

- Supports a 9-Pin GeoPort™ Host Interface Standard for the Intelligent Network Port
- Designed to Operate up to 4-Mbit/s Full Duplex
- ±5 V Supply Operation
- Has Driver Short-Circuit Protection
- Includes Failsafe Mechanism for Open Inputs
- Is Backward Compatible with AppleTalk™ and LocalTalk™
- Combines Multiple Components into a Single Chip Solution
- Complements the SN75LBC772 9-Pin GeoPort Peripheral (DCE) Interface Device
- Uses LinBiCMOS™ Process Technology

DW PACKAGE
(TOP VIEW)

DA1	1	20	GND
V _{EE}	2	19	V _{CC}
NC	3	18	DY1
NC	4	17	RY3
REN	5	16	RB3
DZ2	6	15	RA2
DY2	7	14	RY2
GND	8	13	RB1
DEN	9	12	RA1
DA2	10	11	RY1

logic diagram (positive logic)

description

The SN75LBC773 is a low-power LinBiCMOS device that incorporates the drivers and receivers for a 9-pin GeoPort host interface. GeoPort combines hybrid EIA/TIA-422-B and EIA/TIA-423-B drivers and receivers to transmit data up to four-Mbit/s full duplex. GeoPort is a serial communications standard that is intended to replace the RS-232, AppleTalk, and printer ports all in one connector in addition to providing real-time data transfer capability. The SN75LBC773 provides point-to-point connections between GeoPort-compatible devices with data transmission rates up to 4-Mbit/s full duplex featuring a hot-plug capability. Applications include connection to telephone, ISDN, digital sound and imaging, fax-data modems, and other traditional serial and parallel connections. The GeoPort is backwardly compatible to both LocalTalk and AppleTalk.

While the SN75LBC773 is powered off (V_{CC} and $V_{EE} = 0$), the outputs are in a high-impedance state. A logic high on the driver enable (DEN) or logic low on the receive enable (REN) terminals places the outputs of the differential driver and receivers, respectively, into a high-impedance state. All drivers and receivers have fail-safe mechanisms that ensure a high output state when the inputs are left open.

The SN75LBC773 is characterized for operation over the 0 °C to 70 °C temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

GeoPort, LocalTalk, and AppleTalk are trademarks of Apple Computer, Incorporated.
LinBiCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

**TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0108916 439 ■

SN75LBC773 GEOPORT™ TRANSCEIVER

SLLS247B – FEBRUARY 1997 – APRIL 1997

FUNCTION TABLES†

SINGLE-ENDED DRIVER	
INPUT (DA1)	OUTPUT (DY1)
H	L
L	H
OPEN	L

DIFFERENTIAL DRIVER			
INPUT (DA2)	ENABLE (DEN)	OUTPUT (DY2)	OUTPUT (DZ2)
H	L	H	L
L	L	L	H
OPEN	L	H	L
X	H	Z	Z
X	OPEN	Z	Z

SINGLED-ENDED RECEIVER		
INPUT (RA2, RA3)	ENABLE (REN)	OUTPUT (RY2) (RY3)
H	H	H L
L	H	L H
OPEN	H	H H
SHORT‡	H	? ?
X	L	Z Z
X	OPEN	Z Z

DIFFERENTIAL RECEIVER		
INPUT (RA1) (RB1)	ENABLE (REN)	OUTPUT (RY1)
H L	H	H
L H	H	L
OPEN	H	H
SHORT‡	H	?
X X	L	Z
X X	OPEN	Z

† H = high level, L = low level, X = irrelevant, ? = indeterminate, Z = high impedance (off)
‡ $-0.2 \text{ V} < V_{ID} < 0.2 \text{ V}$

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§

Positive supply voltage range, V_{CC} (see Note 1)	-0.5 to 7 V
Negative supply voltage range, V_{EE} (see Note 1)	-7 to 0.5 V
Receiver input voltage range (RA, RB)	-15 V to 15 V
Receiver differential input voltage range, V_{ID}	-12 V to 12 V
Receiver output voltage range (RY)	-0.5 V to 5.5 V
Driver output voltage range (Power Off) (DY1, DY2, DZ2)	-15 V to 15 V
Driver output voltage range (Power On) (DY1, DY2, DZ2)	-11 V to 11 V
Driver input voltage range (DA, REN, DEN)	-0.5 V to $V_C + 0.4 \text{ V}$
Electrostatic Discharge (All pins) Human Body Model (see Note 2)	6 kV
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T_A	0°C to 70°C
Storage temperature range, T_{stg}	-65°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C

§ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted.
2. This rating is per MIL-PRF-38535, Method 3015.7.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0108917 375 ■

DISSIPATION RATING TABLE

PACKAGE	$T_A \leq 25^\circ\text{C}$ POWER RATING	DERATING FACTOR ABOVE $T_A = 25^\circ\text{C}$	$T_A = 70^\circ\text{C}$ POWER RATING
DW	1125 mW	9.0 mW/°C	720 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Positive supply voltage, V_{CC}	4.75	5	5.25	V
Negative supply voltage, V_{EE}	-5.25	-5	-4.75	V
High-level input voltage, V_{IH} (DA, REN, \overline{DEN})	2			V
Low-level input voltage, V_{IL} (DA, REN, \overline{DEN})			0.8	V
Receiver common-mode input voltage, V_{IC}	-7		7	V
Receiver differential input voltage, V_{ID}	-12		12	V
Operating free-air temperature, T_A	0		70	°C

driver electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH} High-level output voltage	$R_L = 12 \text{ k}\Omega$	3.6	4.5		V
	$R_L = 120 \Omega$	2	3.6		V
V_{OL} Low-level output voltage	$R_L = 12 \text{ k}\Omega$		-4.5	-3.6	V
	$R_L = 120 \Omega$		-3.6	-2	V
$ V_{OD} $ $ V_{DY} - V_{DZ} $	$R_L = 120 \Omega$, See Figure 2	4			V
$ \Delta V_{OD} $ Change in differential voltage magnitude				250	mV
V_{OC} Common-mode output voltage	See Figure 3	-2	2		V
$ \Delta V_{OC(SS)} $ Magnitude of change, common-mode steady-state output voltage				200	mV
$ \Delta V_{OC(PP)} $ Magnitude of change, common-mode peak-to-peak output voltage				700	mV
I_{CC} Positive supply current	$REN = 5 \text{ V}$, $\overline{DEN} = 0 \text{ V}$, No Load	4	10		mA
I_{EE} Negative supply current		2	5		mA
I_{CC} Positive supply current	$REN = 0 \text{ V}$, $\overline{DEN} = 5 \text{ V}$, No Load			100	μA
I_{EE} Negative supply current				100	μA
I_{OZ} High-impedance output current	$V_{CC} = 0 \text{ or } 5 \text{ V}$, $-10 \leq V_O \leq 10 \text{ V}$			±100	μA
I_{OS} Short-circuit output current	$V_{CC} = 5.25 \text{ V}$, $-5 \leq V_O \leq 5 \text{ V}$, See Note 3		±170	±450	mA

NOTE 3: Not more than one output should be shorted at one time.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0108918 201 ■

**SN75LBC773
GEOPORT™ TRANSCEIVER**

SLLS247B – FEBRUARY 1997 – APRIL 1997

driver switching characteristics over operating free-air temperature range

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay time, high-to-low level output	Single ended, See Figure 4	42	75	ns	
t _{PLH}	Propagation delay time, low-to-high level output		41	75	ns	
t _{PZL}	Driver output enable time to low-level output		25	100	ns	
t _{PZH}	Driver output enable time to high-level output		25	100	ns	
t _{PLZ}	Driver output disable time from low-level output		28	100	ns	
t _{PHZ}	Driver output disable time from high-level output		37	100	ns	
t _r	Rise time		10	25	75	ns
t _f	Fall time		10	23	75	ns
t _{PHL}	Propagation delay time, high-to-low level output		40	75	ns	
t _{PLH}	Propagation delay time, low-to-high level output		42	75	ns	
t _{PZL}	Driver output enable time to low-level output	Differential, See Figure 5	29	150	ns	
t _{PZH}	Driver output enable time to high-level output		35	150	ns	
t _{PLZ}	Driver output disable time from low-level output		34	100	ns	
t _{PHZ}	Driver output disable time from high-level output		34	100	ns	
t _r	Rise time		10	27	75	ns
t _f	Fall time		10	26	75	ns
t _{SK(p)}	Pulse skew, t _{PLH} – t _{PHL}				22	ns

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0108919 148 ■

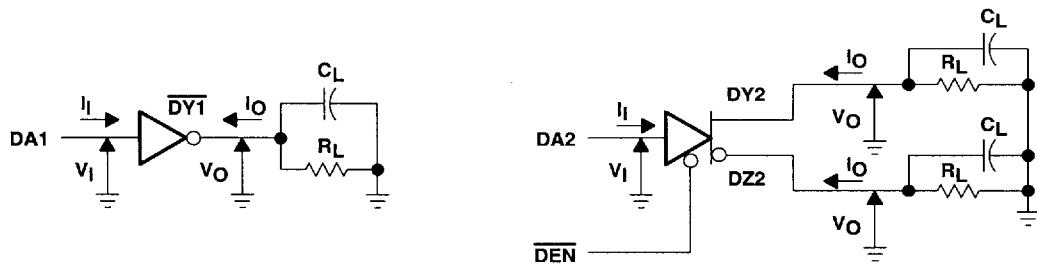
receiver electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IT+} Positive-going input threshold voltage	See Figure 6			200	mV	
V _{IT-} Negative-going input threshold voltage				-200	mV	
V _{hys} Differential input voltage hysteresis (V _{IT+} – V _{IT-})				50	mV	
V _{OH} High-level output voltage (see Note 4)	V _{IC} = 0, See Figure 6	I _{OH} = -2 mA,	2	4.5	V	
V _{OL} Low-level output voltage	V _{IC} = 0, See Figure 6	I _{OL} = 2 mA,		0.4	0.8	V
I _{OS} Short-circuit output current	V _O = 0			-45	-85	mA
	V _O = 5.25 V			45	85	mA
R _{IN} Input resistance	V _{CC} = 0 or 5.25 V, –12 V ≤ V _I ≤ 12 V		6	30	kΩ	

NOTE 4: If the inputs are left unconnected, receivers one and two interpret this as a high-level input and receiver three interprets this as a low-level input so that all outputs are at the high level.

receiver switching characteristics over recommended conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL} Propagation delay time, high-to-low level output	R _L = 2 kΩ, C _L = 15 pF, See Figure 6		30	75	ns
t _{PLH} Propagation delay time, low-to-high level output			30	75	ns
t _r Rise time			15	30	ns
t _f Fall time			15	30	ns
t _{SK(P)} Pulse skew t _{PLH} –t _{PHL}				20	ns
t _{PZL} Receiver output enable time to low-level output	Differential		35	100	ns
t _{PZH} Receiver output enable time to high-level output			35	100	ns
t _{PLZ} Receiver output disable time from low-level output			20	100	ns
t _{PHZ} Receiver output disable time from high-level output			20	100	ns
t _{PZL} Receiver output enable time to low-level output	C _L = 50 pF, See Figure 7		12	25	μs
t _{PZH} Receiver output enable time to high-level output			12	25	μs
t _{PLZ} Receiver output disable time from low-level output			25	100	ns
t _{PHZ} Receiver output disable time from high-level output			125	400	ns


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0108920 96T ■

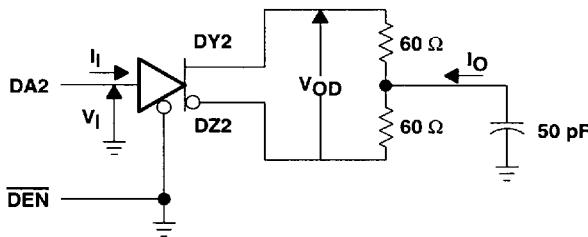
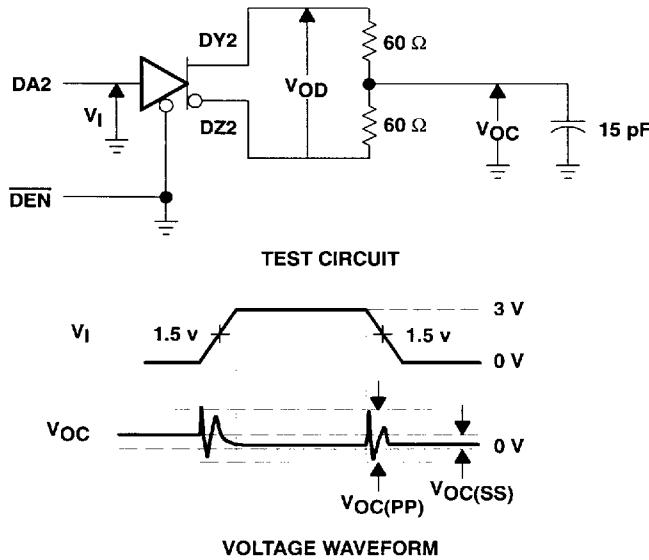
SN75LBC773 GEOPORT™ TRANSCEIVER

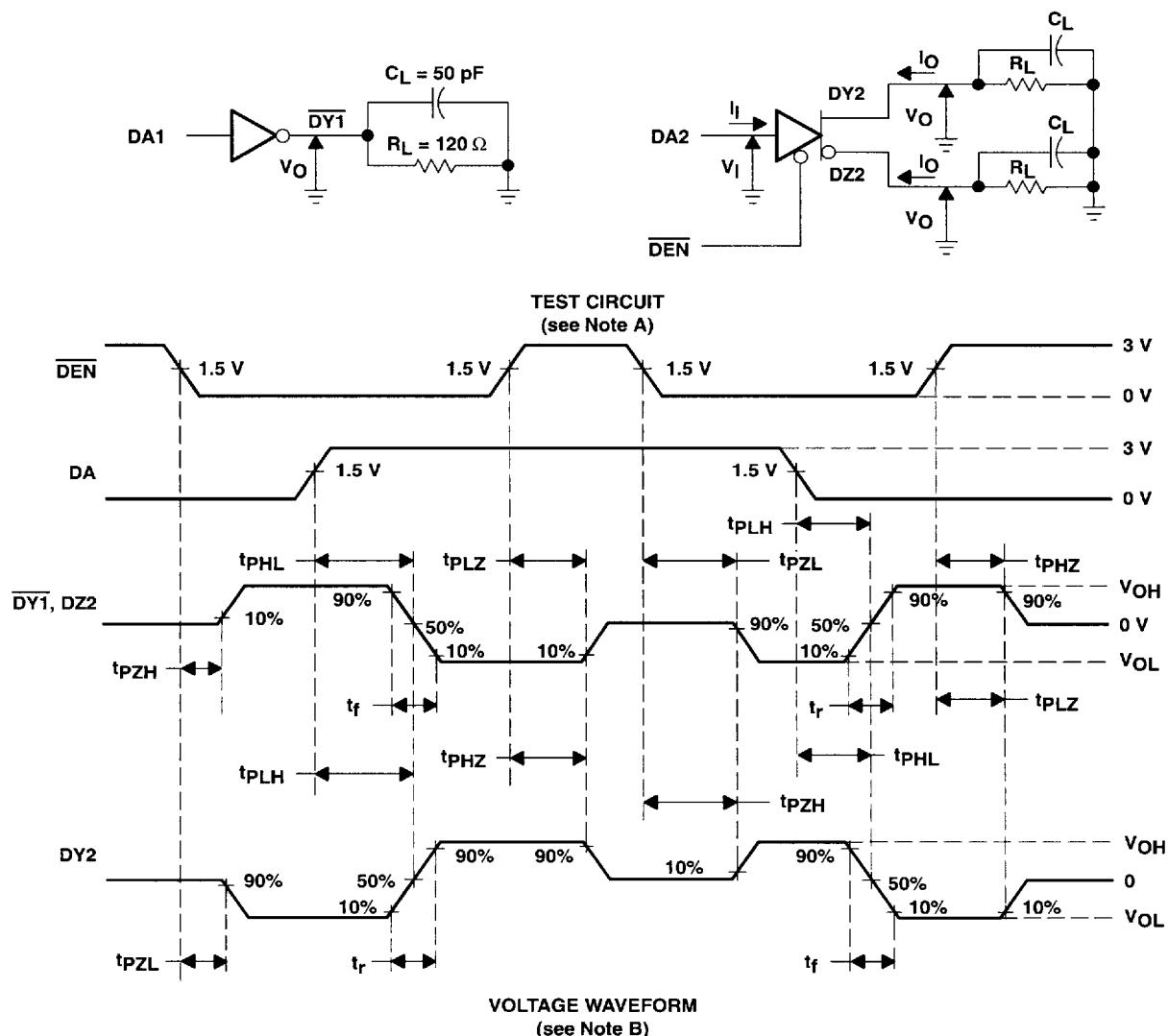
SLLS247B – FEBRUARY 1997 – APRIL 1997

PARAMETER MEASUREMENT INFORMATION

NOTE A: $C_L = 50 \text{ pF}$

Figure 1. Single-Ended Driver DC Parameter Test Circuits


Figure 2. Differential Driver DC Parameter Test Circuit

NOTE A: Measured 3dB Bandwidth = 300 MHz

Figure 3. Differential Driver Common-Mode Output Voltage Test Circuit

PARAMETER MEASUREMENT INFORMATION

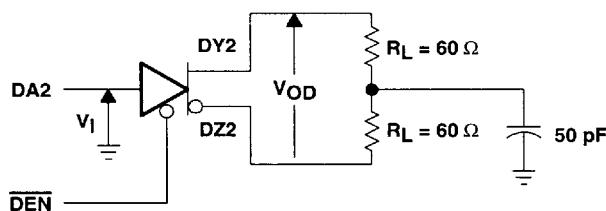

NOTES: A. $C_L = 50 \text{ pF}$, $R_L = 120 \Omega$
 B. The input waveform $t_r, t_f \leq 10 \text{ ns}$.

Figure 4. Single-Ended Driver Propagation and Transition Times Test Circuits and Waveform

SN75LBC773 GEOPORT™ TRANSCEIVER

SLLS247B – FEBRUARY 1997 – APRIL 1997

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

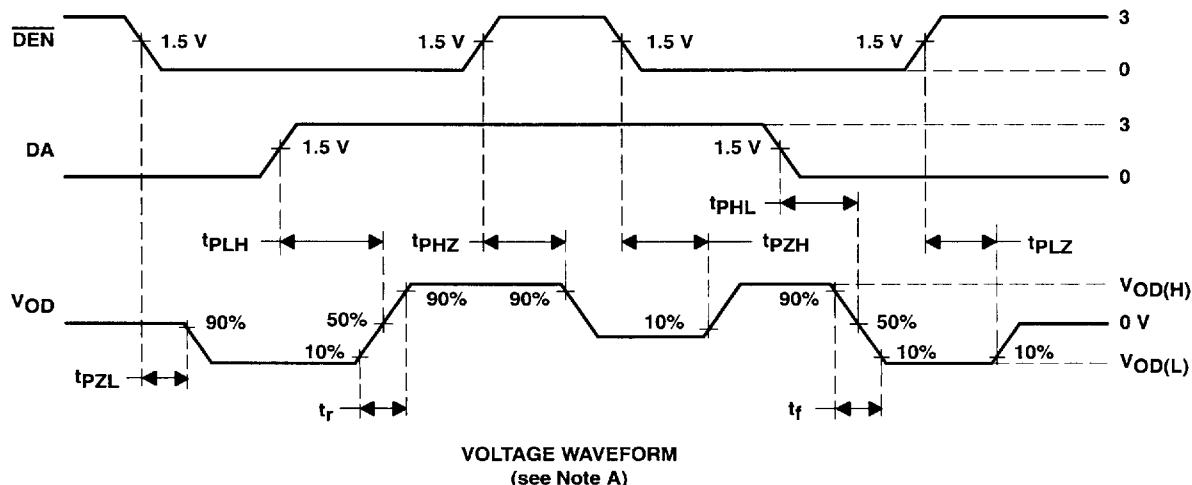
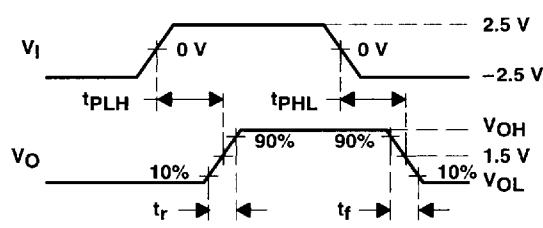
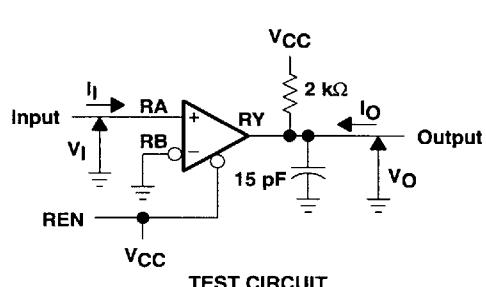
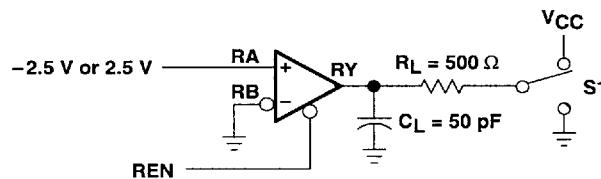
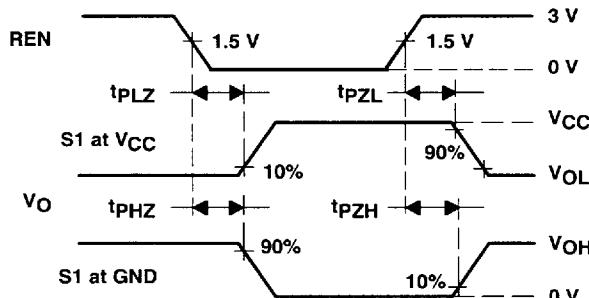


Figure 5. Differential Driver Propagation and Transition Times Test Circuit and Waveforms


Figure 6. Receiver Propagation and Transition Times Test Circuit and Waveform

 **TEXAS
INSTRUMENTS**


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0108923 679 ■

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

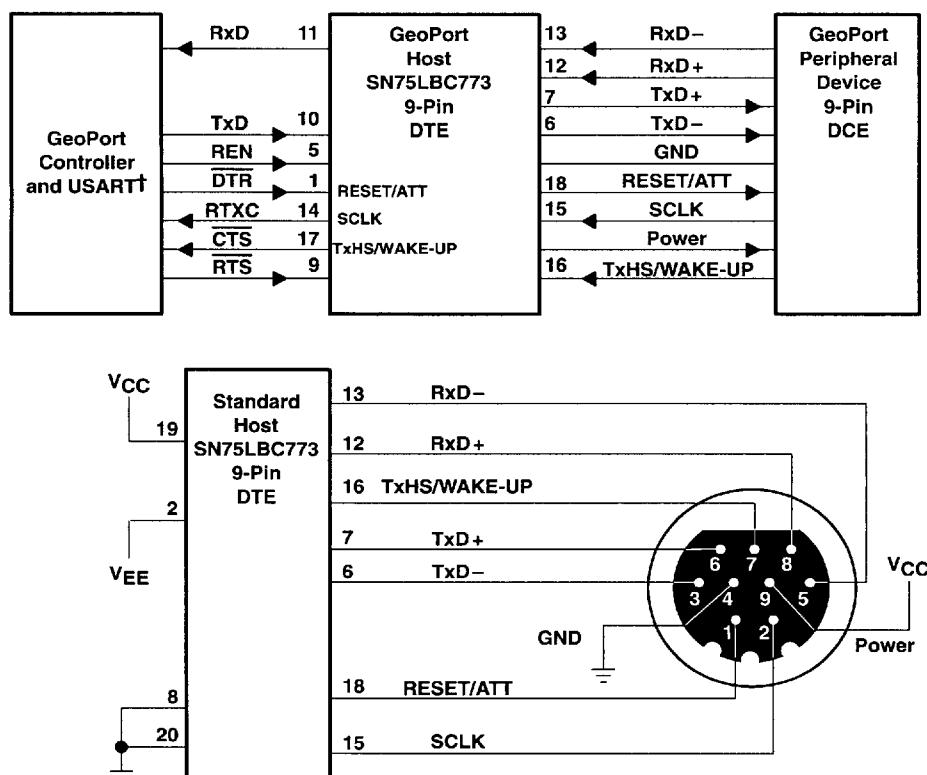
VOLTAGE WAVEFORM
(see Note A)

NOTE A: For the input waveform t_f , $t_f \leq 10$ ns

Figure 7. Receiver Enable and Disable Test Circuit and Waveforms

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


9

■ 8961724 0108924 505 ■

SN75LBC773 GEOPORT™ TRANSCEIVER

SLLS247B – FEBRUARY 1997 – APRIL 1997

APPLICATION INFORMATION

† USART = universal synchronous asynchronous receiver transmitter

Figure 8. GeoPort 9-Pin DTE Connection Application

generator characteristics

PARAMETER	TEST CONDITIONS	232/V.28		423/V.10		562		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
IV _O I	Open circuit	25		4	6	13.2		V
	3 k Ω \leq R _L \leq 7 k Ω	5	15	NA		3.7		V
	R _L = 450 Ω	NA		3.6		NA		V
I _{OS}	Short-circuit output current	V _O = 0		100		150		60 mA
R(OFF)	Power-off source resistance	V _{CC} = 0, V _O < 2 V		300		NA	300	Ω
I _{O(OFF)}	Power-off output current	V _{CC} = 0, V _O < 6 V		NA		\pm 100	NA	μ A
SR	Output voltage slew rate			30	NA	4	30	V/ μ s
t _t	\pm 3.3 V to \pm 3.3 V			NA		0.22	2.1	μ s
	\pm 3 V to \pm 3 V			0.04	NA	NA		μ i
	10% to 90%			NA		0.3	NA	μ i
V _{O(RING)}	Output voltage ring			NA		10%	5%	

† ui is the unit interval and is the inverse of the signaling rate (a.k.a. bit time).

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

receiver characteristics

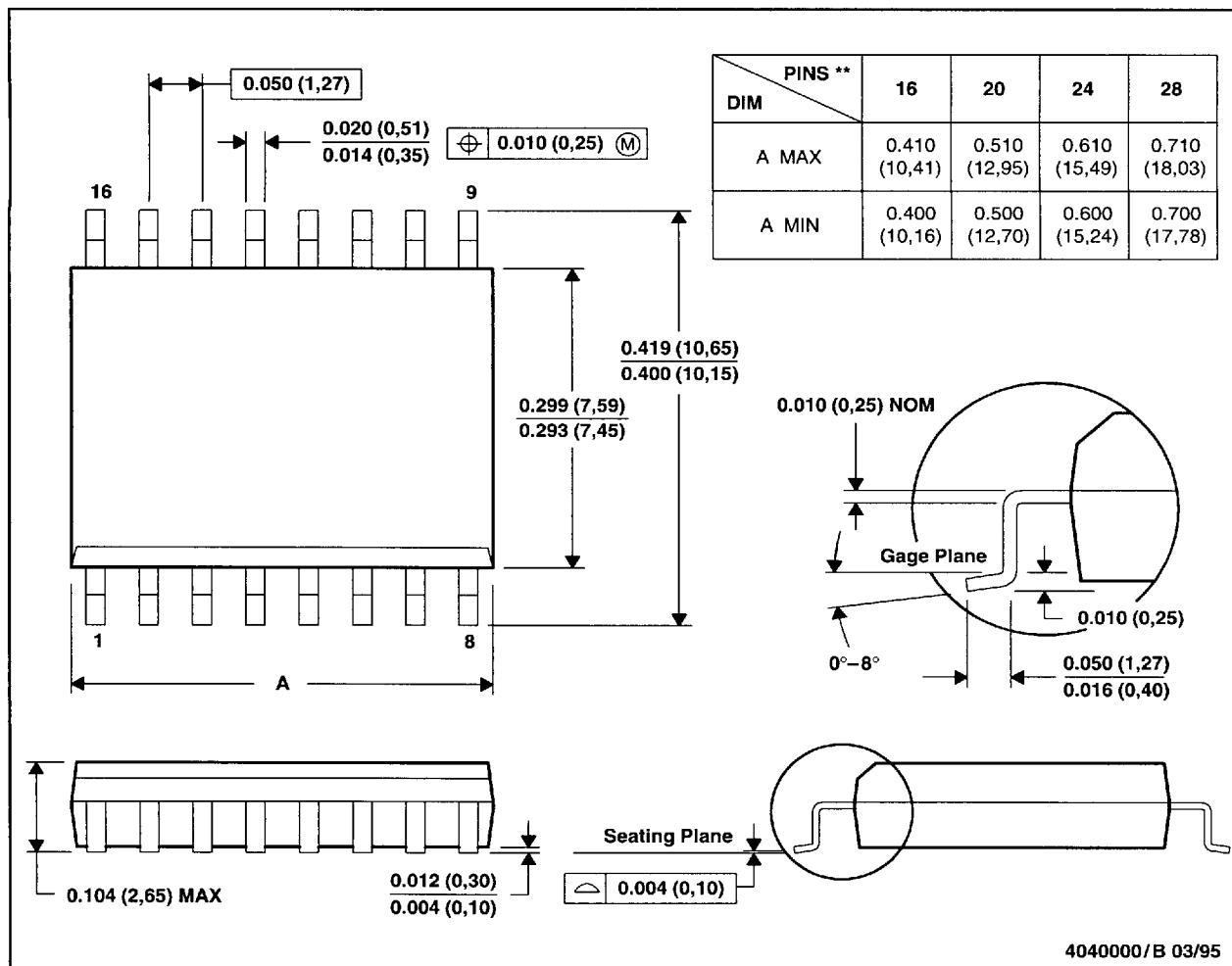
PARAMETER	TEST CONDITIONS	232/V.28		423/V.10		562		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$ V_I $	Input voltage			25		10		25
V _{IT}	Input voltage threshold	$ V_I < 15$ V		-3	3	NA		-3
		$ V_I < 10$ V		NA		-0.2	0.2	NA
R _I	Input resistance	$3 \text{ V} < V_I < 15 \text{ V}$		3	7	NA		3
		$ V_I < 10 \text{ V}$		NA		4		NA

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

11

■ 8961724 0108926 388 ■

SN75LBC773
GEOPORT™ TRANSCEIVER


SLLS247B – FEBRUARY 1997 – APRIL 1997

MECHANICAL INFORMATION

DW (R-PDSO-G)**

PLASTIC SMALL-OUTLINE PACKAGE

16 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
 D. Falls within JEDEC MS-013

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

■ 8961724 0108928 150 ■

13