

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

General Description

The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input switching frequency in excess of 1.0GHz. The 15 outputs are arranged in four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.

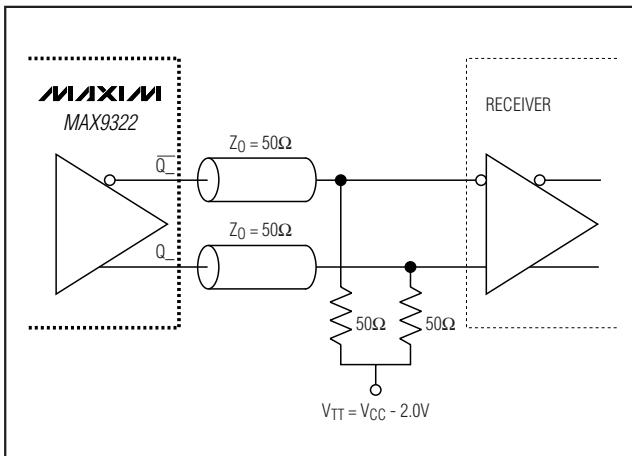
The MAX9322 operates in LVPECL systems with a +2.375V to +3.8V supply or in LVECL systems with a -2.375V to -3.8V supply. A VBB reference output provides compatibility with single-ended clock input signals and a master reset input provides a simultaneous reset on all outputs.

The MAX9322 is available in 52-pin TQFP and 68-pin QFN packages and is specified for operation over -40°C to +85°C. For 1:10 clock drivers, refer to the MAX9311/MAX9313 data sheet. For 1:5 clock drivers, refer to the MAX9316 data sheet.

Applications

Precision Clock Distribution

Low-Jitter Data Repeaters


Central-Office Backplane Clock Distribution

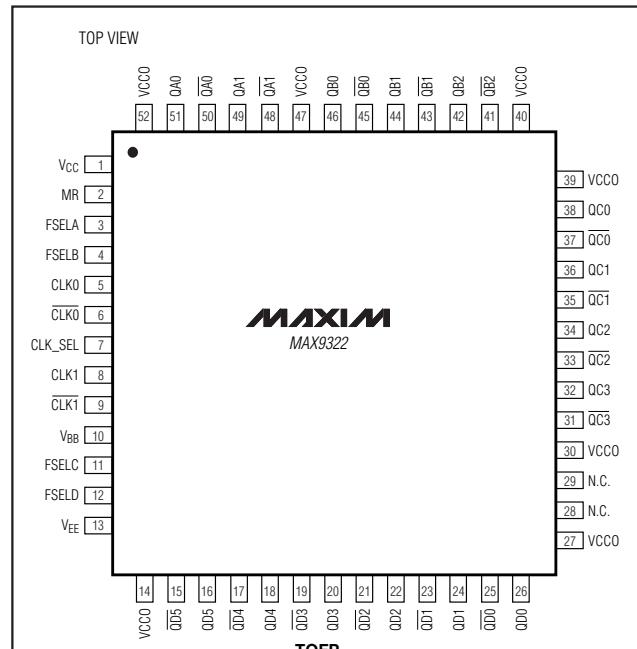
DSLAM Backplane

Base Stations

ATE

Typical Operating Circuit

Features


- ◆ 1.2ps (RMS) Maximum Random Jitter
- ◆ 300mV Differential Output at 1.0GHz
- ◆ 900ps Propagation Delay
- ◆ Selectable Divide-by-1 or Divide-by-2 Frequency Outputs
- ◆ Multiplexed 2:1 Input Function
- ◆ LVECL Operation from VEE = -2.375V to -3.8V
- ◆ LVPECL Operation from VCC = +2.375V to +3.8V
- ◆ ESD Protection: > 2kV Human Body Model

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9322ECY	-40°C to +85°C	52 TQFP
MAX9322ETK*	-40°C to +85°C	68 QFN

**Future product—contact factory for availability.*

Pin Configurations

Pin Configurations continued at end of data sheet.

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

ABSOLUTE MAXIMUM RATINGS

V _{CC} to V _{EE}	4.1V
Inputs and Outputs to V _{EE}	-0.3V to (V _{CC} + 0.3V)
Differential Input Magnitude.....	Lower of (V _{CC} - V _{EE}) and 3V
Continuous Output Current.....	50mA
Surge Output Current.....	100mA
V _{BB} Sink/Source Current.....	±0.65mA
Continuous Power Dissipation (T _A = +70°C)	
Single-Layer PC Board	
52-Pin TQFP (derate 15.4mW/°C above +70°C).....	1230.8mW
68-Lead QFN (derate 27.8mW/°C above +70°C).....	2222.2mW
Multilayer PC Board	
52-Pin TQFP (derate 19.1mW/°C above +70°C).....	1529.6mW
68-Lead QFN (derate 38.5mW/°C above +70°C).....	3076.9mW
Junction-to-Ambient Thermal Resistance in Still Air	
Single-Layer PC Board	
52-Pin TQFP	+65°C/W
68-Lead QFN	+36°C/W
Multilayer PC Board	
52-Pin TQFP	+52.3°C/W
68-Lead QFN	+26°C/W

Junction-to-Ambient Thermal Resistance with 500 LFPM Airflow	
Single-Layer PC Board	
52-Pin TQFP	+50°C/W
68-Lead QFN	+27°C/W
Multilayer PC Board	
52-Pin TQFP	+40°C/W
68-Lead QFN	+20°C/W
Junction-to-Case Thermal Resistance	
52-Pin TQFP	+12.9°C/W
68-Lead QFN	+2°C/W
Operating Temperature Range	-40°C to +85°C
Junction Temperature.....	+150°C
Storage Temperature Range	-65°C to +150°C
ESD Protection	
Human Body Model (Q _{EE} , Q _{BB} , CLK_SEL, FSEL _{EE} , CLK _{EE} , MR, V _{BB})	±2kV
Soldering Temperature (10s).....	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

((V_{CC} - V_{EE}) = 2.375V to 3.8V, outputs loaded with 50Ω ±1% to V_{CC} - 2V; CLK_SEL, FSEL_{EE} = high or low; MR = low; |V_{ID}| = 0.095V to the lower of (V_{CC} - V_{EE}) and 3V. Typical values are at (V_{CC} - V_{EE}) = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.) (Notes 1-4)

PARAMETER	SYMBOL	CONDITIONS	-40°C			+25°C			+85°C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
SINGLE-ENDED INPUT (MR, FSEL_{EE}, CLK_SEL)												
Input High Voltage	V _{IH1}	Figure 1	V _{CC} - 1.155	V _{CC} - 0.88	V _{CC} - 1.155	V _{CC} - 0.88	V _{CC} - 1.155	V _{CC} - 0.88	V _{CC} - 1.155	V _{CC} - 0.88	V	
Input Low Voltage	V _{IL1}	Figure 1	V _{CC} - 1.81	V _{CC} - 1.505	V _{CC} - 1.81	V _{CC} - 1.505	V _{CC} - 1.81	V _{CC} - 1.505	V _{CC} - 1.81	V _{CC} - 1.505	V	
Input Current	I _{IN1}	MR, FSEL _{EE} , CLK_SEL = V _{IL} or V _{IH}	-15	+150	-15	+150	-15	+150	-15	+150	μA	
DIFFERENTIAL INPUT (CLK_{EE}, CLK_{EE})												
Single-Ended Input High Voltage	V _{IH2}	Figure 1	V _{CC} - 1.155	V _{CC} - 0.88	V _{CC} - 1.155	V _{CC} - 0.88	V _{CC} - 1.155	V _{CC} - 0.88	V _{CC} - 1.155	V _{CC} - 0.88	V	
Single-Ended Input Low Voltage	V _{IL2}	Figure 1	V _{CC} - 1.81	V _{CC} - 1.505	V _{CC} - 1.81	V _{CC} - 1.505	V _{CC} - 1.81	V _{CC} - 1.505	V _{CC} - 1.81	V _{CC} - 1.505	V	
High Voltage of Differential Input	V _{IHD}		V _{EE} + 1.2	V _{CC}	V							
Low Voltage of Differential Input	V _{ILD}		V _{EE}	V _{CC} - 0.095	V							

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

DC ELECTRICAL CHARACTERISTICS (continued)

$((V_{CC} - V_{EE}) = 2.375V$ to $3.8V$, outputs loaded with $50\Omega \pm 1\%$ to $V_{CC} - 2V$; CLK_SEL , $FSEL_$ = high or low; MR = low; $|V_{IDL}| = 0.095V$ to the lower of $(V_{CC} - V_{EE})$ and $3V$. Typical values are at $(V_{CC} - V_{EE}) = 3.3V$, $V_{IHD} = V_{CC} - 1V$, $V_{ILD} = V_{CC} - 1.5V$.) (Notes 1-4)

PARAMETER	SYMBOL	CONDITIONS	-40°C			+25°C			+85°C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input Voltage	$V_{IHD} - V_{ILD}$	For $V_{CC} - V_{EE} < 3.0V$	0.095	$V_{CC} - V_{EE}$	0.095	V						
		For $V_{CC} - V_{EE} \geq 3.0V$	0.095	3.0	0.095	3.0	0.095	3.0	0.095	3.0	0.095	
Input Current	I_{IN2}	$CLK_$, $\overline{CLK_}$ = V_{IHD} or V_{ILD}	-150	+150	-150	+150	+150	-150	+150	+150	+150	μA
OUTPUTS (Q₁, Q₂)												
Single-Ended Output High Voltage	V_{OH}	Figure 1	$V_{CC} - 1.085$	$V_{CC} - 0.880$	$V_{CC} - 1.025$	V						
Single-Ended Output Low Voltage	V_{OL}	Figure 1	$V_{CC} - 1.810$	$V_{CC} - 1.52$	$V_{CC} - 1.810$	$V_{CC} - 1.620$	$V_{CC} - 1.810$	$V_{CC} - 1.620$	$V_{CC} - 1.810$	$V_{CC} - 1.620$	$V_{CC} - 1.810$	V
Differential Output Voltage	$V_{OH} - V_{OL}$	Figure 1	500		600		600		600		600	mV
REFERENCE												
Reference Voltage Output	V_{BB}	$I_{BB} = \pm 0.5mA$ (Note 5)	$V_{CC} - 1.41$	$V_{CC} - 1.25$	$V_{CC} - 1.41$	V						
SUPPLY												
Supply Current	I_{EE}	(Note 6)	50	85	66	115	80	130	80	130	80	130
												mA

MAX9322

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

AC ELECTRICAL CHARACTERISTICS

((V_{CC} - V_{EE}) = 2.375V to 3.8V; outputs loaded with 50Ω ±1% to V_{CC} - 2V; input frequency ≤ 1000MHz; input transition time = 125ps (20% to 80%); CLK_{_SEL}, FSEL_{_} = high or low, MR = low; V_{IHD} = V_{EE} + 1.2V to V_{CC}; V_{ILD} = V_{EE} to V_{CC} - 0.4V; V_{IHD} - V_{ILD} = 0.4V to 1V. Typical values are at (V_{CC} - V_{EE}) = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.) (Note 7)

PARAMETER	SYMBOL	CONDITION	-40°C			+25°C			+85°C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input-to-Output Delay	t _{PLHD} , t _{PHLD}	Figure 2	700	900	1150	725	900	1180	750	950	1225	ps
Single-Ended CLK __ /CLK __ to Output Delay	t _{PHLS} , t _{PLHS}	Figure 1	700	900	1170	700	900	1175	725	950	1250	ps
MR to Output Delay	t _{PD}	Figure 3	450		930	450		930	450		930	ps
Output-to-Output Skew	t _{SKOO}	(Note 8)			85			56			50	ps
Added Random Jitter	t _{RJ}	f _{IN} = 1.0GHz clock pattern (Note 9)			1.2			1.2			1.2	ps (RMS)
Added Deterministic Jitter	t _{DJ}	1Gbps 223 - 1 PRBS pattern (Note 9)			61			61			61	pSP-P
Switching Frequency	f _{MAX}	V _{OD} > 300mV	1.0			1.0			1.0			GHz
Differential Output Rise and Fall Time (20% to 80%)	t _R , t _F	Figure 2	200	260	400	200	260	400	200	240	400	ps

Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.

Note 3: Single-ended CLK_{_}, CLK_{_} input operation is limited to V_{CC} - V_{EE} = 3.0V to 3.8V.

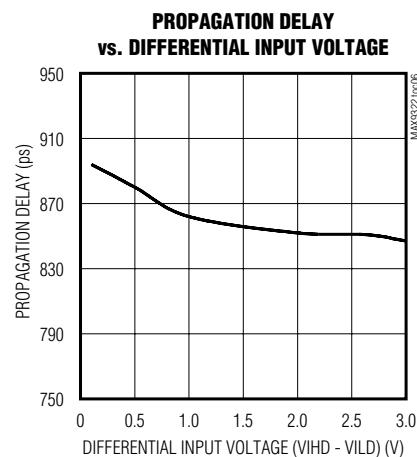
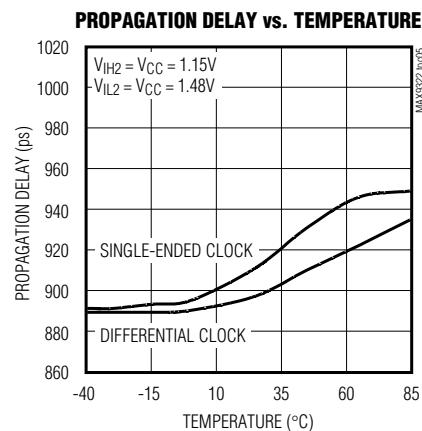
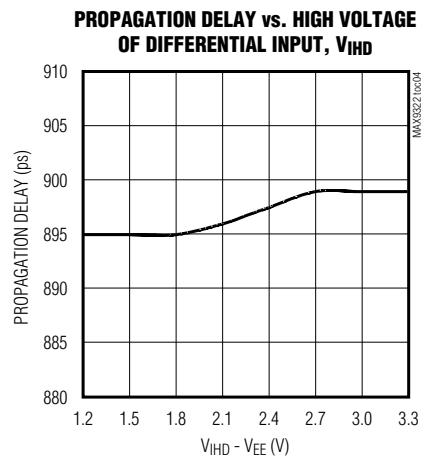
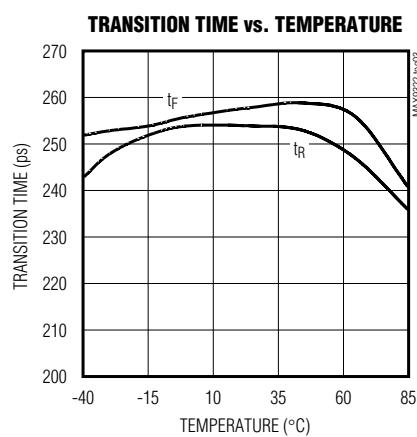
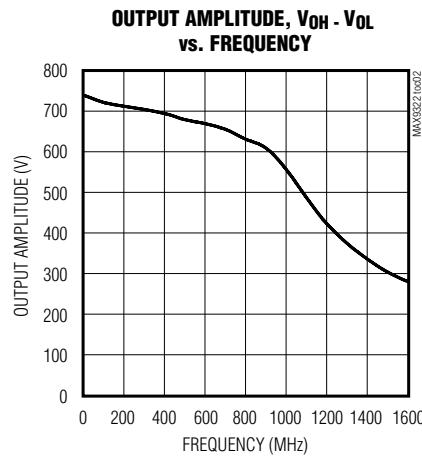
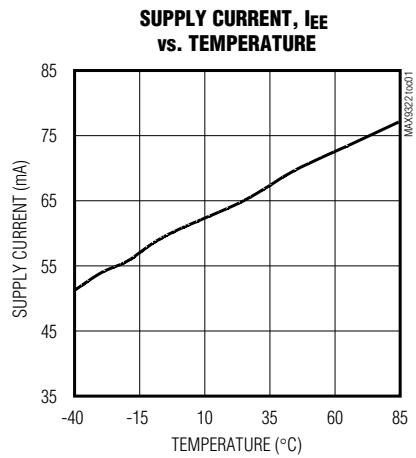
Note 4: DC parameters are production tested at T_A = +25°C and guaranteed by design over the full operating temperature range.

Note 5: Use V_{BB} as a reference for inputs of the same device only.

Note 6: All pins open except V_{CC} and V_{EE}.

Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma.

Note 8: Measured between outputs of the same parts at the signal crossing points under identical conditions for a same-edge transition.







Note 9: Device jitter added to a jitter-free input signal.

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

Typical Operating Characteristics

($V_{CC} - V_{EE} = 3.3V$, $V_{IH2} = V_{CC} - 1V$, $V_{IL2} = V_{CC} - 1.5V$, $V_{ID} = 500mV$, $CLK_SEL = 0$, $FSEL_ = 0$, $f_{IN} = 600MHz$, $T_A = +25^\circ C$, unless otherwise noted.)

MAX9322

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

Pin Description

PIN		NAME	FUNCTION
TQFP	QFN		
1	2, 3	V _{CC}	Positive Power Supply. Powers input circuitry. Bypass each V _{CC} to V _{EE} with a 0.01μF and 0.1μF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	4	MR	Single-Ended Master Reset. A high on MR sets all outputs to differential zero. A low on MR enables all outputs. MR is pulled to V _{EE} through a 75kΩ resistor.
3	5	FSEL _A	Single-Ended Frequency Select A. Selects the output frequency for bank A. Bank A consists of two differential outputs. A low on FSEL _A selects divide-by-1. A high on FSEL _A selects divide-by-2. FSEL _A is pulled to V _{EE} through a 75kΩ resistor.
4	6	FSEL _B	Single-Ended Frequency Select B. Selects the output frequency for bank B. Bank B consists of three differential outputs. A low on FSEL _B selects divide-by-1. A high on FSEL _B selects divide-by-2. FSEL _B is pulled to V _{EE} through a 75kΩ resistor.
5	7	CLK ₀	Noninverting Clock 0 Input. CLK ₀ is pulled to V _{EE} through 75kΩ resistors.
6	8	CLK ₀	Inverting Clock 0 Input. CLK ₀ is pulled to V _{CC} and to V _{EE} through a 75kΩ resistor.
7	9	CLK_SEL	Single-Ended Clock Selector Input. A low on CLK_SEL selects CLK ₀ . A high on CLK_SEL selects CLK ₁ . CLK_SEL is pulled to V _{EE} through a 75kΩ resistor.
8	10	CLK ₁	Noninverting Clock 1 Input. CLK ₁ is pulled to V _{EE} through a 75kΩ resistor.
9	11	CLK ₁	Inverting Clock 1 Input. CLK ₁ is pulled to V _{CC} and to V _{EE} through 75kΩ resistors.
10	12	V _{BB}	Reference Voltage Output. Connect V _{BB} to CLK ₋ or CLK __ to provide a reference for single-ended operation. When used, bypass with a 0.01μF ceramic capacitor to V _{CC} ; otherwise leave open.
11	13	FSEL _C	Single-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSEL _C selects divide-by-1. A high on FSEL _C selects divide-by-2. FSEL _C is pulled to V _{EE} through a 75kΩ resistor.
12	14	FSEL _D	Single-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSEL _D selects divide-by-1. A high on FSEL _D selects divide-by-2. FSEL _D is pulled to V _{EE} through a 75kΩ resistor.
13	15, 16	V _{EE}	Negative Power-Supply Input
14, 27, 30, 39, 40, 47, 52	19, 20, 33, 36, 37, 40, 49, 50, 53, 54, 61, 66, 67	V _{CC0}	Output Driver Positive Power Supply. Powers device output drivers. Bypass each V _{CC0} to V _{EE} with a 0.01μF and 0.1μF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
15	21	QD ₅	Inverting QD ₅ Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
16	22	QD ₅	Noninverting QD ₅ Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
17	23	QD ₄	Inverting QD ₄ Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
18	24	QD ₄	Noninverting QD ₄ Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

Pin Description (continued)

PIN		NAME	FUNCTION
TQFP	QFN		
19	25	<u>QD3</u>	Inverting QD3 Output. Typically terminate with 50Ω resistor to VCC - 2V.
20	26	QD3	Noninverting QD3 Output. Typically terminate with 50Ω resistor to VCC - 2V.
21	27	<u>QD2</u>	Inverting QD2 Output. Typically terminate with 50Ω resistor to VCC - 2V.
22	28	QD2	Noninverting QD2 Output. Typically terminate with 50Ω resistor to VCC - 2V.
23	29	<u>QD1</u>	Inverting QD1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
24	30	QD1	Noninverting QD1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
25	31	<u>QD0</u>	Inverting QD0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
26	32	QD0	Noninverting QD0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
28, 29	1, 17, 18, 34, 35, 38, 39, 51, 52, 68	N.C.	No Connection. Not internally connected.
31	41	<u>QC3</u>	Inverting QC3 Output. Typically terminate with 50Ω resistor to VCC - 2V.
32	42	QC3	Noninverting QC3 Output. Typically terminate with 50Ω resistor to VCC - 2V.
33	43	<u>QC2</u>	Inverting QC2 Output. Typically terminate with 50Ω resistor to VCC - 2V.
34	44	QC2	Noninverting QC2 Output. Typically terminate with 50Ω resistor to VCC - 2V.
35	45	<u>QC1</u>	Inverting QC1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
36	46	QC1	Noninverting QC1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
37	47	<u>QC0</u>	Inverting QC0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
38	48	QC0	Noninverting QC0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
41	55	<u>QB2</u>	Inverting QB2 Output. Typically terminate with 50Ω resistor to VCC - 2V.
42	56	QB2	Noninverting QB2 Output. Typically terminate with 50Ω resistor to VCC - 2V.
43	57	<u>QB1</u>	Inverting QB1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
44	58	QB1	Noninverting QB1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
45	59	<u>QB0</u>	Inverting QB0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
46	60	QB0	Noninverting QB0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
48	62	<u>QA1</u>	Inverting QA1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
49	63	QA1	Noninverting QA1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
50	64	<u>QA0</u>	Inverting QA0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
51	65	QA0	Noninverting QA0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
—	EP	VEE	The exposed pad of the QFN package is internally connected to VEE. Refer to Application Note HFAN-08.1.

MAX9322

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

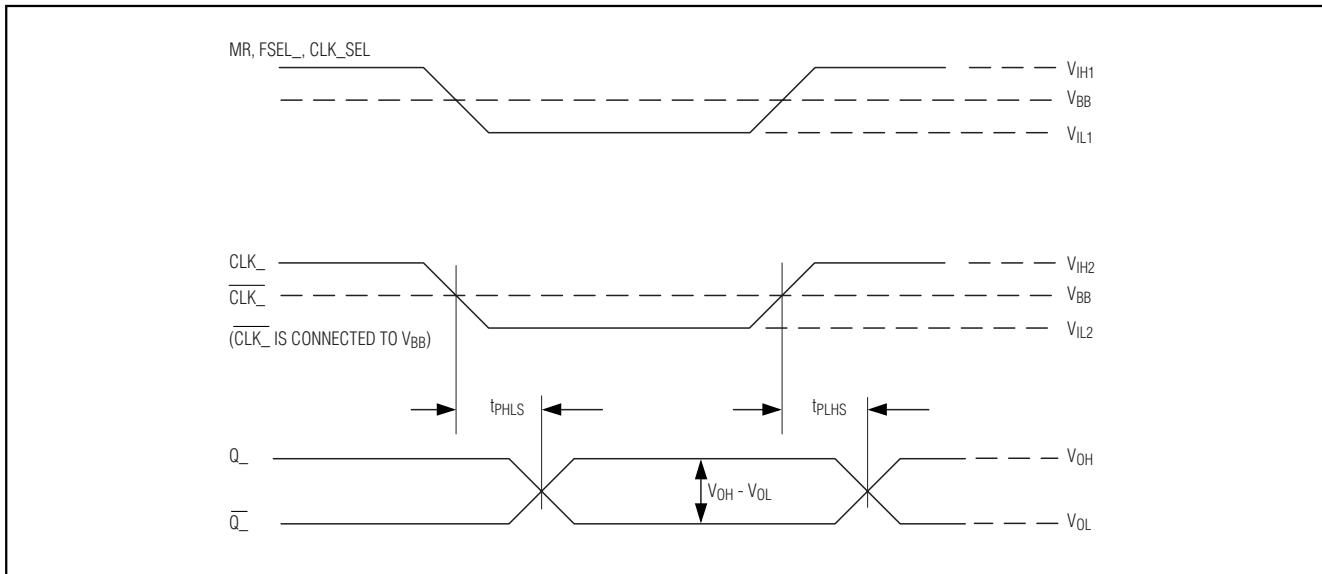


Figure 1. Timing Diagram for Single-Ended Inputs

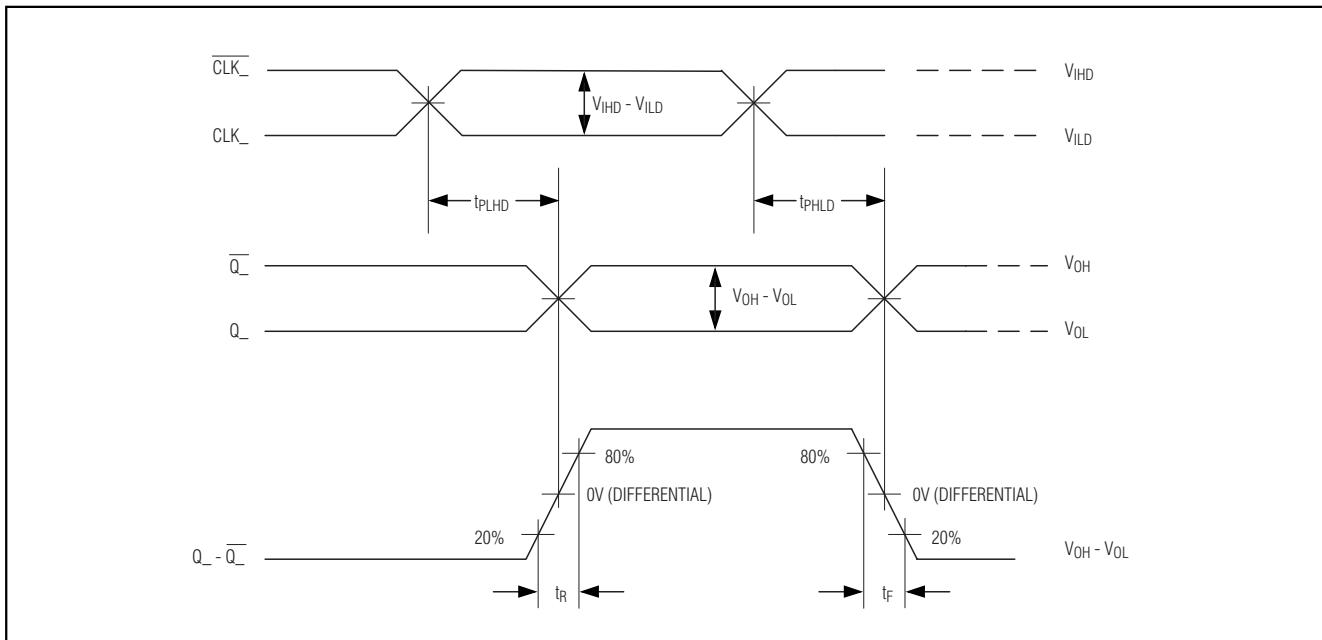


Figure 2. Timing Diagram for Differential Inputs

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

MAX9322

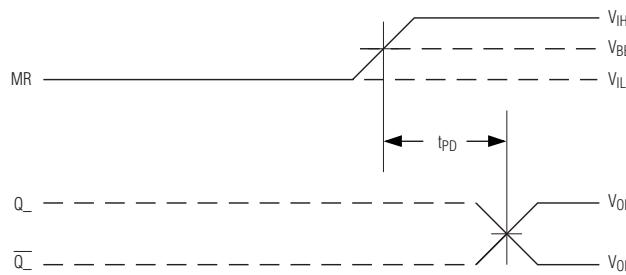


Figure 3. Timing Diagram for MR

Detailed Description

The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input frequency operation in excess of 1.0GHz. The 15 outputs are arranged into four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.

LVECL/LVPECL Operation

Output levels are referenced to V_{CC} and are LVPECL or LVECL, depending on the level of the V_{CC} supply. With V_{CC} connected to a positive supply and V_{EE} connected to ground, the outputs are LVPECL. The outputs are LVECL when V_{CC} is connected to ground and V_{EE} is connected to a negative supply. When interfacing to differential LVPECL signals, the V_{CC} range is 2.375V to 3.8V (V_{EE} = 0), allowing high-performance clock distribution in systems with nominal 2.5V and 3.3V supplies. When interfacing to differential LVECL, the V_{EE} range is -2.375V to -3.8V (V_{CC} = 0).

Control Inputs (FSEL_–, CLK_SEL, MR)

The MAX9322 provides four output banks: A, B, C, and D. Bank A consists of two differential output pairs. Bank B consists of three differential output pairs. Bank C consists of four differential output pairs. Bank D consists of six differential output pairs. FSEL_– selects the output clock frequency for a bank. A low on FSEL_– selects divide-by-1 frequency operation while a high on FSEL_– selects divide-by-2 operation. CLK_SEL selects CLK0 or CLK1 as the input signal. A low on CLK_SEL selects CLK0 while a high selects CLK1.

Master reset (MR) enables all outputs. CLK_SEL and FSEL_– are asynchronous. Changes to the control inputs (CLK_SEL, FSEL_–) or on power-up cause indeterminate output states requiring a MR assertion to resynchronize any divide-by-2 outputs (Figure 4). A low on MR activates

all outputs for normal operation. A high on MR resets all outputs to differential low condition. See Table 1.

Input Termination Resistors

Differential inputs CLK_– and CLK₊ are biased to guarantee a known state (differential low) if the inputs are left open. CLK_– is internally pulled to V_{EE} through a 75k Ω resistor. CLK₊ is internally pulled to V_{CC} and to V_{EE} through 75k Ω resistors.

Single-ended inputs FSEL_–, MR, and CLK_SEL are internally pulled to V_{EE} through a 75k Ω resistor.

Differential Clock Input

The MAX9322 accepts two differential or single-ended clock inputs, CLK0/CLK0 and CLK1/CLK1. CLK_SEL selects between CLK0/CLK0 and CLK1/CLK1. A low on CLK_SEL selects CLK0/CLK0. A high on CLK_SEL selects CLK1/CLK1. See Table 1.

Differential CLK_– inputs must be at least V_{BB} ±95mV to switch the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table. The maximum magnitude of the differential signal applied to the differential clock input is the lower of (V_{CC} - V_{EE}) and 3.0V. This limit also applies to the difference between any reference voltage input and a single-ended input. Specifications for the high and low voltages of a differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously.

Table 1. Function Table

PIN	FUNCTION	
	LOW OR OPEN	HIGH
FSEL _–	Divide-by-1	Divide-by-2
CLK_SEL	CLK0	CLK1
MR*	Active	Reset

*A master reset is required following power-up or changes to input functions to prevent indeterminant output states.

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

Single-Ended Inputs and VBB

The differential clock input can be configured to accept a single-ended input when operating at $V_{CC} - V_{EE} = 3.0V$ to $3.8V$. Connect V_{BB} to the inverting or noninverting input of the differential input as a reference for single-ended operation. The differential CLK_- input is converted to a noninverting, single-ended input by connecting V_{BB} to \overline{CLK}_- and connecting the single-ended input signal to CLK . Similarly, an inverting configuration is obtained by connecting V_{BB} to CLK_- and connecting the single-ended input to \overline{CLK}_- .

The single-ended inputs $FSEL_-$, CLK_SEL , and MR are internally referenced to V_{BB} . All single-ended inputs ($FSEL_-$, CLK_SEL , MR , and any CLK_- in single-ended mode) can be driven to V_{CC} and V_{EE} or with a single-ended LVPECL/LVECL signal. The single-ended input must be at least $V_{BB} \pm 95mV$ to switch the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table. When using the V_{BB} reference output, bypass V_{BB} with a $0.01\mu F$ ceramic capacitor to V_{CC} . Leave V_{BB} open when not used. The V_{BB} reference can source or sink $0.5mA$. Use V_{BB} as a reference for the same device only.

Applications Information

Supply Bypassing

Bypass each V_{CC} and V_{CCO} to V_{EE} with high-frequency surface-mount ceramic $0.01\mu F$ and $0.1\mu F$ capacitors in parallel as close to the device as possible, with the $0.01\mu F$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the V_{BB} reference output, bypass V_{BB} to V_{CC} with a $0.01\mu F$ ceramic capacitor.

Controlled-Impedance Traces

Input and output trace characteristics affect the performance of the MAX9322. Connect input and output signals with 50Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination

Terminate outputs with 50Ω to $V_{CC} - 2V$ or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if $QA0$ is used as a single-ended output, terminate both $QA0$ and $\overline{QA0}$.

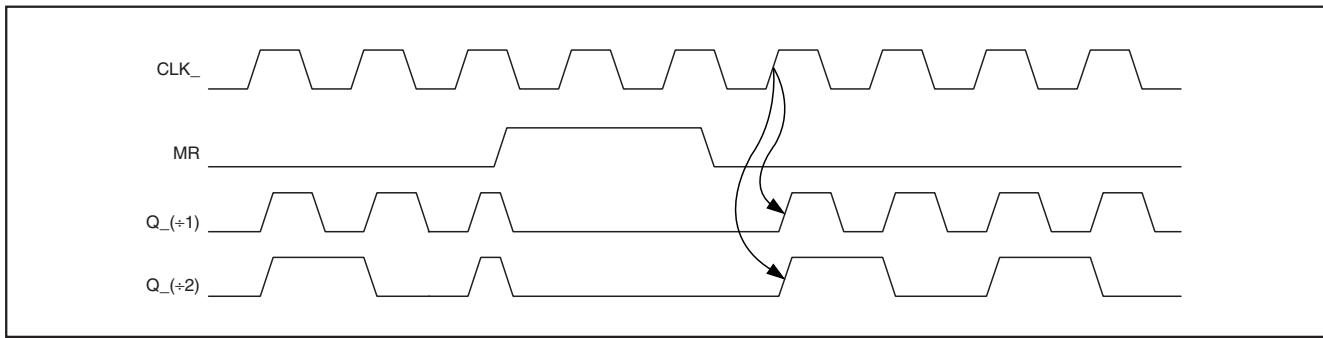
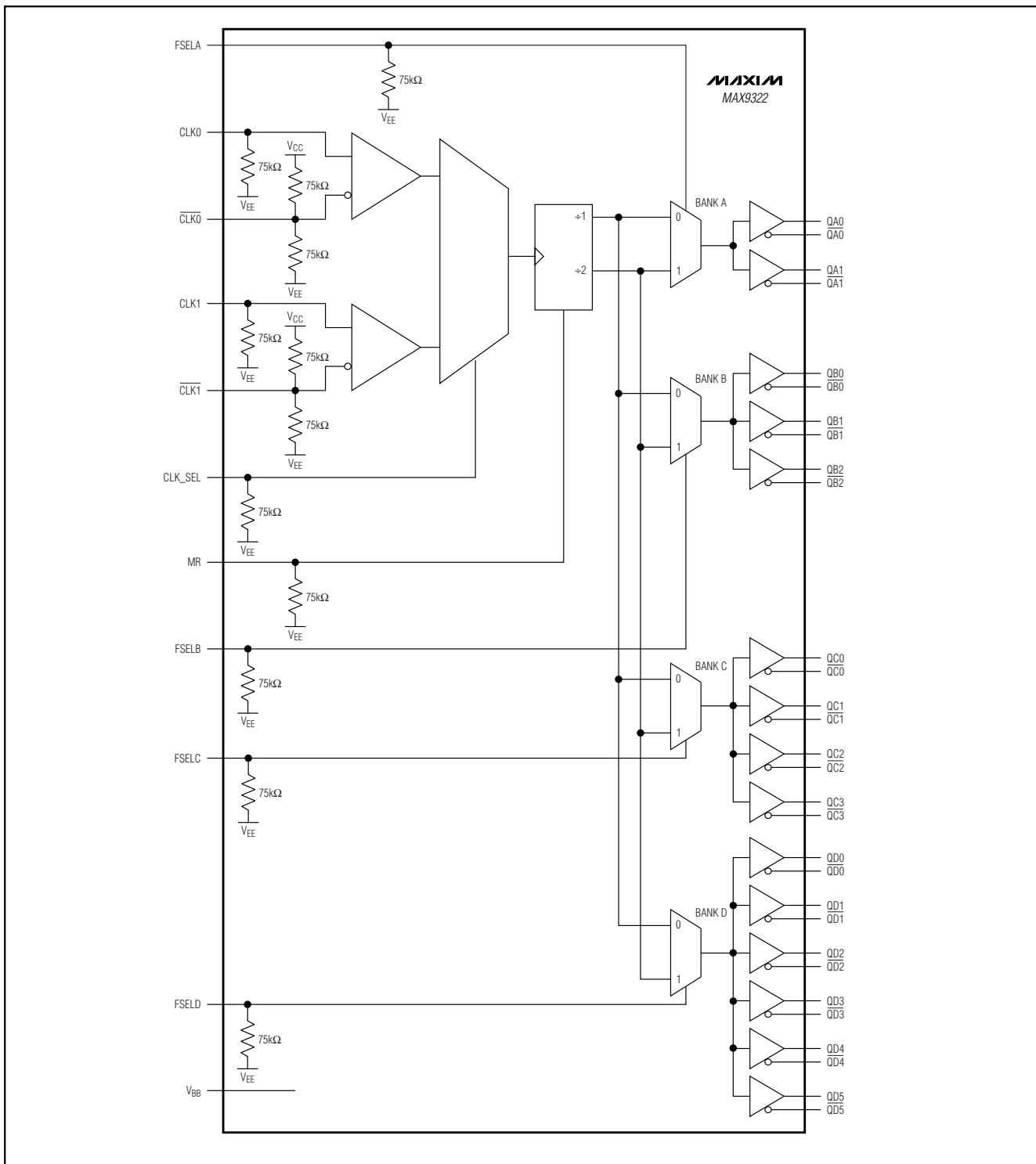
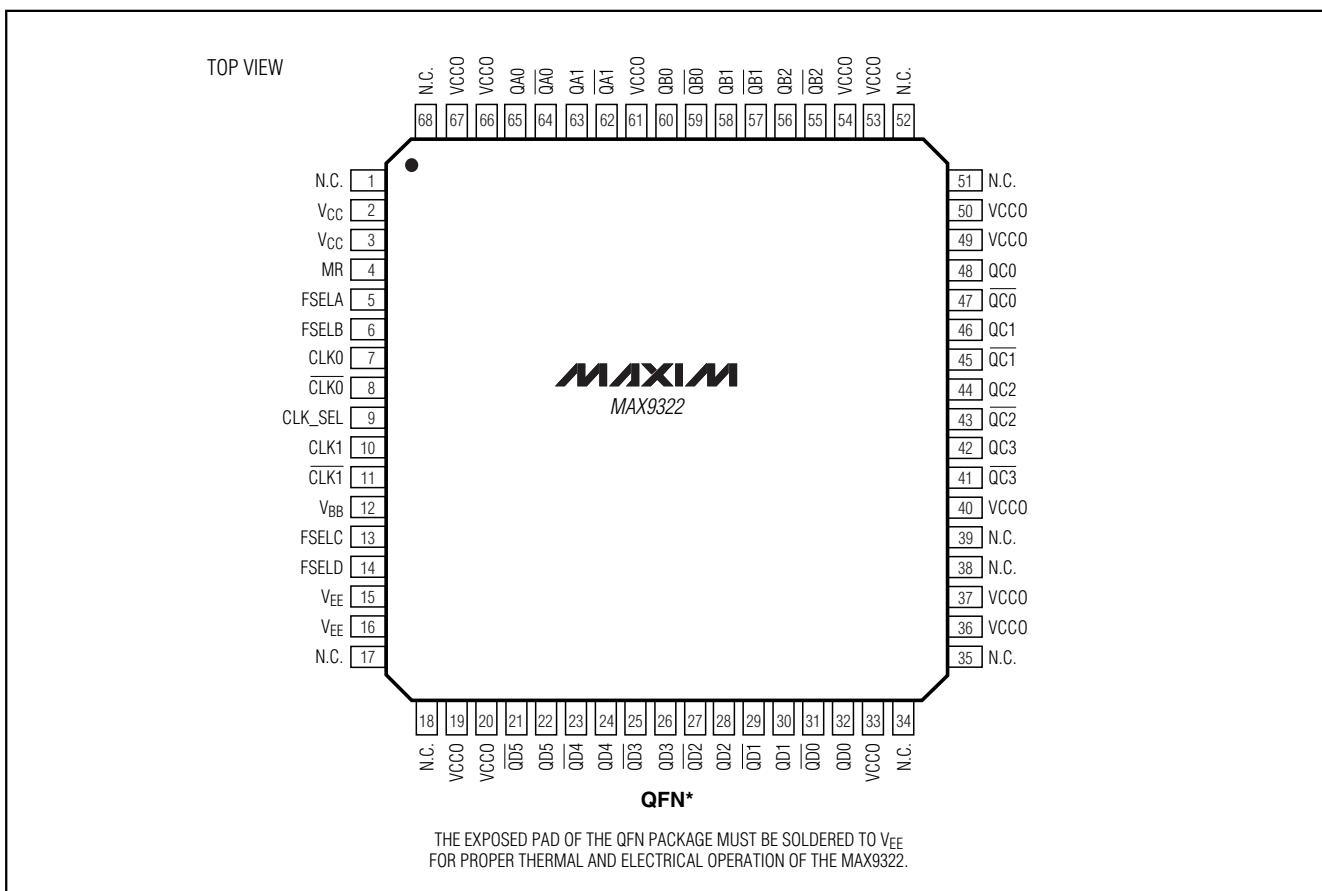



Figure 4. Timing Diagram for MR Resynchronization

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver


Functional Diagram

MAX9322

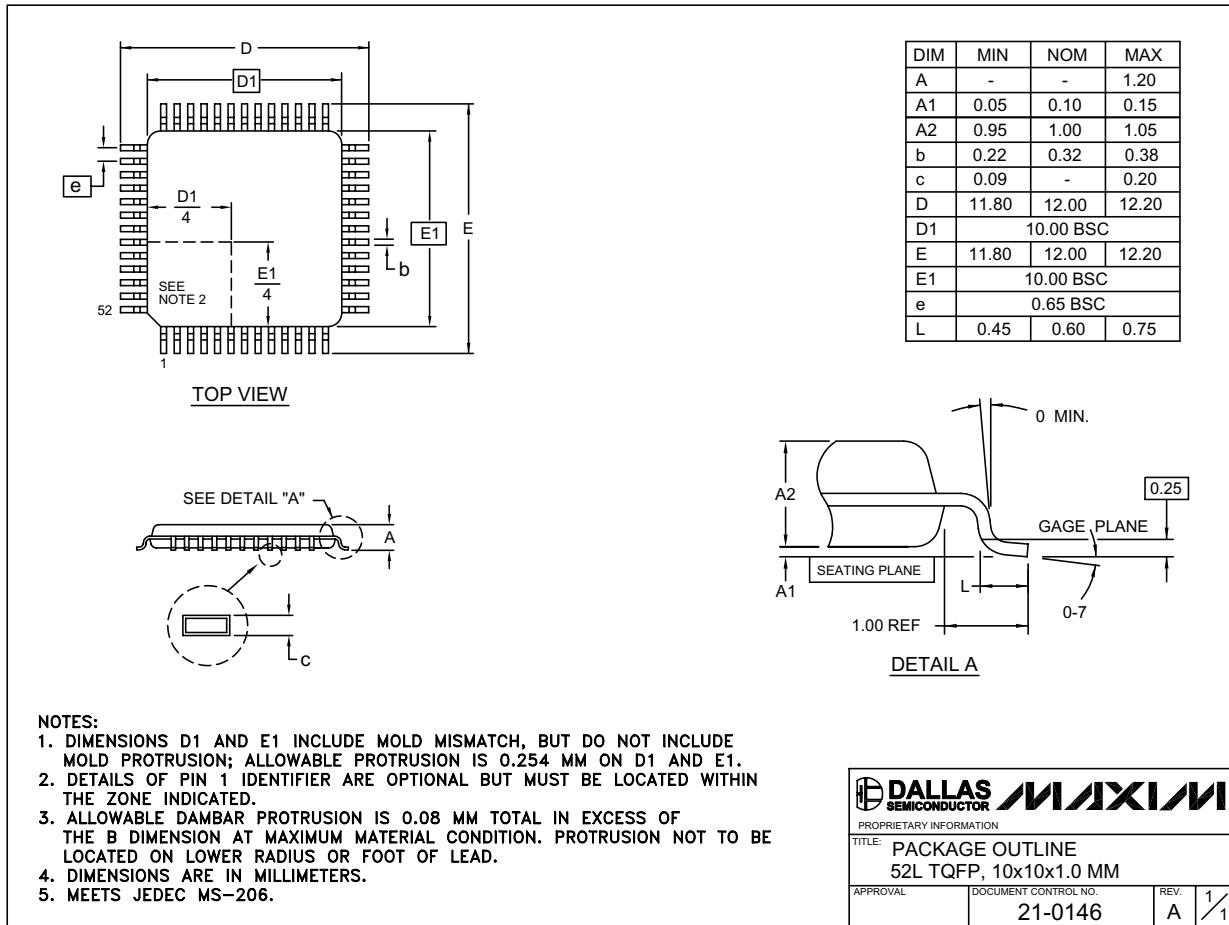
LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

Pin Configurations (continued)

Chip Information

TRANSISTOR COUNT: 2063

PROCESS: Bipolar


LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

MAX9322

52L_TQFP.EPS

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 13