

Features

- * Designed for ease in circuit board assembly.
- * Black case enhance contrast ratio.
- * Solid state light source.
- * Reliable and rugged.

Package Dimensions

Part No.	Lens	Source
LTL-		Color
337G	Green Diffused	Green

NOTES:

1. All dimensions are in millimeters (inches).
2. Tolerance is ± 0.25 mm (.010") unless otherwise noted.
3. The holder color is black.
4. The holder raw material is PP.
5. The LED lamp is LTL-337G.

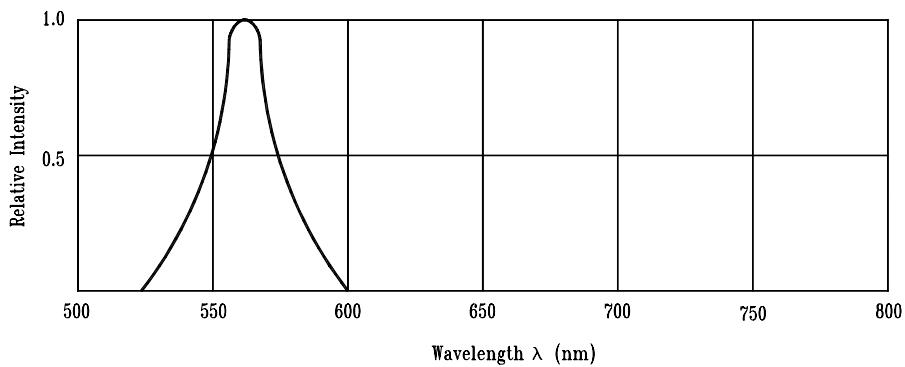
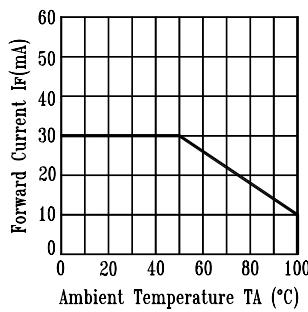
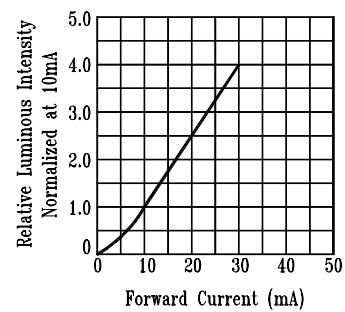
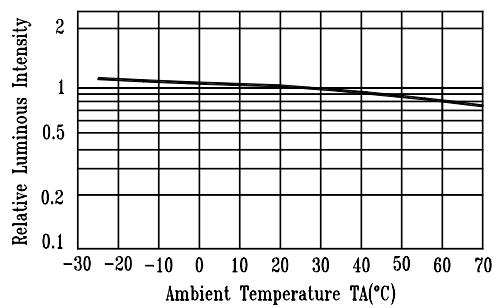
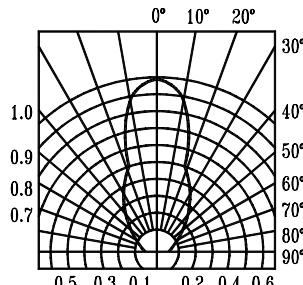
LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Absolute Maximum Ratings at Ta=25°C

Parameter	Maximum Rating	Unit
Power Dissipation	100	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	120	mA
Continuous Forward Current	30	mA
Derating Linear From 50°C	0.4	mA/°C
Reverse Voltage	5	V
Operating Temperature Range	-55°C to + 100°C	
Storage Temperature Range	-55°C to + 100°C	
Lead Soldering Temperature [1.6mm(.063") From Body]	260°C for 5 Seconds	

Electrical Optical Characteristics at $T_a=25^\circ C$






Parameter	Symbol	Part No. LTL-	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	I_v	534-11	5.6	19		mcd	$I_F = 10\text{mA}$ Note 1,4
Viewing Angle	$2\theta_{1/2}$	534-11		34		deg	Note 2 (Fig.6)
Peak Emission Wavelength	λ_p	534-11		565		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λ_d	534-11		569		nm	Note 3
Spectral Line Half-Width	$\Delta\lambda$	534-11		30		nm	
Forward Voltage	V_F	534-11		2.1	2.6	V	$I_F = 20\text{mA}$
Reverse Current	I_R	534-11		100	μA		$V_R = 5\text{V}$
Capacitance	C	534-11		35		PF	$V_F = 0, f = 1\text{MHz}$

NOTE:

1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength, λ_d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
4. I_v needs $\pm 15\%$ additionary for guaranteed limits.

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

Fig.1 Relative Intensity vs. Wavelength**Fig.2** Forward Current vs. Forward Voltage**Fig.3** Forward Current Derating Curve**Fig.4** Relative Luminous Intensity vs. Forward Current**Fig.5** Luminous Intensity vs. Ambient Temperature**Fig.6** Spatial Distribution