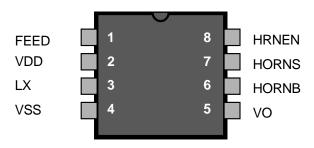
RE46C117

DC to DC Converter and Piezoelectric Horn DriverProduct Specification

General Description

The RE46C117 is intended for use in 3V or 4.5V battery or battery-backed applications. The circuit features a DC-to-DC up-converter and driver circuit suitable for driving a piezoelectric horn


Applications

Smoke detectors CO Detectors Personal Security Products Electronic Toys

Features

- Low Quiescent Current
- 10V Up Converter
- Low Horn Driver Ron
- Available in Standard Packaging or RoHS Compliant Pb Free Packaging

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNITS
Supply Voltage	V_{DD}	5	V
	V_{OUT}	12	V
Input Voltage Range Except FEED	V_{in}	3 to $V_{dd} + .3$	V
FEED Input Voltage Range	V_{infd}	-10 to +22	V
Input Current except FEED	l _{in}	10	mA
Operating Temperature	T_A	0 to 50	°C
Storage Temperature	T_{STG}	-55 to 125	°C
Continuous Operating Current	Ιo	40	mA
(HornS, HornB, VO)			

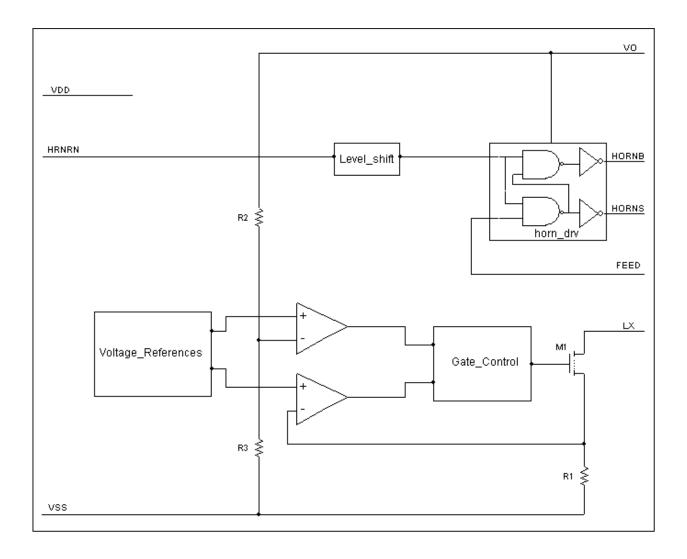
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and operation at these conditions for extended periods may affect device reliability.

This product utilizes CMOS technology with static protection; however proper ESD prevention procedures should be used when handling this product. Damage can occur when exposed to extremely high static electrical charge

Electrical Characteristics

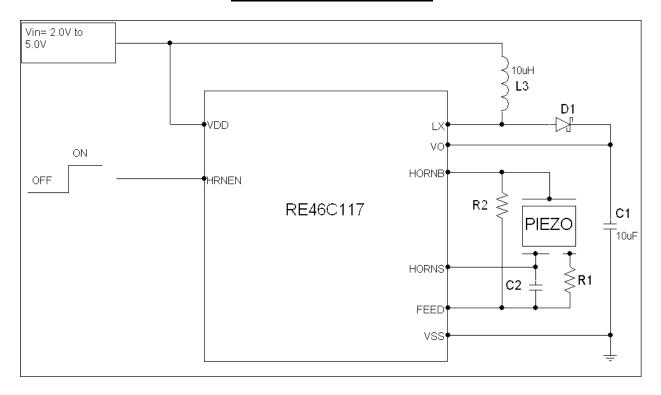
Limits apply at Vdd=3V, Vss=0V, Cvo=10uF, T_A =0°C to 50°C, unless otherwise noted. Typical values are at T_A =27°C.

Parameter	Symbol	Test Conditions	Min	Limits Typ	Max	Units
Supply Voltage	Vdd	Operating	2.0		5.0	V
Standby Supply Current	Iddstby	HRNEN low; No loads; DC-DC Running		20		uA
Quiescent Supply Current	Iddq	HRNEN low; No loads; VO=5V; VIx=0.5V		7		uA
Quiescent Ivo	Ivoq	Same conditions as above for Iddq		7		uA
Input Leakage lin	HRNEN Input, Vin=VDD or VSS	-100		100	nA	
	lihf	FEED=+22V; VO=10V		20	50	uA
	lilf	FEED=-10V; VO=10V	-50	-15		uA
Input Voltage Low	Vil	HRNEN Input			1	V
Input Voltage High	Vih	HRNEN Input	2.3			V
Output Low Voltage	Vol1	HORNB or HORNS; lout=16mA; Vdd=3V		.3	.5	V
Output High Voltage	Voh1	HORNB or HORNS; VO=10V; lout=-16mA; Vdd=HRNEN=3V	9.5	9.7		V
VO Output Voltage Vvo1 Vvo2	Vdd=3V; HRNEN=3V: lout=10mA		10		V	
	Vvo2	Vdd=3V; HRNEN=0V; lout=10mA		4		V
V() Efficiency	Voeff1	Iload= 10mA, Vdd=3V; HRNEN=0V		85		%
	Voeff2	Iload=100uA; Vdd=3V; HRNEN=0V		75		%
Brownout Threshold	Vobvt	Falling edge of VO		3.6		V


Notes:

^{1/} The brown-out threshold voltage is the VO voltage at which the horn will be disabled.

^{2/} The limits shown are 100% tested at 25C only. Test limits are guard-banded based on temperature characterization to guarantee compliance at temperature extremes.



Functional Block Diagram

Typical Application Circuit

Notes:

1/ Schottky diode D1 must have maximum peak current rating of at least 1.5A and for best results should have forward voltage spec of less than 0.5V at 1 Amp.

2/ Inductor L3 must have maximum peak current rating of at least 1.5A and for best results should have DC resistance of less than 0.5 ohm.

RE46C117

DC to DC Converter and Piezoelectric Horn DriverProduct Specification

R&E INTERNATIONAL, **Inc.** reserves the right to make changes without further notice to any products herein to improve reliability, function or design.

R&E INTERNATIONAL, **Inc.** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

R&E INTERNATIONAL, Inc. products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of **R&E** INTERNATIONAL, Inc. Life support devices or systems are devices or systems which are intended for surgical implant into the body to support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.