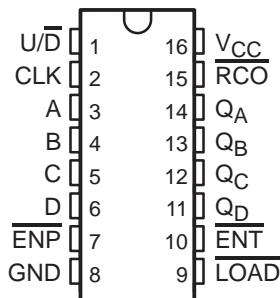


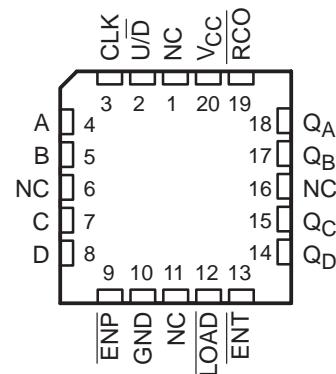
- Fully Synchronous Operation for Counting and Programming
- Internal Carry Look-Ahead Circuitry for Fast Counting
- Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit
- Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These synchronous 4-bit up/down binary presettable counters feature an internal carry look-ahead circuitry for cascading in high-speed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable (\overline{ENP} , \overline{ENT}) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.


These counters are fully programmable; that is, they may be preset to either level. The load-input circuitry allows loading with the carry-enable output of cascaded counters. Because loading is synchronous, setting up a low level at the load (\overline{LOAD}) input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

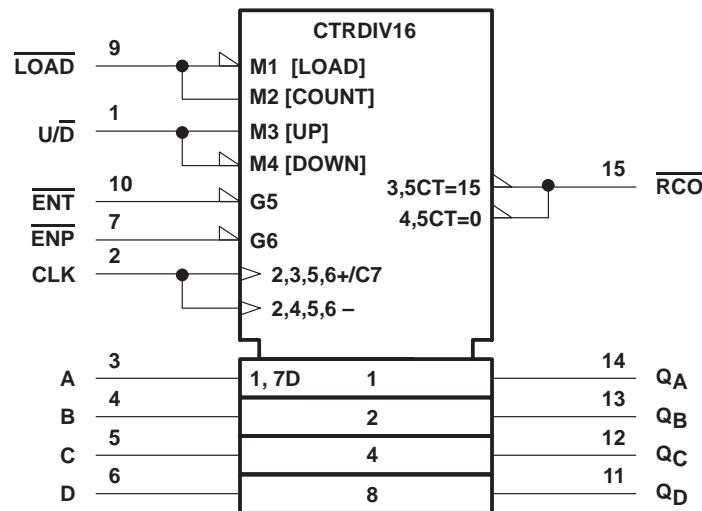
The internal carry look-ahead circuitry provides for cascading counters for n-bit synchronous application without additional gating. \overline{ENP} and \overline{ENT} inputs and a ripple-carry output (\overline{RCO}) are instrumental in accomplishing this function. Both \overline{ENP} and \overline{ENT} must be low to count. The direction of the count is determined by the level of the up/down (U/D) input. When U/D is high, the counter counts up; when low, it counts down. \overline{ENT} is fed forward to enable \overline{RCO} . \overline{RCO} , thus enabled, produces a low-level pulse while the count is zero (all inputs low) counting down or maximum (15) counting up. This low-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at \overline{ENP} or \overline{ENT} are allowed regardless of the level of the clock input. All inputs are diode clamped to minimize transmission-line effects, thereby simplifying system design.


These counters feature a fully independent clock circuit. Changes at control inputs (\overline{ENP} , \overline{ENT} , \overline{LOAD} , or U/D) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

The SN54ALS169B and SN54AS169A are characterized for operation over the full military temperature range of -55°C to 125°C . The SN74ALS169B and SN74AS169A are characterized for operation from 0°C to 70°C .

SN54ALS169B, SN54AS169A . . . J PACKAGE
SN74ALS169B, SN74AS169A . . . D OR N PACKAGE
(TOP VIEW)

SN54ALS169B, SN54AS169A . . . FK PACKAGE
(TOP VIEW)

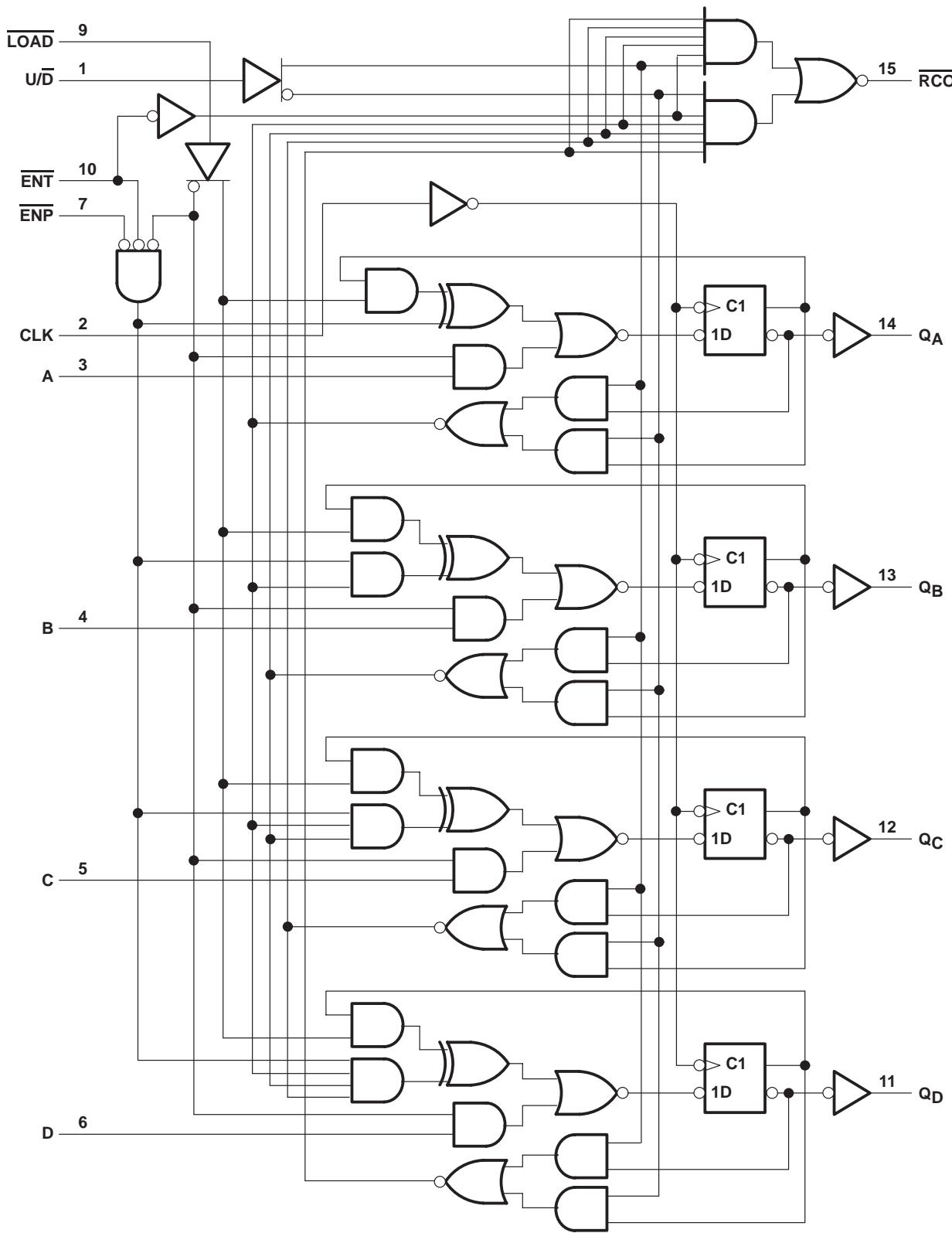


NC – No internal connection

SN54ALS169B, SN54AS169A, SN74ALS169B, SN74AS169A SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

SDAS125B – MARCH 1984 – REVISED DECEMBER 1994

logic symbol†



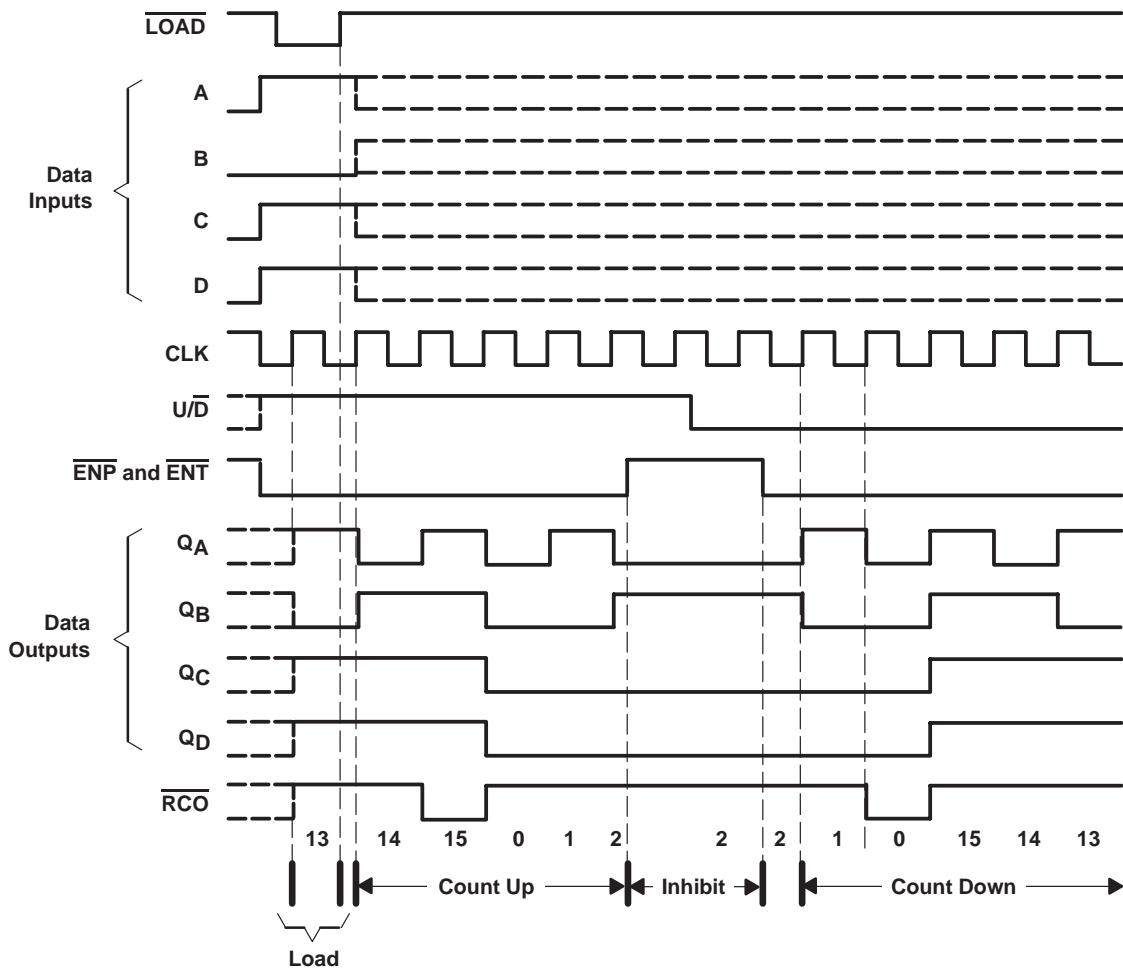
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the D, J, and N packages.

SN54ALS169B, SN54AS169A, SN74ALS169B, SN74AS169A SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

SDAS125B – MARCH 1984 – REVISED DECEMBER 1994

logic diagram (positive logic)

Pin numbers shown are for the D, J, and N packages.


SN54ALS169B, SN54AS169A, SN74ALS169B, SN74AS169A SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

SDAS125B – MARCH 1984 – REVISED DECEMBER 1994

typical load, count, and inhibit sequences

The following sequence is illustrated below:

1. Load (preset) to binary 13
2. Count up to 14, 15 (maximum), 0, 1, and 2
3. Inhibit
4. Count down to 1, 0 (minimum), 15, 14, and 13

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN54ALS169B, SN54AS169A, SN74ALS169B, SN74AS169A SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

SDAS125B – MARCH 1984 – REVISED DECEMBER 1994

recommended operating conditions

		SN54ALS169B			SN74ALS169B			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.7			0.8	V
I _{OH}	High-level output current			-0.4			-0.4	mA
I _{OL}	Low-level output current			4			8	mA
f _{clock}	Clock frequency	0	22	0	0	40	40	MHz
t _w	Pulse duration, CLK high or low	14			12.5			ns
t _{su}	Setup time before CLK↑	A, B, C, or D	20		15			ns
		ENP or ENT	25		15			
		LOAD	20		15			
		U/D	28		15			
t _h	Hold time, data after CLK↑	0		0				ns
T _A	Operating free-air temperature	-55		125	0	70	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ALS169B			SN74ALS169B			UNIT
		MIN	TYPT†	MAX	MIN	TYPT†	MAX	
V _{IK}	V _{CC} = 4.5 V, I _I = -18 mA			-1.5			-1.5	V
V _{OH}	V _{CC} = 4.5 V to 5.5 V, I _{OH} = -0.4 mA	V _{CC} - 2			V _{CC} - 2			V
V _{OL}	V _{CC} = 4.5 V	I _{OL} = 4 mA	0.25	0.4	0.25	0.4		V
		I _{OL} = 8 mA			0.35	0.5		
I _I	V _{CC} = 5.5 V, V _I = 7 V			0.1			0.1	mA
I _{IH}	V _{CC} = 5.5 V, V _I = 2.7 V			20			20	µA
I _{IL}	V _{CC} = 5.5 V, V _I = 0.4 V			-0.2			-0.2	mA
I _O ‡	V _{CC} = 5.5 V, V _O = 2.25 V	-20	-112		-30	-112		mA
I _{CC}	V _{CC} = 5.5 V	15	25		15	25		mA

† All typical values are at V_{CC} = 5 V, T_A = 25°C.

‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

SN54ALS169B, SN54AS169A, SN74ALS169B, SN74AS169A SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

SDAS125B – MARCH 1984 – REVISED DECEMBER 1994

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$ $T_A = \text{MIN to MAX}^{\dagger}$				UNIT	
			SN54ALS169B		SN74ALS169B			
			MIN	MAX	MIN	MAX		
f_{max}			22	40			MHz	
t_{PLH}	CLK	\overline{RCO}	3	20	3	20	ns	
t_{PHL}			6	25	6	20		
t_{PLH}	CLK	Any Q	2	20	2	15	ns	
t_{PHL}			5	23	5	20		
t_{PLH}	\overline{ENT}	\overline{RCO}	2	16	2	13	ns	
t_{PHL}			3	24	3	16		
t_{PLH}	U/D	\overline{RCO}	4	22	5	19	ns	
t_{PHL}			5	26	5	19		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V_{CC}	7 V
Input voltage, V_I	7 V
Operating free-air temperature range, T_A : SN54AS169A	-55°C to 125°C
SN74AS169A	0°C to 70°C
Storage temperature range	-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54AS169A			SN74AS169A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.8			0.8	V
I_{OH}	High-level output current			-2			-2	mA
I_{OL}	Low-level output current			20			20	mA
f_{clock}^*	Clock frequency	0	60	0	0	75	MHz	
t_w^*	Pulse duration, CLK high or low	7.7			6.7			ns
t_{su}^*	Setup time before $CLK\uparrow$	A, B, C, or D	10		8			ns
		\overline{ENP} or \overline{ENT}	10		8			
		LOAD	10		8			
		U/D	14		11			
t_h^*	Hold time, data after $CLK\uparrow$	2			0			ns
T_A	Operating free-air temperature	-55		125	0	70		°C

* On products compliant to MIL-STD-883, Class B, this parameter is based on characterization data but is not production tested.

SN54ALS169B, SN54AS169A, SN74ALS169B, SN74AS169A SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

SDAS125B – MARCH 1984 – REVISED DECEMBER 1994

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

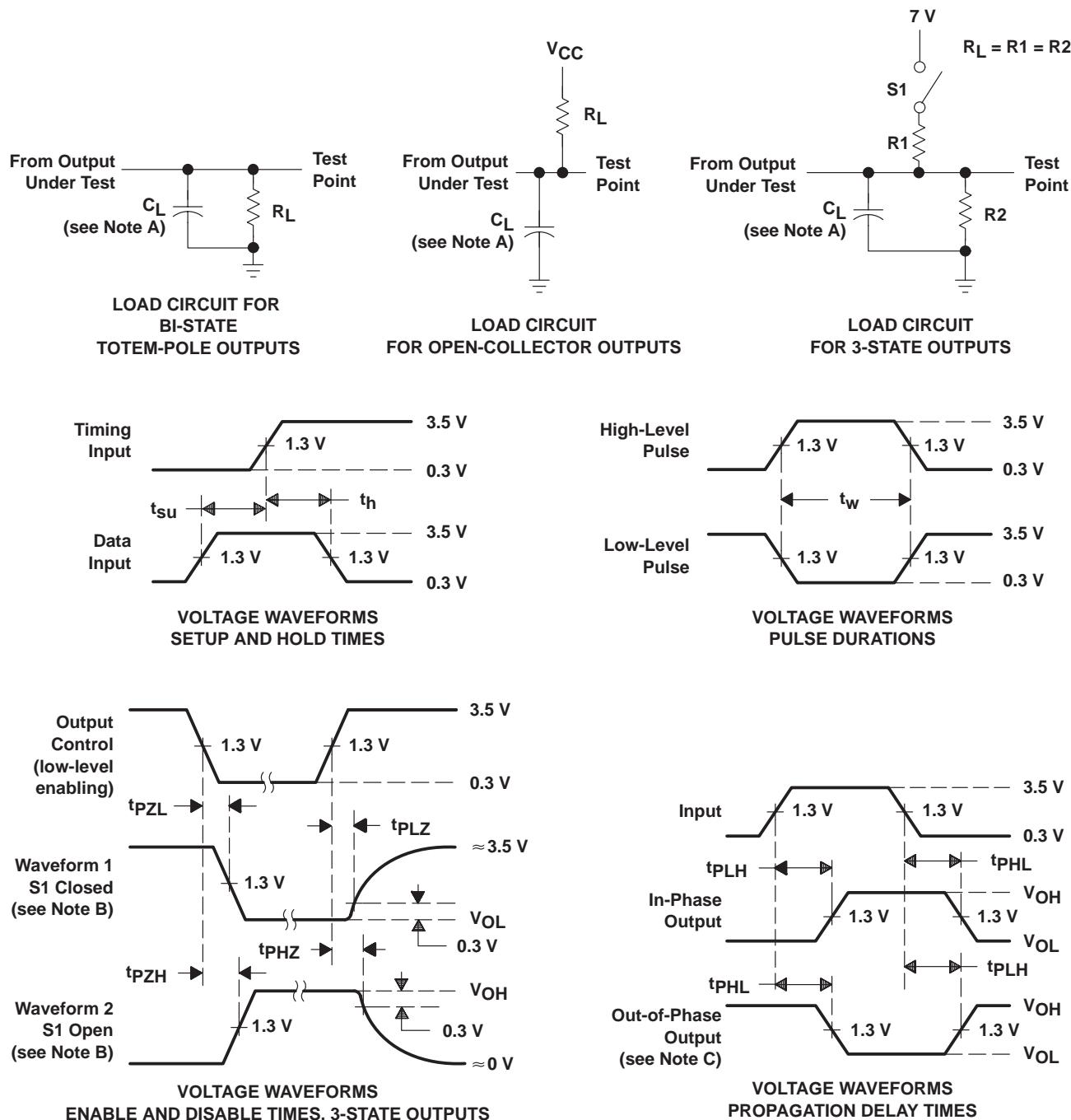
PARAMETER	TEST CONDITIONS	SN54AS169A			SN74AS169A			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 4.5 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $I_{OH} = -2 \text{ mA}$	$V_{CC} - 2$			$V_{CC} - 2$			V
V_{OL}	$V_{CC} = 4.5 \text{ V}$, $I_{OL} = 20 \text{ mA}$		0.25	0.5		0.25	0.5	V
I_I	LOAD, ENT, U/D All others	$V_{CC} = 5.5 \text{ V}$, $V_I = 7 \text{ V}$		0.2		0.2		mA
				0.1		0.1		
I_{IH}	LOAD, ENT, U/D All others	$V_{CC} = 5.5 \text{ V}$, $V_I = 2.7 \text{ V}$		40		40		μA
				20		20		
I_{IL}	LOAD, ENT, U/D All others	$V_{CC} = 5.5 \text{ V}$, $V_I = 0.4 \text{ V}$		-1		-1		mA
				-0.5		-0.5		
I_O^\ddagger	$V_{CC} = 5.5 \text{ V}$, $V_O = 2.25 \text{ V}$		-30	-112	-30	-112		mA
I_{CC}	$V_{CC} = 5.5 \text{ V}$		41	63		41	63	mA

† All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$, $T_A = \text{MIN to MAX}^\S$				UNIT	
			SN54AS169A		SN74AS169A			
			MIN	MAX	MIN	MAX		
f_{max}^*			60		75		MHz	
t_{PLH}	CLK	$\overline{\text{RCO}}$ (LOAD high or low)	3	17.5	3	16.5	ns	
t_{PHL}			2	14	2	13		
t_{PLH}	CLK	Any Q	1	7.5	1	7	ns	
t_{PHL}			2	14	2	13		
t_{PLH}	$\overline{\text{ENT}}$	$\overline{\text{RCO}}$	1.5	10	1.5	9	ns	
t_{PHL}			1.5	10	1.5	9		
t_{PLH}	$\overline{\text{U/D}}$	$\overline{\text{RCO}}$	2	14	2	12	ns	
t_{PHL}			2	14.5	2	13		


* On products compliant to MIL-STD-883, Class B, this parameter is based on characterization data but is not production tested.

§ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SN54ALS169B, SN54AS169A, SN74ALS169B, SN74AS169A SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

SDAS125B – MARCH 1984 – REVISED DECEMBER 1994

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_L includes probe and jig capacitance.
 B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
 D. All input pulses have the following characteristics: $PRR \leq 1 \text{ MHz}$, $t_r = t_f = 2 \text{ ns}$, duty cycle = 50%.
 E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated