

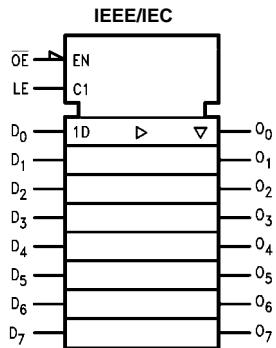
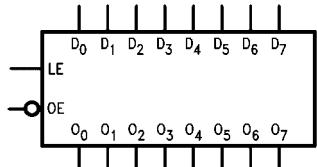
74F373

Octal Transparent Latch with 3-STATE Outputs

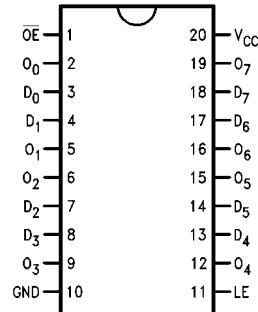
General Description

The 74F373 consists of eight latches with 3-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\bar{OE}) is LOW. When \bar{OE} is HIGH the bus output is in the high impedance state.

Features



- Eight latches in a single package
- 3-STATE outputs for bus interfacing
- Guaranteed 4000V minimum ESD protection

Ordering Code:


Order Number	Package Number	Package Description
74F373SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F373MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F373PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

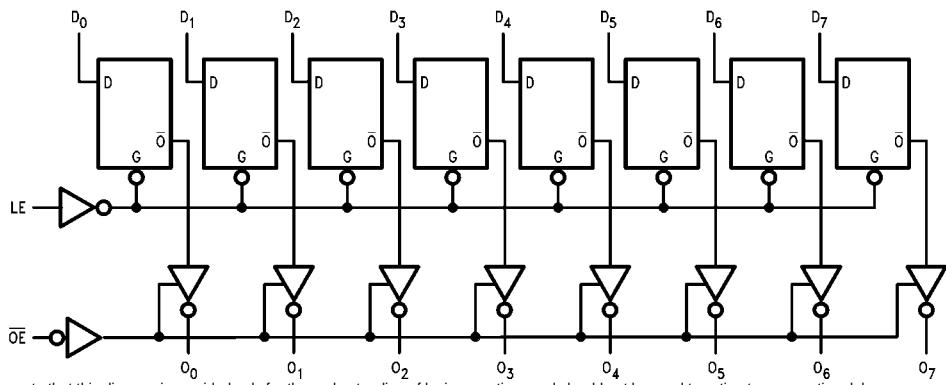
Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I_{IH}/I_{IL} Output I_{OH}/I_{OL}
D_0-D_7	Data Inputs	1.0/1.0	$20 \mu A/0.6 \text{ mA}$
LE	Latch Enable Input (Active HIGH)	1.0/1.0	$20 \mu A/0.6 \text{ mA}$
\bar{OE}	Output Enable Input (Active LOW)	1.0/1.0	$20 \mu A/0.6 \text{ mA}$
O_0-O_7	3-STATE Latch Outputs	150/40 (33.3)	$-3 \text{ mA}/24 \text{ mA} (20 \text{ mA})$

Functional Description


The 74F373 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\bar{OE}) input. When \bar{OE} is LOW, the buffers are in the bi-state mode. When \bar{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Output
LE	\bar{OE}	D_n	O_n
H	L	H	H
H	L	L	L
L	L	X	O_n (no change)
X	H	X	Z

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
Z = High Impedance State

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V_{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V_{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

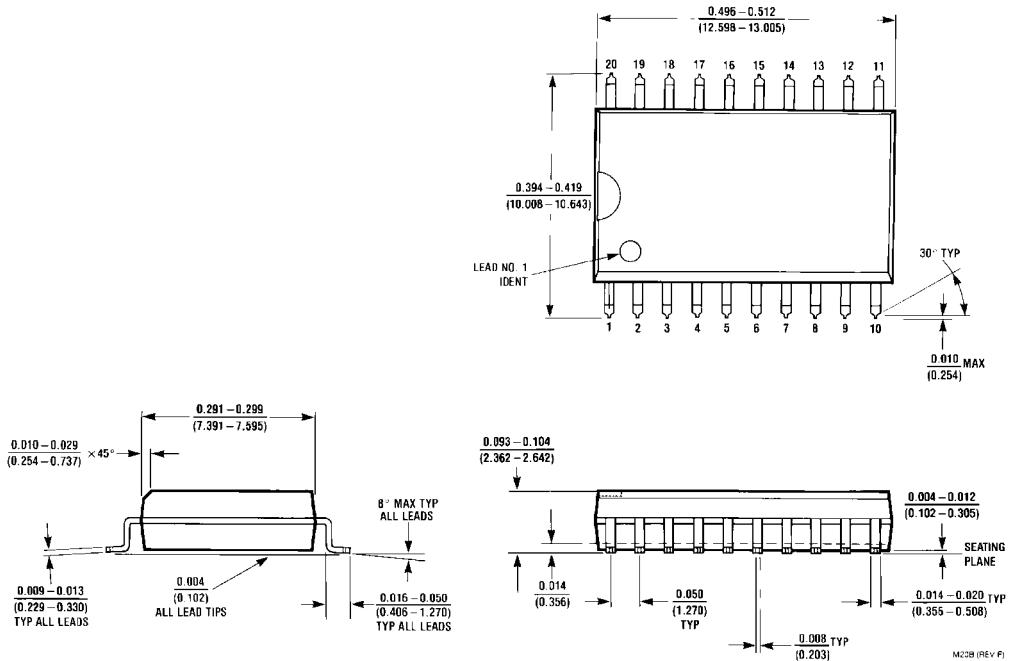
Recommended Operating Conditions

Free Air Ambient Temperature	0°C to +70°C
Supply Voltage	+4.5V to +5.5V

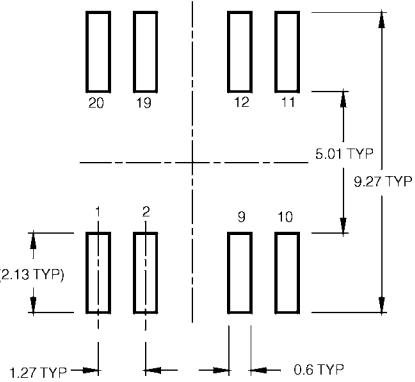
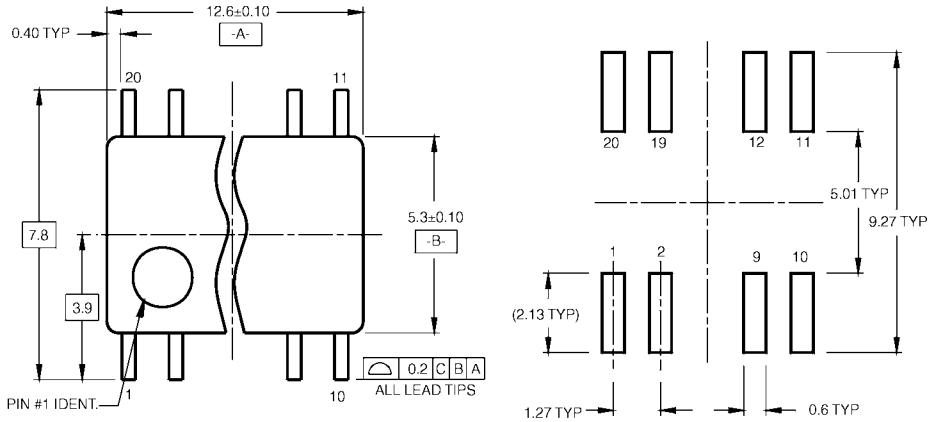
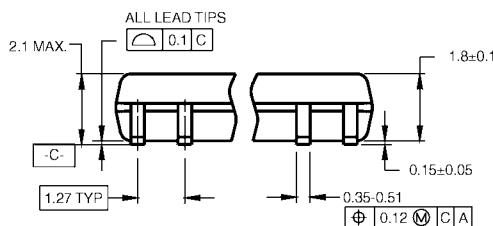
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

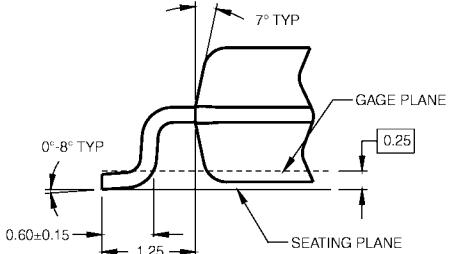
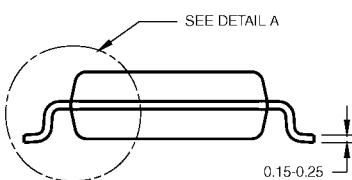
DC Electrical Characteristics


Symbol	Parameter	Min	Typ	Max	Units	V_{CC}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$I_{IN} = -18$ mA
V_{OH}	Output HIGH Voltage	10% V_{CC}	2.5				$I_{OH} = -1$ mA
		10% V_{CC}	2.4				$I_{OH} = -3$ mA
		5% V_{CC}	2.7				$I_{OH} = -1$ mA
		5% V_{CC}	2.7				$I_{OH} = -3$ mA
V_{OL}	Output LOW Voltage	10% V_{CC}		0.5	V	Min	$I_{OL} = 24$ mA
I_{IH}	Input HIGH Current			5.0	μ A	Max	$V_{IN} = 2.7V$
I_{BVI}	Input HIGH Current Breakdown Test			7.0	μ A	Max	$V_{IN} = 7.0V$
I_{CEX}	Output HIGH Leakage Current			50	μ A	Max	$V_{OUT} = V_{CC}$
V_{ID}	Input Leakage Test	4.75			V	0.0	$I_{ID} = 1.9$ μ A All Other Pins Grounded
I_{OD}	Output Leakage Circuit Current			3.75	μ A	0.0	$V_{OD} = 150$ mV All Other Pins Grounded
I_{IL}	Input LOW Current			-0.6	mA	Max	$V_{IN} = 0.5V$
I_{OZH}	Output Leakage Current			50	μ A	Max	$V_{OUT} = 2.7V$
I_{OZL}	Output Leakage Current			-50	μ A	Max	$V_{OUT} = 0.5V$
I_{OS}	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V$
I_{ZZ}	Bus Drainage Test			500	μ A	0.0V	$V_{OUT} = 5.25V$
I_{CCZ}	Power Supply Current		38	55	mA	Max	$V_O = \text{HIGH Z}$

AC Electrical Characteristics




Symbol	Parameter	$T_A = +25^\circ C$ $V_{CC} = +5.0V$ $C_L = 50 pF$			$T_A = -55^\circ C$ to $+125^\circ C$ $V_{CC} = +5.0V$ $C_L = 50 pF$			$T_A = 0^\circ C$ to $+70^\circ C$ $V_{CC} = +5.0V$ $C_L = 50 pF$			Units
		Min	Typ	Max	Min	Max	Min	Max	Min	Max	
t_{PLH}	Propagation Delay D_n to O_n	3.0 2.0	5.3 3.7	7.0	3.0 2.0	8.5 7.0	3.0 2.0	8.0 6.0	ns	ns	
t_{PLH}	Propagation Delay LE to O_n	5.0 3.0	9.0 5.2	11.5	5.0 3.0	15.0 8.5	5.0 3.0	13.0 8.0	ns	ns	
t_{PZH}	Output Enable Time	2.0 2.0	5.0 5.6	11.0 7.5	2.0 2.0	13.5 10.0	2.0 2.0	12.0 8.5	ns	ns	
t_{PHZ}	Output Disable Time	1.5 1.5	4.5 3.8	6.5 5.0	1.5 1.5	10.0 7.0	1.5 1.5	7.5 6.0	ns	ns	
t_{PLZ}											

AC Operating Requirements

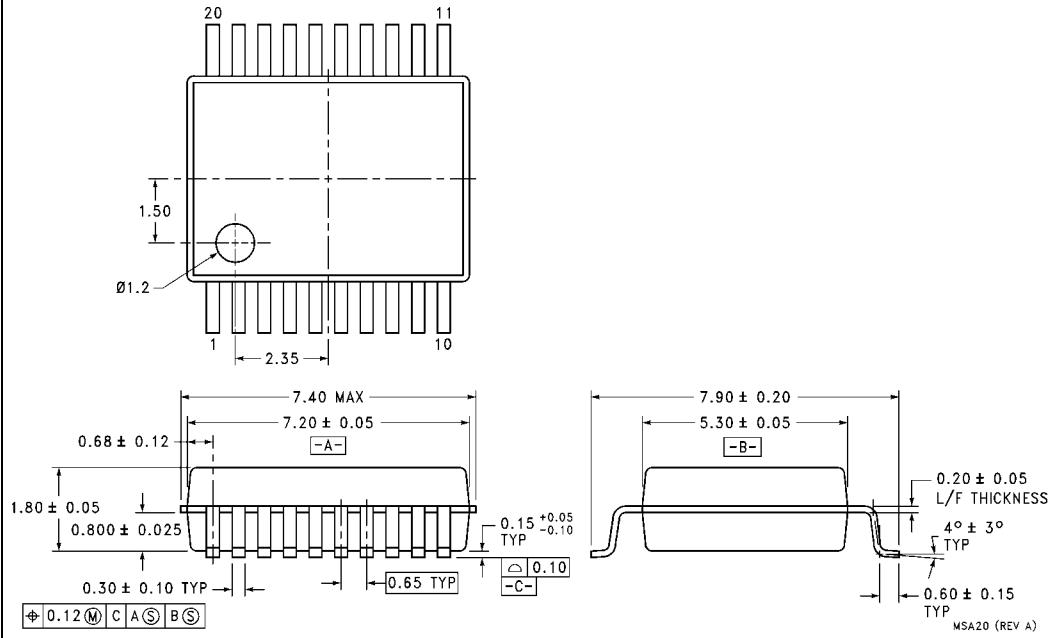


Symbol	Parameter	$T_A = +25^\circ C$ $V_{CC} = +5.0V$			$T_A = -55^\circ C$ to $+125^\circ C$ $V_{CC} = +5.0V$			$T_A = 0^\circ C$ to $+70^\circ C$ $V_{CC} = +5.0V$			Units	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
$t_S(H)$	Setup Time, HIGH or LOW	2.0		2.0		2.0		2.0		ns		
$t_S(L)$	D_n to LE	2.0		2.0		2.0		2.0				
$t_H(H)$	Hold Time, HIGH or LOW	3.0		3.0		3.0		3.0				
$t_H(L)$	D_n to LE	3.0		4.0		4.0		3.0				
$t_W(H)$	LE Pulse Width, HIGH	6.0		6.0		6.0		6.0		ns		

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
Package Number M20B

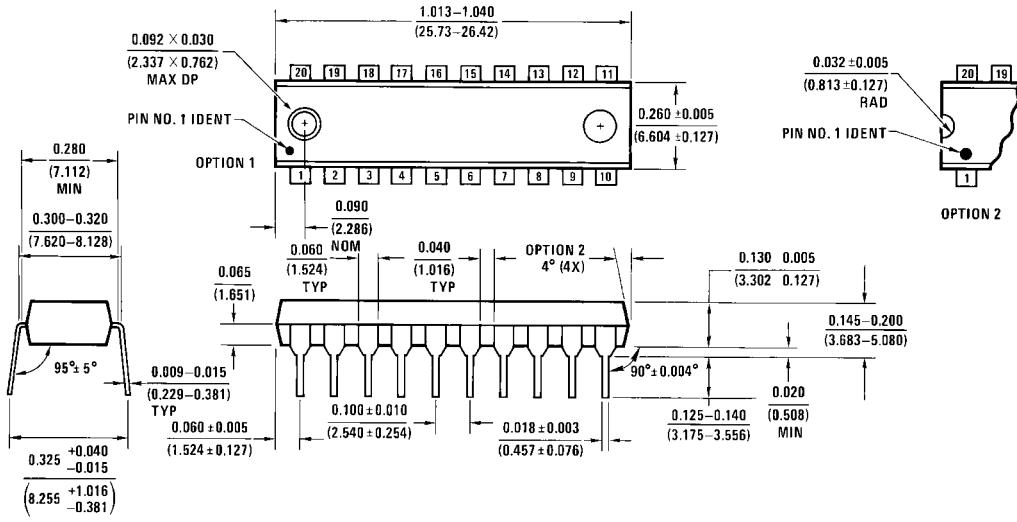
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS


NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M20DRevB1


DETAIL A

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

N20A (REV G)

**20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N20A**

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com