

Application Specific Discretes A.S.D.TM

IGNITION CONTROL CIRCUIT

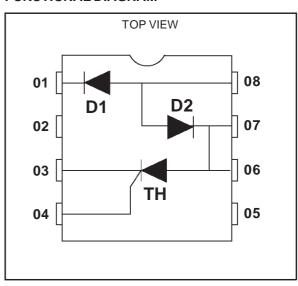
FEATURES AND BENEFITS

- MONOLITHIC CIRCUIT FOR CAPACITANCE DISCHARGE SYSTEM CONTROL.
- DEDICATED THYRISTOR STRUCTURE FOR IGNITION OPERATION.
- APPLICATION SPECIFIC DISCRETES (ASDTM).
- SURFACE AREA REDUCTION.
- DIL8 PACKAGE.

DESCRIPTION

The ICC03 is a high-performance planar-diffused technology adapted to rugged environment conditions.

It has been developed especially for small engines using a capacitor discharge technique for ignition operation.


The ICC03 assumes electronics control of the ignition system.

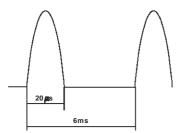
Pin 1 : Motor stop
 Pin 3 : Ground
 Pin 4 : Sensor

Pin 6/7 : Ignition capacitor
Pin 8 : Charging, winding
Pin 2/5 : Not connected

See basic application and functionality page 4.

FUNCTIONAL DIAGRAM

September 1998 Ed: 1A


ABSOLUTE MAXIMUM RATINGS: THYRISTOR TH

Symbol	Parameter	Value	Unit	
I _{TRM}	Repetitive peak on-state current (Note1)	TI=110 °C	100	А
I _{TSM}	I _{TSM} Non repetitive surge peak on-state current		150	А
	Tj initial = 25 °C	tp = 10 ms	5	А
V _{DRM}	Repetitive peak off-state voltage	T _j = 125°C	400	V

ABSOLUTE MAXIMUM RATINGS: DIODES

Symbol	Parameter		Va	lue	Unit
Symbol	raiametei		D1	D2	Oilit
IFRM	Repetitive peak forward current (Note 1)	Tl= 110 °C	1	100	А
I _{FSM}	Non repetitive surge forward current	tp = 20 μs	15	150	А
	Tj initial = 25 °C	tp = 10 ms	2	5	А
V _{RRM}	Repetitive peak off-state voltage	Tj= 125 °C	25	400	V

Note 1: Test current waveform

ABSOLUTE MAXIMUM RATINGS: FOR ALL DEVICE (ICC03)

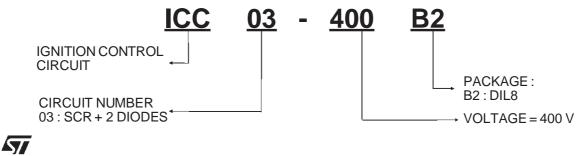
Symbol	Parameter	Value	Unit
T _{stg} T _j	Storage temperature range Operating junction temperature range	- 40 to + 150 - 40 to + 150	°C
TI	Maximum lead temperature for soldering during 10s	260	°C

THERMAL RESISTANCES

Symbol	Symbol Parameter		Unit
Rth(j-a)	Thermal resistance junction to ambient	100	°C/W
Rth(j-l)	Thermal resistance junction to lead	15	°C/W

ELECTRICAL CHARACTERISTICS: THYRISTOR TH

Symbol	I Test Conditions			Value	Unit
Ідт	V _D =12V (DC) R _L =33Ω	Tj= 25°C	MAX	1	mA
V _{GT}	$V_D=12V$ (DC) $R_L=33\Omega$	Tj= 25°C	MAX	1.5	V
V _{TM}	I _{TM} = 4A tp ≤ 1ms	Tj= 25°C	MAX	1.9	V
IDRM	V _{DRM} rated	Tj= 25°C	MAX	50	μΑ
		Tj= 125°C	MAX	1	mA


ELECTRICAL CHARACTERISTICS: DIODE D1

Symbol	Symbol Test Conditions		Value	Unit	
I _R	V _R = V _{RRM}	Tj= 25°C	MAX	50	μА
		Tj= 125°C	MAX	1	mA
VF	I _F = 100 mA tp ≤ 1ms	Tj= 25°C	MAX	1.2	V

ELECTRICAL CHARACTERISTICS: DIODE D2

Symbol	bol Test Conditions			Value	Unit
IR	V _R = V _{RRM}	Tj= 25°C	MAX	50	μΑ
		Tj= 125°C	MAX	1	mA
V _F	I _F = 4 A tp≤1ms	Tj= 25°C	MAX	1.9	V

ORDERING INFORMATION

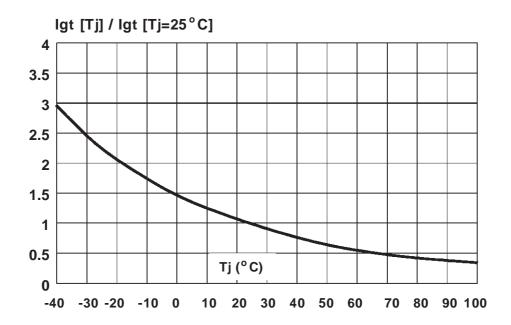
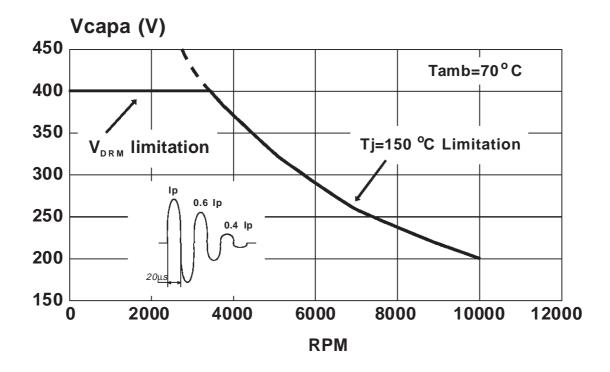
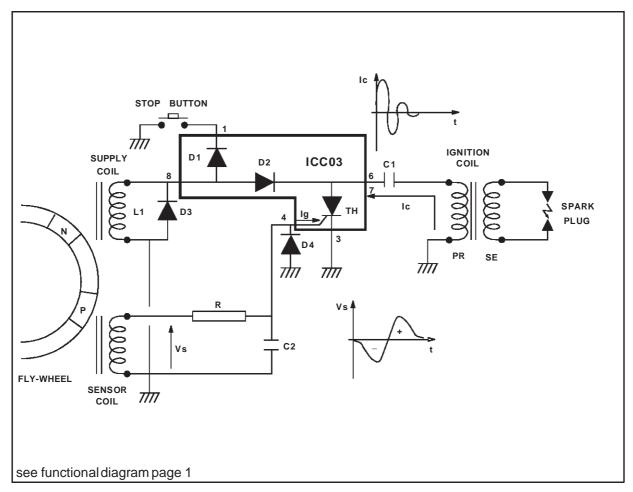




Fig.2: Safety limitation curve of the capacitor voltage variation versus RPM @ tp=20µs.

BASIC APPLICATION

The applications using the capacitive ignition system (CDI) operate in 3 phases.

PHASE 1

Storage of the energy in the capacitor C1

PHASE 2

Discharge of the capacitor C1 and spark generation to the ignition coil.

PHASE 3

Engine stop.

1) ENERGY STORAGE IN C1

The coil L1 generates an alternative voltage. Its positive part charges the capacitor C1 through the diode D2.

The negative waves are clamped by the diode D3.

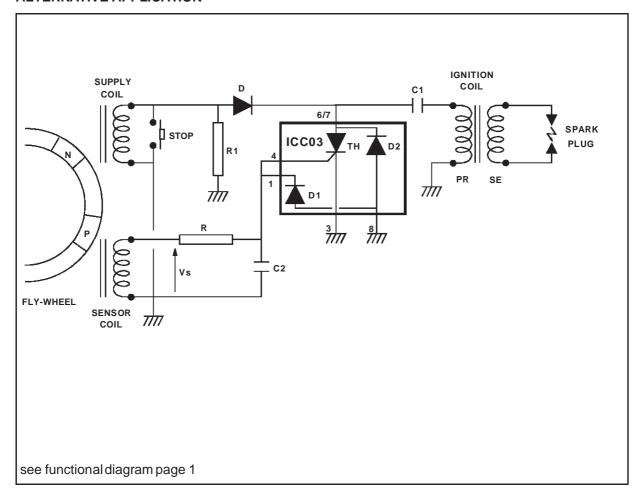
2) SPARK GENERATION

For each fly-wheel revolution the sensor coil produces a bidirectional pulse Vs and triggers the ignition coil.

The negative sinewave generated is clamped by D4 while the positive sinewave initiates a current I_G through the thyristor gate (Th)

The firing of the SCR causes an alternating discharge current Ic through the capacitor C1.

The positive parts of this current flow in the loop C1, Th and the primary of the ignition coil PR.


The negative parts flow through C1, PR and both diodes D3 and D2.

3) ENGINE STOP

The engine stop is obtained by short circuiting the supply coil L1 (stop button). The diode D1 avoids the accidental connection of battery voltage.

ALTERNATIVE APPLICATION

With this type of alternative application, the operation phases will be the same but the topology of component integration is different. This topology is adapted to applications using the diode D2 in anti-parallel with the thyristor.

In this case the rectifier diode D must withstand a reversed voltage up to 1500V following the value of R1.

With this configuration the current Ic oscillates, and its positive part flows through thyristor TH, while diode D2 assumes the conduction of the negative parts.

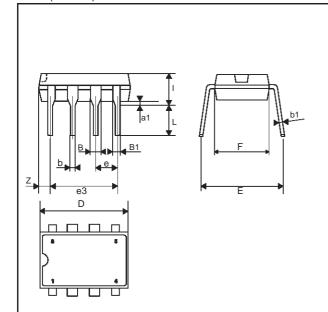
R RESISTOR CALCULATION

The purpose of the resistor R is to limit the current I_{G} through the thyristor gate. Its maximum value can be calculated as follow:

R max = $(Vs min - V_{GT} max)/2 I_{GT} max$

POWER LOSSES (For 20µs - see note 1)

The following equations can be used to evaluate power losses:


For TH V_{TO} = 2.65V Rt = 0.110 Ω For D2 V_{FO} = 1.73V Rd = 0.075 Ω

PROTECTION AGAINST PARASITIC SPIKES

The capacitor C2 in relation with R acts as a filter and avoids the unexpected firing of the thyristor due to parasitic spikes. Good results have been obtained with 10nF capacitance.

PACKAGE MECHANICAL DATA

DIL8 (Plastic)

	DIMENSIONS					
REF.	Millimetres		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.
a1	0.70			0.027		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.50	0.015		0.020
D			9.80			0.385
Е		8.8			0.346	
е		2.54			0.100	
еЗ		7.62			0.300	
F			7.1			0.280
-			4.8			0.189
L		3.3			0.130	
Z	0.44		1.60	0.017		0.063

Marking: ICC3-400 Weight: 0.59 g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.