"o':w PHY gﬁ%ggg'?f_"‘ 1935 3485 1185 13 4 146

1. Performance and utilization data are generated targeting an LFE3-95E-8FN672CES device using Lattice Diamond 1.0 and Syn-
plify Pro D-2009.12L-1 software. Performance may vary when using a different software version or targeting a different device den-
sity or speed grade within the LatticeECP3 family

Ordering Part Number

The Ordering Part Number (OPNs) for the Block Viterbi Decoder IP on the LatticeECP3 devices is VTERB-BLK-
E3-U4.

IPUG32_02.7, June 2010 32 Block Viterbi Decoder User's Guide

Lattice Semiconductor Resource Utilization

LatticeSC and LatticeSCM FPGAs

Table A-5. Performance and Resource Utilization’

SySMEM fMAX
Configuration Parameters SLICEs LUTs Registers 10B EBRs (MHz)
IEEE 802.16a 2004-SC-PHY |56€ Table2-40n | 544 433 233 11 2 261
page 17.
See Table 2-4 on
3GPP page 17. 4923 9426 3391 13 16 207
DVB-S, IEEE 802.11a See Table 2-4.0n | 4539 2438 864 10 4 236
page 17.
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(dynamic puncturing) page 17. 1389 2617 1032 29 4 230
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(fixed puncturing) bage 17. 1743 3227 1186 13 4 224

1. Performance and utilization data are generated targeting an LFSCM3GA25E-7F900C device using Lattice Diamond 1.0 and Synplify
Pro D-2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or
speed grade within the LatticeSC/SCM family.

Ordering Part Number

The Ordering Part Number (OPNs) for the Block Viterbi Decoder IP on the LatticeSC/M devices is VTERB-BLK-
SC-U4.

LatticeXP FPGAs

Table A-6. Performance and Resource Utilization’

SysMEM fMAX
Configuration Parameters SLICEs LUTs Registers 10B EBRs (MHz)
IEEE 802.16a 2004-SC-PHY |56€ Table2-40n | g, 457 230 11 2 116
page 17.
See Table 2-4 on
3GPP page 17. 5041 9922 3160 13 16 92
See Table 2-4 on
DVB-S, IEEE 802.11a page 17. 1310 2562 864 10 4 101
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(dynamic puncturing) page 17. 1474 2742 1032 29 4 104
IEEE 802.16 2004-OFDM PHY |See Table 2-4 on
(fixed puncturing) page 17. 1735 3254 1185 13 4 100

1. Performance and utilization data are generated targeting an LFXP20E-5F256C device using Lattice Diamond 1.0 and Synplify Pro D-
2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed
grade within the LatticeXP family.

Ordering Part Number

The Ordering Part Number (OPNSs) for the Block Viterbi Decoder IP on the LatticeXP devices is VTERB-BLK-XM-
u4.

IPUG32_02.7, June 2010 33 Block Viterbi Decoder User's Guide

Lattice Semiconductor Resource Utilization

LatticeXP2 FPGAs

Table A-7. Performance and Resource Utilization’

SysMEM fMAX
Configuration Parameters SLICEs LUTs Registers IoB EBRs (MHz)
IEEE 802.16a 2004-SC-PHY |S°€ Table 2-4 on 291 469 232 11 2 183
page 17.
See Table 2-4 on
3GPP page 17. 6345 1147 3160 13 16 128
See Table 2-4 on
DVB-S, IEEE 802.11a page 17. 1636 3017 864 10 4 160
IEEE 802.16 2004-OFDM See Table 2-4 on
PHY (dynamic puncturing) page 17. 1801 3201 1032 29 4 153
IEEE 802.16 2004-OFDM See Table 2-4 on
PHY (fixed puncturing) page 17. 1935 3467 1185 13 4 136

1. Performance and utilization data are generated targeting an LFXP2-17E-7F484C device using Lattice Diamond 1.0 and Synplify Pro
D-2009.12L-1 software. Performance may vary when using a different software version or targeting a different device density or speed
grade within the LatticeXP2 family.

Ordering Part Number

The Ordering Part Number (OPNs) for the Block Viterbi Decoder IP on the LatticeXP2 devices is VTERB-BLK-X2-
u4.

IPUG32_02.7, June 2010 34 Block Viterbi Decoder User's Guide

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Lattice:
VTERB-BLK-E2-U4 VTERB-BLK-P2-U4 VTERB-BLK-SC-U4 VTERB-BLK-XM-U4 VTERB-BLK-X2-U4 VTERB-BLK-
E3-U4 VTERB-BLK-X2-UT4 VTERB-BLK-PM-U4 VTERB-BLK-E3-UT4

http://www.mouser.com/latticesemi
http://www.mouser.com/access/?pn=VTERB-BLK-E2-U4
http://www.mouser.com/access/?pn=VTERB-BLK-P2-U4
http://www.mouser.com/access/?pn=VTERB-BLK-SC-U4
http://www.mouser.com/access/?pn=VTERB-BLK-XM-U4
http://www.mouser.com/access/?pn=VTERB-BLK-X2-U4
http://www.mouser.com/access/?pn=VTERB-BLK-E3-U4
http://www.mouser.com/access/?pn=VTERB-BLK-E3-U4
http://www.mouser.com/access/?pn=VTERB-BLK-X2-UT4
http://www.mouser.com/access/?pn=VTERB-BLK-PM-U4
http://www.mouser.com/access/?pn=VTERB-BLK-E3-UT4

	Table of Contents
	Introduction
	Quick Facts
	Features

	Functional Description
	General Description
	Convolutional Encoding
	Punctured Codes and Depuncturing
	Viterbi Decoding

	Functional Description
	Branch Metric Unit (BMU)
	Add, Compare, and Select Unit (ACS)
	Traceback Unit (TBU)
	Memory (MEM)
	Memory Management Unit (MMU)
	Bit Error Rate Monitor (BER)
	Other Modules

	Configuring the Block Viterbi Decoder
	Puncture Settings
	Continuous and Block Decoding
	Termination Modes
	Number of Tracebacks and Traceback Length
	Block Length
	Data Type

	Signal Descriptions
	Interfacing with the Block Viterbi Decoder
	Timing Diagrams
	Core Configurations

	Parameter Settings
	Primary Options Tab
	Primary Options
	Constraint length (K)
	Code Rate (k/n)

	Operation Mode
	Block Options
	Termination Mode
	Number of Tracebacks

	Traceback Length
	Puncturing
	Puncture Settings
	Puncture Pattern
	Max Input Rate
	Max Output Rate

	Advanced Options Tab
	Generator Polynomials
	Radix

	GP0, GP1, GP2, GP3, GP4, GP5, GP6
	Implementation Method
	Hybrid Index

	Inputs
	Decoder Input
	Soft Width
	Data Type

	BER (Bit Error Rate)
	BER Monitor
	BER Period

	IP Core Generation
	Licensing the IP Core
	Getting Started
	IPexpress-Created Files and Top Level Directory Structure
	Instantiating the Core
	Running Functional Simulation
	Synthesizing and Implementing the Core in a Top-Level Design
	Hardware Evaluation
	Enabling Hardware Evaluation in Diamond:
	Enabling Hardware Evaluation in ispLEVER:

	Updating/Regenerating the IP Core
	Regenerating an IP Core in Diamond
	Regenerating an IP Core in ispLEVER

	Support Resources
	Lattice Technical Support
	Online Forums
	Telephone Support Hotline
	E-mail Support
	Local Support
	Internet

	References
	LatticeEC/ECP
	LatticeECP2M
	LatticeECP3
	LatticeSC/M
	LatticeXP
	LatticeXP2

	Revision History
	LatticeECP and LatticeEC FPGAs
	LatticeECP2 FPGAs
	Ordering Part Number

	LatticeECP2M FPGAs
	Ordering Part Number

	LatticeECP3 FPGAs
	Ordering Part Number

	LatticeSC and LatticeSCM FPGAs
	Ordering Part Number

	LatticeXP FPGAs
	Ordering Part Number

	LatticeXP2 FPGAs
	Ordering Part Number

