

TDA8133

+5.1 V and +8 V dual voltage regulator with disable and reset functions

Features

- Input voltage range: 7 V to 18 V
- Output currents up to 750 mA
- Fixed precision output 1 voltage: 5.1 V ±2%
- Fixed precision output 2 voltage: 8 V ±2%
- Output 1 with reset function
- Output 2 with disable function by TTL Input
- Short-circuit protection at both outputs
- Thermal protection
- Low dropout voltage

Description

The TDA8133 and the TDA8133D are monolithic dual positive voltage regulators designed to provide fixed precision output voltages of 5.1 V and 8.0 V for currents up to 750 mA.

An internal reset circuit generates a reset pulse when the voltage of output 1 drops below the regulated voltage value.

Output 2 can be disabled via the TTL input

Short-circuit and thermal protections are included in all versions.

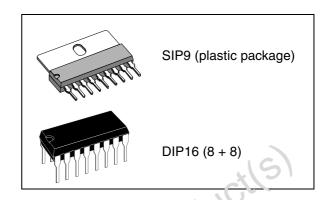
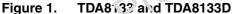
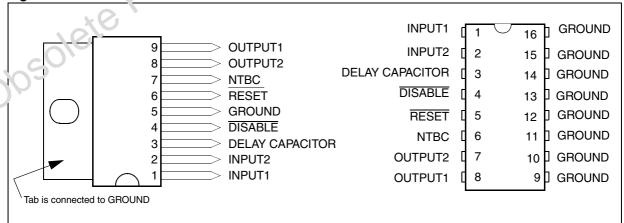




Table 1. Device summary

Order code	Packaging
TDA8133	Tray
TDA8133D	Tray

Contents TDA8133

Contents

1	Description
2	Electrical characteristics 4
3	Circuit description
4	Application diagrams 8
5	Power dissipation and layout indications 9
6	Package mechanical data
7	Revision history
005	Electrical characteristics

TDA8133 Description

Description

Figure 2. TDA8133 block diagram

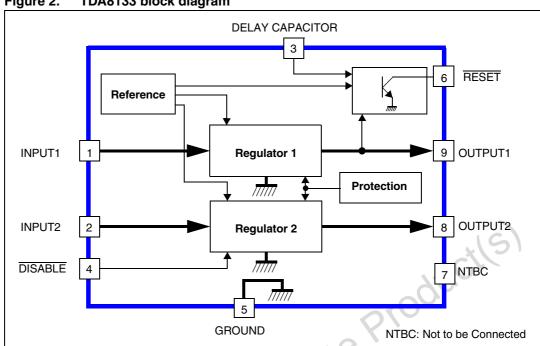
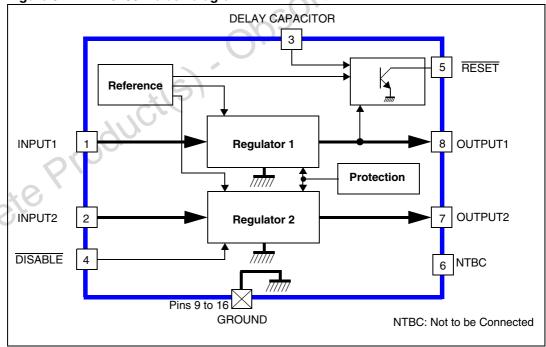



Figure 3. TDA8133D block diagram

Electrical characteristics TDA8133

2 Electrical characteristics

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage at pins INPUT1 and INPUT2	20	V
V _{DIS}	Disable input voltage at pin DISABLE	20	V
V _{RST}	Output voltage at pin RESET	20	V
I _{O1,2}	Output currents	Internally limited	
Pt	Power dissipation	Internally limited	
T _{STG}	Storage temperature	-65 to +150	°C
T _J	Junction temperature	0 to +150	°C

Table 3. Thermal data

Symbol	Parai	meter	Value	Unit
R _{thJC}	Thermal resistance (junction-to-case)	TDA8133 TDA8133D		°C/W
R _{thJA}	Thermal resistance ⁽¹⁾ (junction-to-ambient)	TDA8133 TDA8133D		°C/W
TJ	Maximum recommended	junction temperature	140	°C
T _{OPER}	Operating free air tempe	rature range	0 to +70	°C

^{1.} Mounted on board. For more information, refer to Section 5.

Table 4. Electrical characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{O1}	Output voltage	I _{O1} = 10 mA	5	5.1	5.2	V
V _{O2}	Output voltage	I _{O2} = 10 mA	7.84	8.00	8.16	V
$V_{IO1,2}$	Dropout voltage	I _{O1,2} = 750 mA			1.4	V
V _{O1,2LI}	Line regulation	$7 \text{ V} < \text{V}_{\text{IN1}} < 14 \text{ V}$ $10 \text{ V} < \text{V}_{\text{IN2}} < 14 \text{ V}$ $I_{\text{O1,2}} = 200 \text{ mA}$			50 80	mV
V _{O1,2LO}	Load regulation	5 mA < I _{O1} < 600 mA 5 mA < I _{O2} < 600 mA			100 160	mV
IQ	Quiescent current	I _{O1} = 10 mA, OUTPUT2 Disabled			2	mA
V _{O1RST}	Reset threshold voltage	$K = V_{O1}, V_{IN1} \ge 7 V$	K - 0.4	K - 0.25	K - 0.1	V
V_{RTH}	Reset threshold hysteresis	See circuit description	20	50	75	mV
t _{RD}	Reset pulse delay	C _e = 100 nF See circuit description		25		ms

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{RL}	Saturation voltage in reset condition	I _{RESET} = 5 mA			0.4	V
I _{RH}	Leakage current in normal condition	V _{RESET} = 10 V			10	μΑ
K _{O1, 2}	Output voltage thermal drift	$K_0 = \frac{\Delta V_0 \cdot 10^6}{\Delta T \cdot V_0}$ $T_J = 0 \text{ to } + 125^{\circ}\text{C}$		100		ppm/°C
I _{O1,2SC}	Short circuit output current	$V_{IN1} = 7 \text{ V}, V_{IN2} = 10 \text{ V}$ $V_{IN1,2} = 16 \text{ V}^{(1)}$			1.6 1.0	А
V _{DISH}	Disable voltage when pin DIS active)	SABLE is high (OUTPUT2	2			V
V _{DISL}	Disable voltage when pin DIS disabled)	SABLE is low (OUTPUT2			0.8	V
I _{DIS}	Disable bias current	0 V < V _{DIS} < 7 V	-100		2	μΑ
T _{JSD}	Junction temperature for the	rmal shutdown		145	7110	°C

The output short-circuit currents are tested one channel at time. During a short-circuit, a large consumption of power occurs, but the thermal protection circuit prevents any excessive temperatures. A safe permanent short-circuit protection is only guaranteed for input voltages up to 16 V.

Note: $T_{AMB} = 25^{\circ} C$, $V_{IN1} = 7 V$, $V_{IN2} = 10 V$, unless otherwise specified.

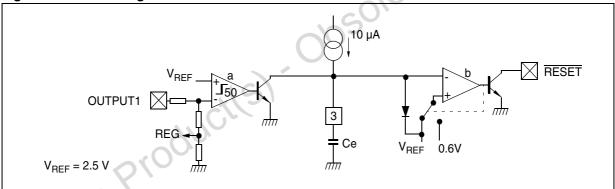
Circuit description TDA8133

3 Circuit description

The TDA8133 and the TDA8133D are dual-voltage regulators with reset and disable functions.

The two regulation parts are supplied from a single voltage reference circuit trimmed by zener zapping during EWS testing. Since the supply voltage of this voltage reference is connected to pin INPUT1 (V_{IN1}), the second regulator will not work if pin INPUT1 is not supplied.

The output stages are designed using a Darlington configuration with a typical dropout voltage of 1.2 V.


The disable circuit will switch off pin OUTPUT2 if a voltage less than 0.8 V is applied to pin DISABLE.

The reset circuit checks the voltage at pin OUTPUT1. If this voltage drops below V_{O1} - 0.25 V (4.85 V Typ.), the "a" comparator (*Figure 4*) rapidly discharges the external capacitor (Ce) and the reset output immediately switches to low. When the voltage at pin OUTPUT1 exceeds V_{O1} - 0.2 V (4.9 V Typ.), the V_{Ce} voltage increases linearly to the reference voltage (V_{REF} = 2.5 V) corresponding to a reset pulse delay (t_{RD}) as shown in *Figure 5*.

$$t_{RD} = \frac{C_e \times 2.5V}{10\mu A}$$

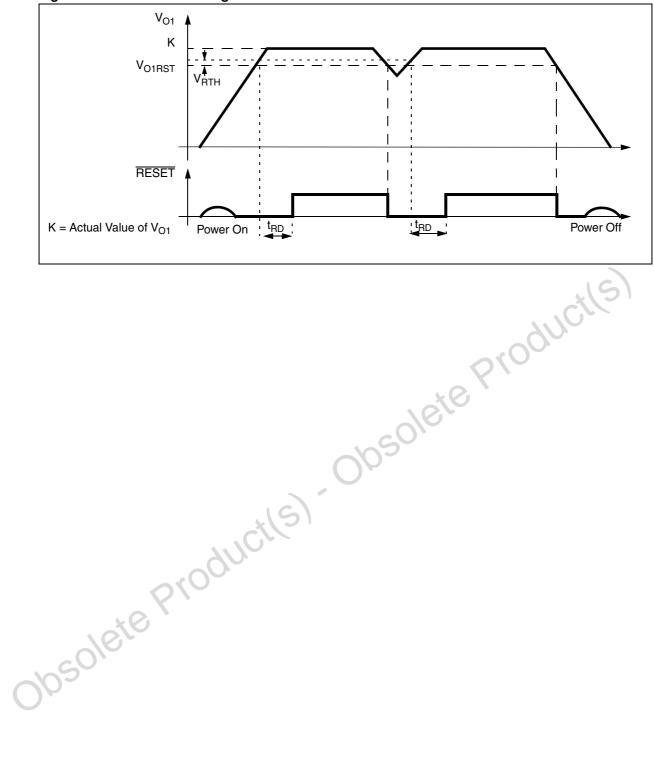

Afterwards, the reset output returns to high. To avoid glitches in the reset output, the second comparator "b" has a large hysteresis (1.9 V).

Figure 4. Reset diagram

TDA8133 Circuit description

Figure 5. Internal reset diagram

4 Application diagrams

Figure 6. TDA8133 typical application

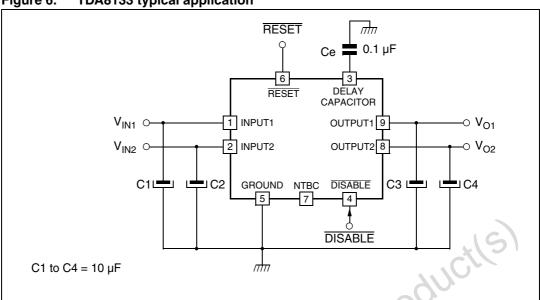
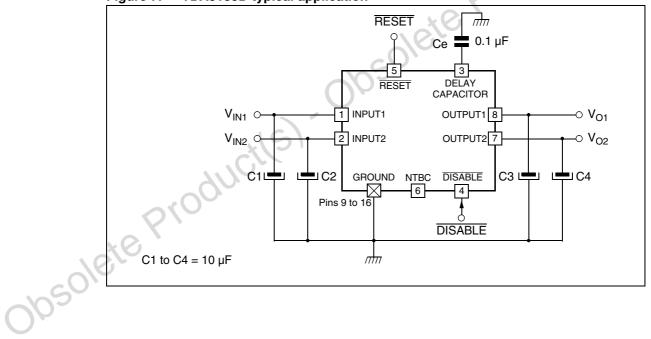



Figure 7. TDA8133D typical application

5 Power dissipation and layout indications

The power is mainly dissipated by the two device buffers. It can be calculated by the equation:

$$P = (V_{IN1}-V_{O1}) \times I_{O1} + (V_{IN2}-V_{O2}) \times I_{O2}$$

The following table lists the different R_{thJA} values of these packages with or without a heat sink and the corresponding maximum power dissipation assuming:

- Maximum ambient temperature = 70° C
- Maximum junction temperature = 140° C

Table 5. Power dissipation

Device	Heat Sink	R _{thJA} in °C/W	P _{MAX} in W
TDA8133	No	50	1.4
1DA6133	Yes	20	3.5
TDA8133D	No	56 to 40	1.25 to 1.75
IDAGISSD	Yes	32	2.2

Figure 8. Thermal resistance (junction-to-ambient) for DIP16 package without heatsink

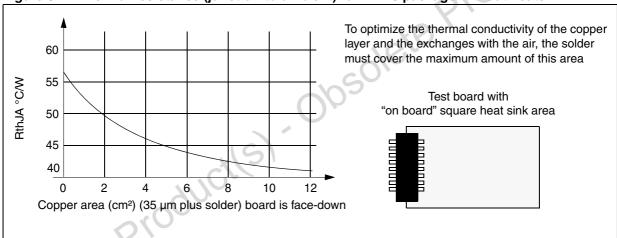
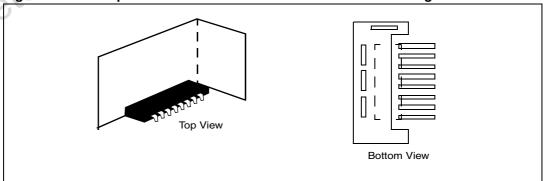



Figure 9. Metal plate mounted near the TDA8133D for heatsinking

6 Package mechanical data

Figure 10. 9-pin plastic single in-line package

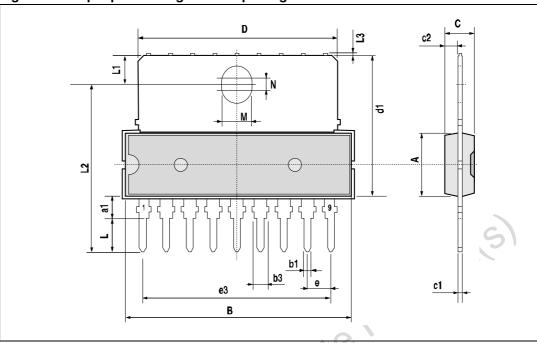


Table 6. 9-pin plastic single in-line package dimensions

	Dim.		mm	ans'		Inches	
	Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
	Α			7.1			0.280
	a1	2.7	1621	3	0.106		0.118
	В	111		24.8			0.976
	b1	000	0.5			0.020	
	b3	0.85		1.6	0.033		0.063
	С		3.3			0.130	
10	c1		0.43			0.017	
cO//	c2		1.32			0.052	
000	D			21.2			0.835
O.	d1		14.5			0.571	
	е		2.54			0.100	
	e3		20.32			0.800	
	L	3.1	_		1.122		
	L1		3			0.116	
	L2		17.6			0.693	

Table 6. 9-pin plastic single in-line package dimensions (continued)

Dim		mm			Inches	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
L3			0.25			0.010
М		3.2			0.126	
N		1			0.039	

Figure 11. 16-pin plastic dual in-line package, 300 mil width

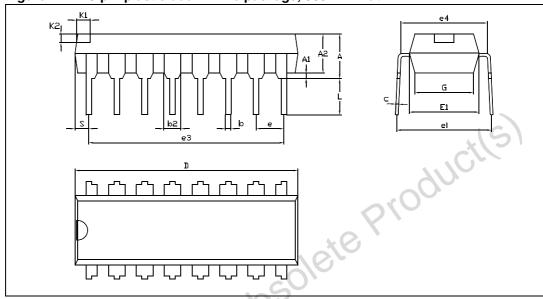


Table 7. 16-pin plastic dual in-line package dimensions

Dim		mm			Inches	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
A		10,0	5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36		0.56	0.014		0.022
b2		1.52	1.78		0.060	0.070
c S	0.20	0.25	0.36	0.008	0.010	0.014
D	18.67	19.18	19.69	0.735	0.755	0.775
e		2.54			0.100	
E1	6.10	6.35	7.11	0.240	0.250	0.280
L	2.92	3.30	3.81	0.115	0.130	0.150

6.1 Environmentally-friendly packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance.

ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Obsolete Product(s). Obsolete Product(s)

TDA8133 Revision history

7 Revision history

Table 8. Document revision history

March 1994	Revision	Changes
	1.0	First issue
July 2001	1.1	Datasheet update and addition of DIP16 package
August 2001	1.2	General update; DISABLE pin renamed DISABLE (function remains unchanged)
September 2001	1.3	Thermal data updated
October 2001	1.4	Thermal data updated. Figure 2 and Figure 3 updated
05-Mar-2009	2	Preliminary banner removed, template updated and Section 6.1 added
	duct	added Promise apaces and obtains.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com