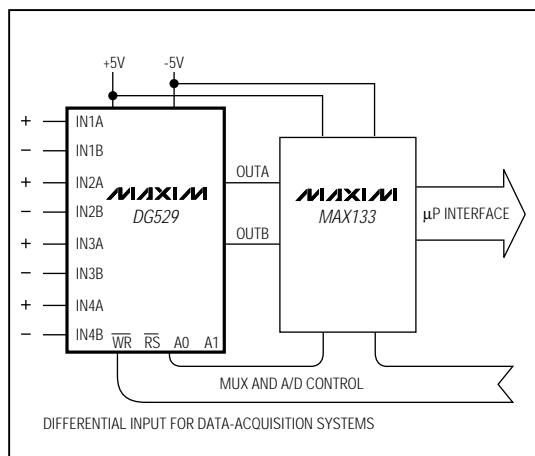


8-Channel Latchable Multiplexers

DG528/DG529

General Description


Maxim's DG528/DG529 are monolithic, 8-channel, CMOS multiplexers with on-board address and control latches that simplify design and reduce board space in microprocessor-based applications. The DG528 is a single-ended, 1-of-8 multiplexer, while the DG529 is a differential, 2-of-8 multiplexer. These devices can operate as multiplexers or demultiplexers.

The DG528/DG529 have break-before-make switching to prevent momentary shorting of the input signals. Each device operates with dual supplies ($\pm 4.5V$ to $\pm 20V$) or a single supply ($+5V$ to $+30V$). All logic inputs are TTL and CMOS compatible. The Maxim DG528/DG529 are pin and electrically compatible with the industry-standard DG528/DG529.

Applications

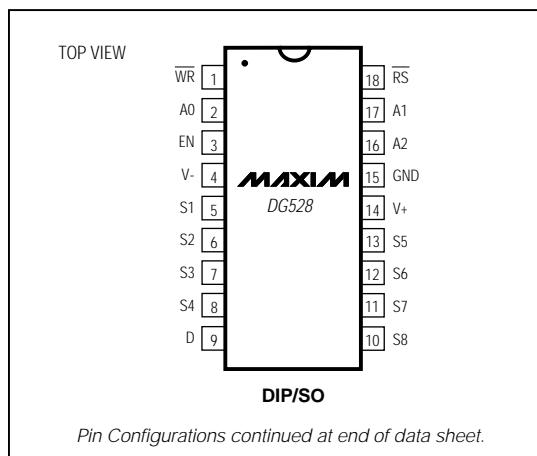
- Data-Acquisition Systems
- Automatic Test Equipment
- Avionics and Military Systems
- Communication Systems
- Microprocessor-Controlled Systems
- Audio-Signal Multiplexing

Typical Operating Circuit

Features

- ♦ Low-Power, Monolithic CMOS Design
- ♦ On-Board Address Latches
- ♦ Break-Before-Make Input Switches
- ♦ TTL and CMOS Logic Compatible
- ♦ Microprocessor-Bus Compatible
- ♦ $r_{DS(ON)} < 400\Omega$
- ♦ Pin and Electrically Compatible with the Industry-Standard DG528/DG529 and ADG528/ADG529

Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE
DG528CJ	0°C to +70°C	18 Plastic DIP
DG528CWN	0°C to +70°C	18 Wide SO
DG528CK	0°C to +70°C	18 CERDIP
DG528C/D	0°C to +70°C	Dice*
DG528DJ	-40°C to +85°C	18 Plastic DIP
DG528DN	-40°C to +85°C	20 PLCC
DG528EWN	-40°C to +85°C	18 Wide SO
DG528DK	-40°C to +85°C	18 CERDIP
DG528AZ	-55°C to +125°C	20 LCC**
DG528AK	-55°C to +125°C	18 CERDIP**

Ordering Information continued at end of data sheet.

* Contact factory for dice specifications.

** Contact factory for availability and processing to MIL-STD-883.

Pin Configurations

Pin Configurations continued at end of data sheet.

Maxim Integrated Products 1

Call toll free 1-800-998-8800 for free samples or literature.

8-Channel Latchable Multiplexers

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to V-
 V+ +44V
 GND +25V
 Digital Inputs Vs, VD V- -2V to V+ +2V
 or 20mA, whichever occurs first.
 Current (any terminal, except S or D) 30mA
 Continuous Current, S or D 20mA
 Peak Current, S or D 50mA
 (pulsed at 1ms, 10% duty cycle max) 50mA
 Continuous Power Dissipation (TA = +70°C) (Note 1)
 18-Pin Plastic DIP (derate 11.11mW/°C above +70°C) ... 889mW

Note 1: All leads are soldered or welded to PC board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

18-Pin Wide SO (derate 9.52mW/°C above +70°C) ... 762mW
 18-Pin CERDIP (derate 10.53mW/°C above +70°C) ... 842mW
 20-Pin PLCC (derate 10.00mW/°C above +70°C) 800mW
 20-Pin LCC (derate 9.09mW/°C above +70°C) 727mW
 Operating Temperature Ranges
 DG52_C_ 0°C to +70°C
 DG52_D/E_ -40°C to +85°C
 DG52_A_ -55°C to +125°C
 Storage Temperature Range -65°C to +150°C
 Lead Temperature (soldering, 10sec) +300°C

ELECTRICAL CHARACTERISTICS

(V+ = 15V, V- = -15V, VEN = 2.4V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	DG52_A			DG52_C/D/E			UNITS
			MIN	Typ	MAX	MIN	Typ	MAX	
SWITCH									
Analog-Signal Range	VANALOG	(Note 2)	-15			-15			V
Drain-Source On-Resistance	rDS(ON)	VD = ±10V, VAL = 0.8V, IS = -200µA, VAH = 2.4 (Note 3)	TA = +25°C, TMIN	270	400	270	450	Ω	
			TA = TMAX	500			500		
Greatest Change in Drain-Source On-Resistance Between Channels	ΔrDS(ON)	-10V < VS < 10V	TA = +25°C	6			6		
Source-Off Leakage Current	IS(OFF)	VEN = 0V, VS = ±10V, VD = ±10V	TA = +25°C	-1	-0.005	1	-5	-0.005	5
			TA = TMAX	-50	-0.005	50	-50	-0.005	50
Drain-Off Leakage Current	ID(OFF)	VEN = 0V, VS = ±10V, VD = ±10V	TA = +25°C	-10	-0.015	10	-20	-0.015	20
			TA = TMAX	-200	-0.015	200	-200	-0.015	200
		DG529	TA = +25°C	-10	-0.008	10	-20	-0.008	20
			TA = TMAX	-100	-0.008	100	-100	-0.008	100
Drain-On Leakage Current (Notes 3, 4)	ID(ON)	VAH = 2.4V, VS = VD = ±10V, VAL = 0.8V, VEN = 2.4V	TA = +25°C	-10	-0.03	10	-20	-0.03	20
			TA = TMAX	-200	-0.03	200	-200	-0.03	200
		DG529	TA = +25°C	-10	-0.015	10	-20	-0.015	20
			TA = TMAX	-100	-0.015	100	-100	-0.015	100
INPUT									
Address Input Current, Input Voltage High	IAH	VA = 2.4V	TA = +25°C	-1	-0.002	1	-1	-0.002	1
			TA = TMAX	-30			-30		
Address Input Current, Input Voltage Low	IAL	VA = RS = WR = 0V, VEN = 0V or 2.4V	TA = +25°C	-1	-0.002	1	-1	-0.002	1
			TA = TMAX	-30	-0.01	-30			µA

8-Channel Latchable Multiplexers

DG528/DG529

ELECTRICAL CHARACTERISTICS

($V_+ = 15V$, $V_- = -15V$, $V_{EN} = 2.4V$, $WR = 0V$, $RS = 2.4V$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		DG52_A			DG52_C/D/E			UNITS
				MIN	Typ	MAX	MIN	Typ	MAX	
DYNAMIC										
Switching Time of Multiplexer	t_{TRANS}	Figure 1		$T_A = +25^\circ C$	0.4	1		1.5		μs
Break-Before-Make Interval	t_{OPEN}	Figure 2		$T_A = +25^\circ C$	0.2		0.2			μs
Enable, Write Turn-On Time	$t_{ON}(EN, \bar{WR})$	Figures 3, 4		$T_A = +25^\circ C$	1.0	1.5		1.5		μs
Enable, Reset Turn-Off Time	$t_{OFF}(EN, \bar{RS})$	Figures 3, 5		$T_A = +25^\circ C$	0.4	1		1.5		μs
Charge Injection	Q	Figure 6		$T_A = +25^\circ C$	4		4			pC
Off Isolation	O_{IRR}	$V_{EN} = 0V$, $R_L = 1k\Omega$, $C_L = 15pF$, $V_S = 7V_{RMS}$, $f = 500kHz$		$T_A = +25^\circ C$	68		68			dB
Logic-Input Capacitance	C_{IN}	$f = 1MHz$		$T_A = +25^\circ C$	2.5		2.5			pF
Source-Off Capacitance	$C_{S(OFF)}$	$V_{EN} = 0V$, $f = 140kHz$, $V_S = 0V$		$T_A = +25^\circ C$	5		5			pF
Drain-Off Capacitance	$C_{D(OFF)}$	$V_{EN} = 0V$, $f = 140kHz$, $V_S = 0V$	DG528	$T_A = +25^\circ C$	25		25			pF
			DG529	$T_A = +25^\circ C$	12		12			
SUPPLY										
Positive Supply Current	I_+	$V_{EN} = V_{AH} = 0V$		$T_A = +25^\circ C$	0.003	2.5		0.003	2.5	mA
Negative Supply Current	I_-	$V_{EN} = V_{AH} = 0V$		$T_A = +25^\circ C$	-1.5	0.01		-1.5	0.01	mA
MINIMUM INPUT TIMING										
\bar{WR} Pulse Width	t_{WW}	Figure 7		300	150		300	15		ns
AX, EN Data Valid to \bar{WR}	t_{DW}	(Stabilization Time) Figure 7		180	120		180	12		ns
AX, EN Data Valid after \bar{WR}	t_{WD}	(Hold Time) Figure 7		30	10		30	10		ns
\bar{RS} Pulse Width	t_{RS}	Figure 7; $V_S = 5V$ (Note 5)		500	150		500	150		ns

Note 2: Guaranteed by design.

Note 3: Sequence each switch on.

Note 4: $I_{D(ON)}$ is leakage from driver into on switch.

Note 5: Reset pulse period must be at least 50 μs during or after power-on.

8-Channel Latchable Multiplexers

DG528/DG529

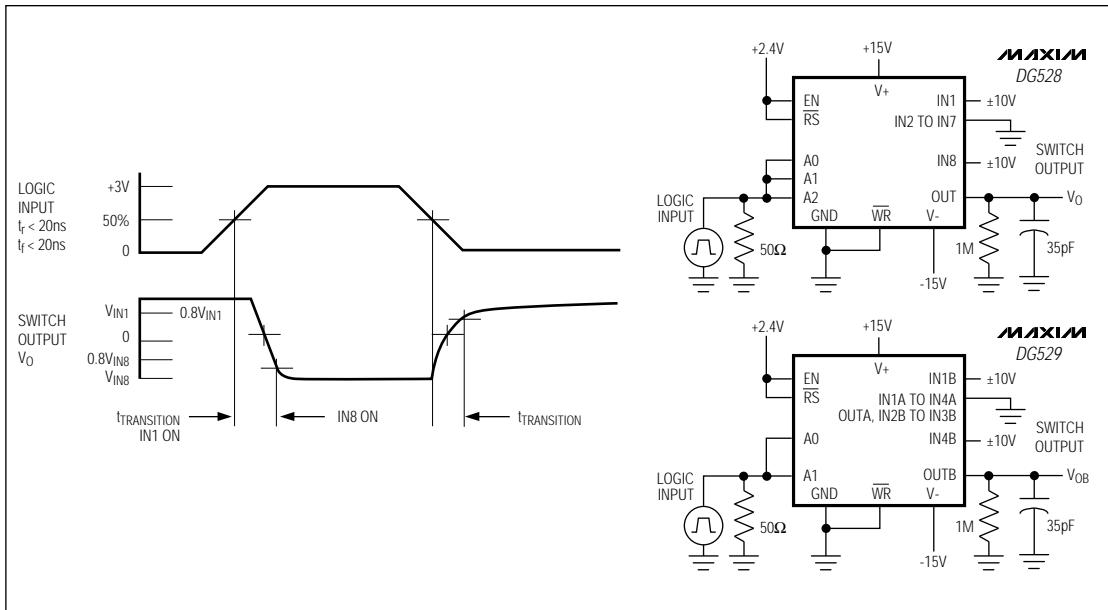


Figure 1. Transition-Time Test Circuits

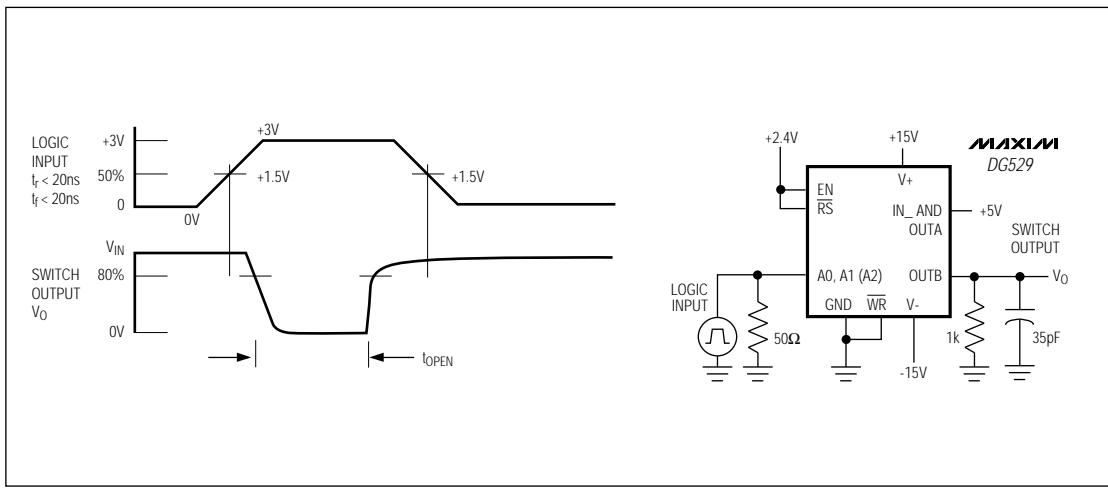


Figure 2. Open-Time (B.B.M.) Interval Test Circuit

8-Channel Latchable Multiplexers

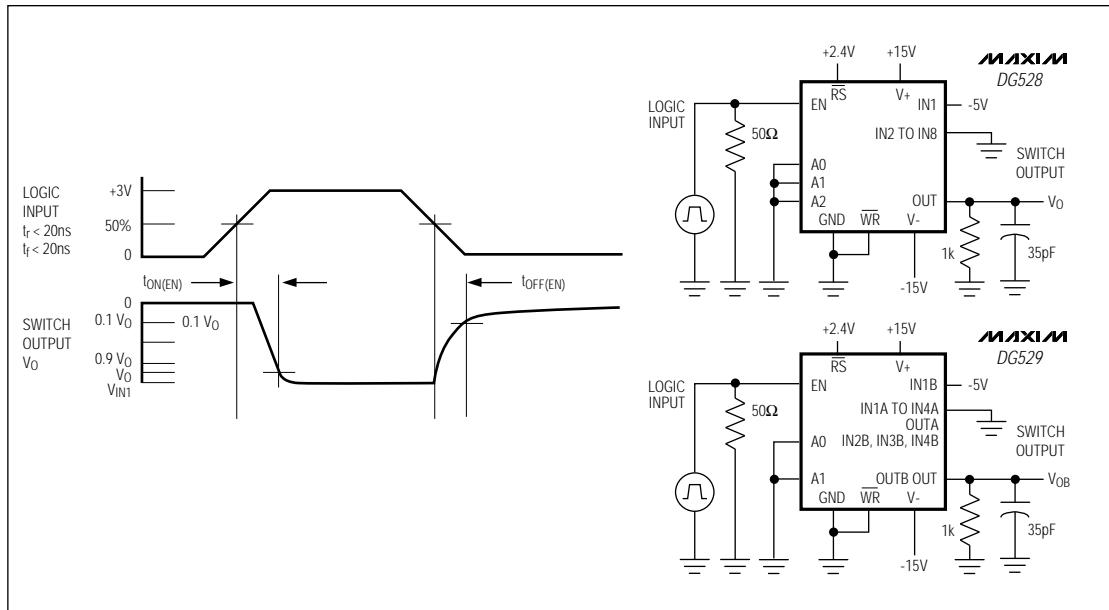


Figure 3. Enable t_{ON}/t_{OFF} Time Test Circuit

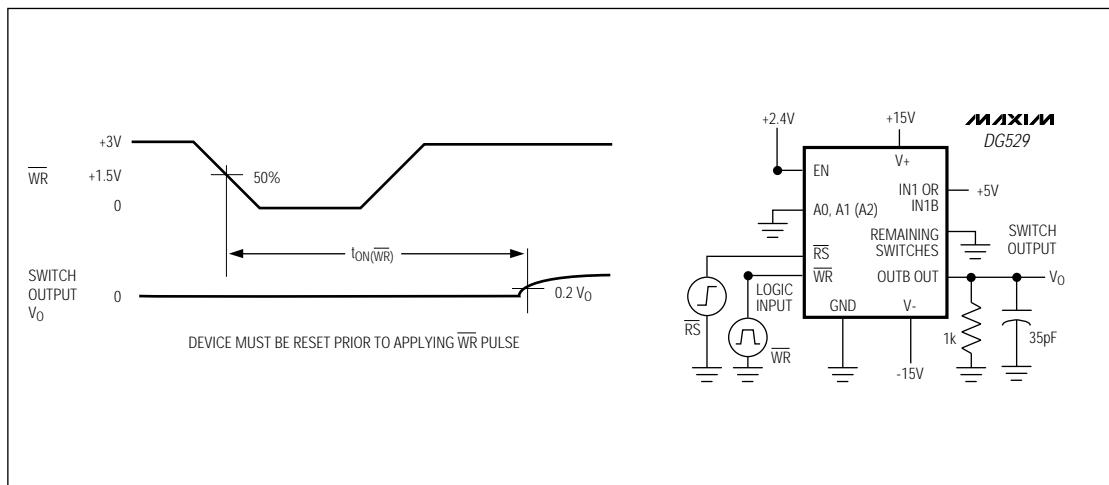


Figure 4. Write Turn-On Time $t_{ON}(\overline{WR})$ Test Circuit

8-Channel Latchable Multiplexers

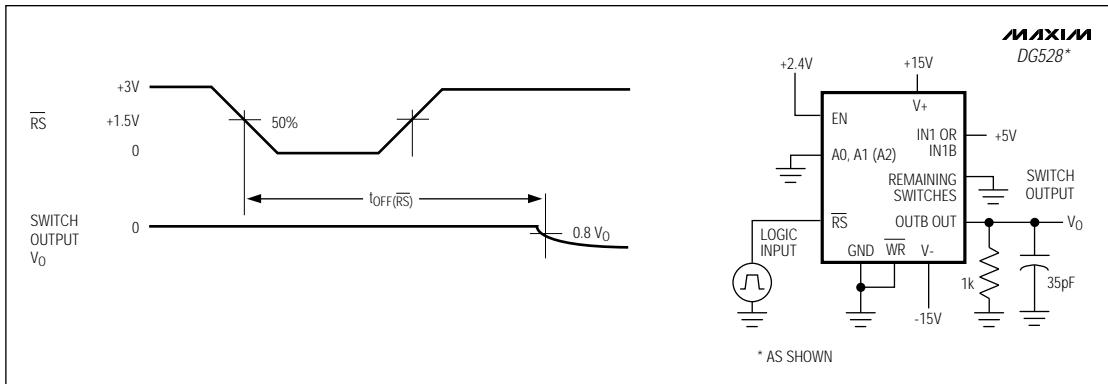
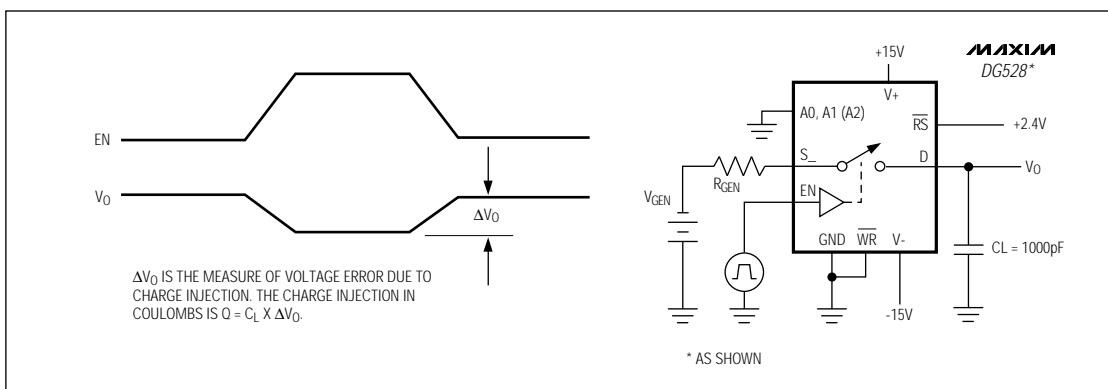


Figure 5. Reset Turn-Off Time $t_{OFF}(\overline{RS})$ Test Circuit

Figure 6. Charge-Injection Test Circuit

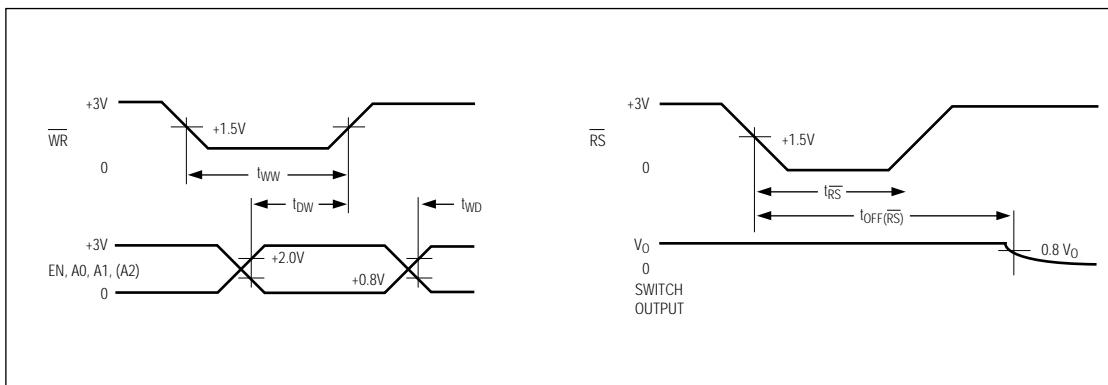


Figure 7. Typical Timing Diagrams for DG528/DG529

8-Channel Latchable Multiplexers

Table 1. DG528 Logic States

A2	A1	A0	EN	WR	RS	ON SWITCH
Latching						
X	X	X	X	↓	1	Maintains previous switch condition
Reset						
X	X	X	X	X	0	None (latches cleared)
Transparent Operation						
X	X	X	0	0	1	None
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8

Table 2. DG529 Logic States

A1	A0	EN	WR	RS	ON SWITCH
Latching					
X	X	X	↓	1	Maintains previous switch condition
Reset					
X	X	X	X	0	None (latches cleared)
Transparent Operation					
X	X	0	0	1	None
0	0	1	0	1	1
0	1	1	0	1	2
1	0	1	0	1	3
1	1	1	0	1	4

Note: Logic "1": $V_{AH} \geq 2.4V$, Logic "0": $V_{AL} \leq 0.8V$.

Detailed Description

The internal structures of the DG528/DG529 include translators for the A2/A1/A0/EN/WR/RS digital inputs, latches, and a decode section for channel selection (Truth Tables). The gate structures consist of parallel combinations of N and P MOSFETs.

WRITE (WR) and RESET (RS) strobes are provided for interfacing with μ P-bus lines (Figure 9), alleviating the need for the μ P to provide constant address inputs to the mux to hold a particular channel.

When the WR strobe is in the low state (less than 0.8V) and the RS strobe is in the high state (greater than 2.4V), the muxes are in the transparent mode—they act similarly to nonlatching devices, such as the DG508A/DG509A or the HI508/HI509.

When the WR goes high, the previous BCD address input is latched and held in that state indefinitely. To pull the mux out of this state, either WR must be taken

low to the transition state, or RS must be taken low to turn off all channels.

RS turns off all channels when it is low, which resets channel selection to the channel 1 mode.

The DG528/DG529 work with both single and dual supplies and function over the +5V to +30V single-supply range. For example, with a single +15V power supply, analog signals in the 0V to +15V range can be switched normally. If negative signals around 0V are expected, a negative supply is needed. However, only -5V is needed to normally switch signals in the -5V to +15V range (-5V, +15V supplies). No current is drawn from the negative supply, so Maxim's MAX635 DC-DC converter is an ideal choice.

The EN latch allows all switches to be turned off under program control. This is useful when two or more DG528s are cascaded to build 16-line and larger analog-signal multiplexers.

8-Channel Latchable Multiplexers

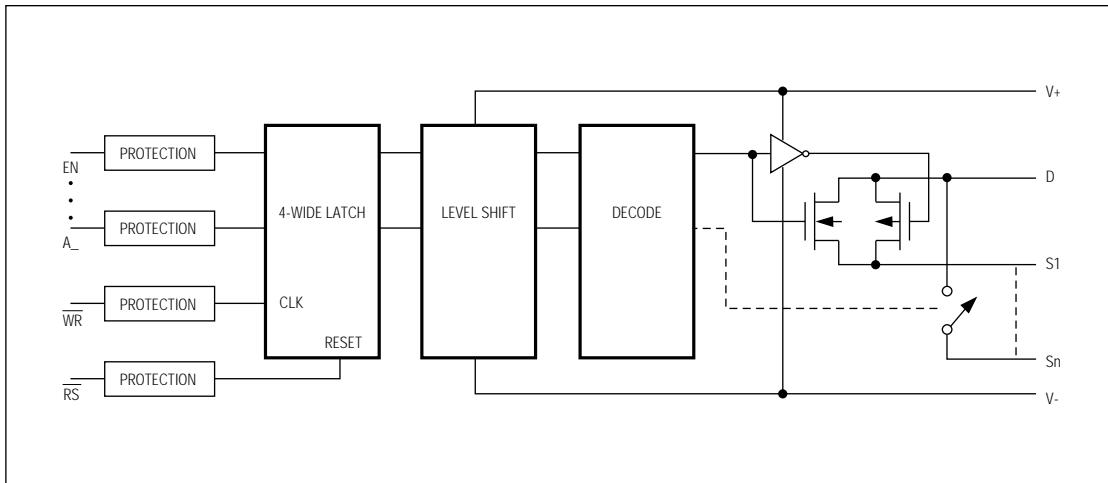


Figure 8. Simplified Internal Structure

Applications

Operation with Supply Voltages Other Than $\pm 15V$

Maxim guarantees the DG528/DG529 for operation from $\pm 4.5V$ to $\pm 20V$ supplies. The switching delays increase by about a factor of two at $\pm 5V$, and break-before-make action is preserved.

The DG528/DG529 can operate with a single $+5V$ to $+30V$ supply as well as asymmetrical power supplies like $+15V$ and $-5V$. The digital threshold will remain approximately $1.6V$ above the GND pin, and the analog characteristics such as $r_{DS(ON)}$ are determined by the total voltage difference between $V+$ and $V-$. Connect $V-$ to 0V when operating with a $+5V$ to $+30V$ single supply.

Digital Interface Levels

The typical digital threshold of both the address lines and EN is $1.6V$ with a temperature coefficient of approximately $-3mV/^\circ C$, ensuring compatibility with TTL logic over the temperature range. The digital threshold is relatively independent of the power-supply voltages, going from a typical $1.6V$ when $V+$ is $15V$ to $1.5V$ typical with $V+ = 5V$. Therefore, Maxim's DG528/DG529 operate with standard TTL logic levels, even with $\pm 5V$ power supplies. In all cases, EN's threshold is the same as the other logic inputs and is referenced to GND.

The digital inputs can also be driven with CMOS logic levels swinging from either $V+$ to $V-$ or from $V+$ to GND. The digital input current is just a few nanoamps of leakage at all input-voltage levels with a guaranteed maximum of $1\mu A$. The digital inputs are protected from ESD by a $30V$ zener diode between the input and $V+$ and can be driven $\pm 2V$ beyond the supplies without drawing excessive current.

8-Channel Latchable Multiplexers

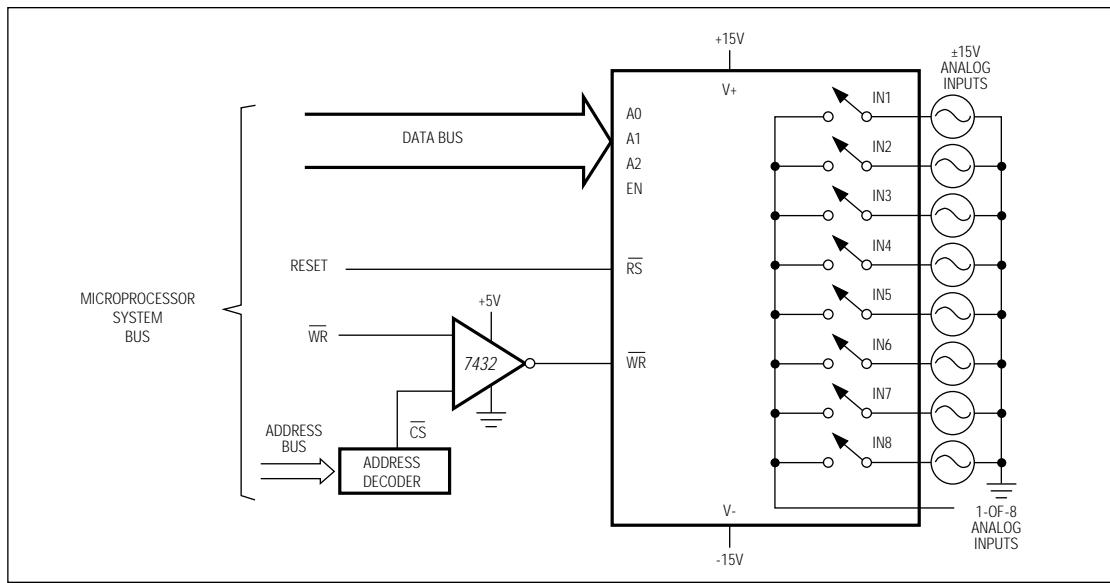
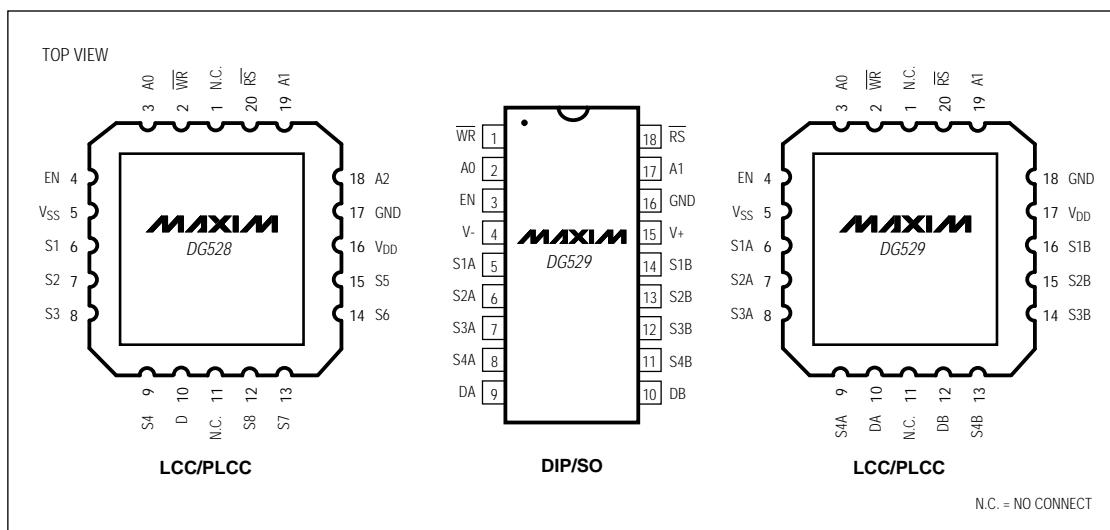
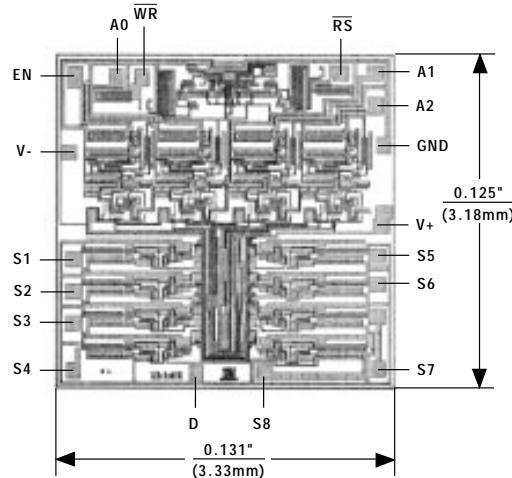



Figure 9. Bus Interface

Pin Configurations (continued)

8-Channel Latchable Multiplexers

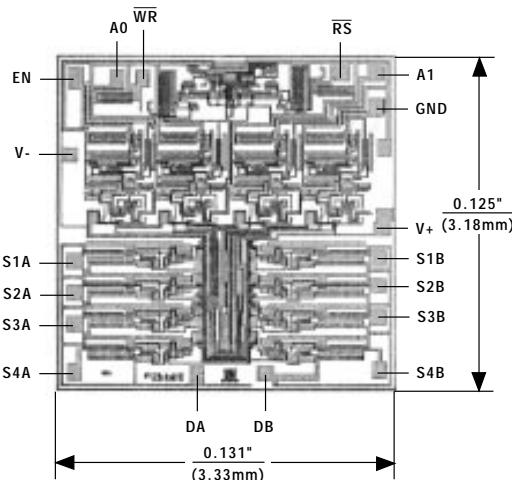
Ordering Information (continued)


PART	TEMP. RANGE	PIN-PACKAGE
DG529CJ	0°C to +70°C	18 Plastic DIP
DG529CWN	0°C to +70°C	18 Wide SO
DG529CK	0°C to +70°C	18 CERDIP
DG529C/D	0°C to +70°C	Dice*
DG529DJ	-40°C to +85°C	18 Plastic DIP
DG529DN	-40°C to +85°C	20 PLCC
DG529EWN	-40°C to +85°C	18 Wide SO
DG529DK	-40°C to +85°C	18 CERDIP
DG529AZ	-55°C to +125°C	20 LCC**
DG529AK	-55°C to +125°C	18 CERDIP**

* Contact factory for dice specifications.

** Contact factory for availability and processing to MIL-STD-883.

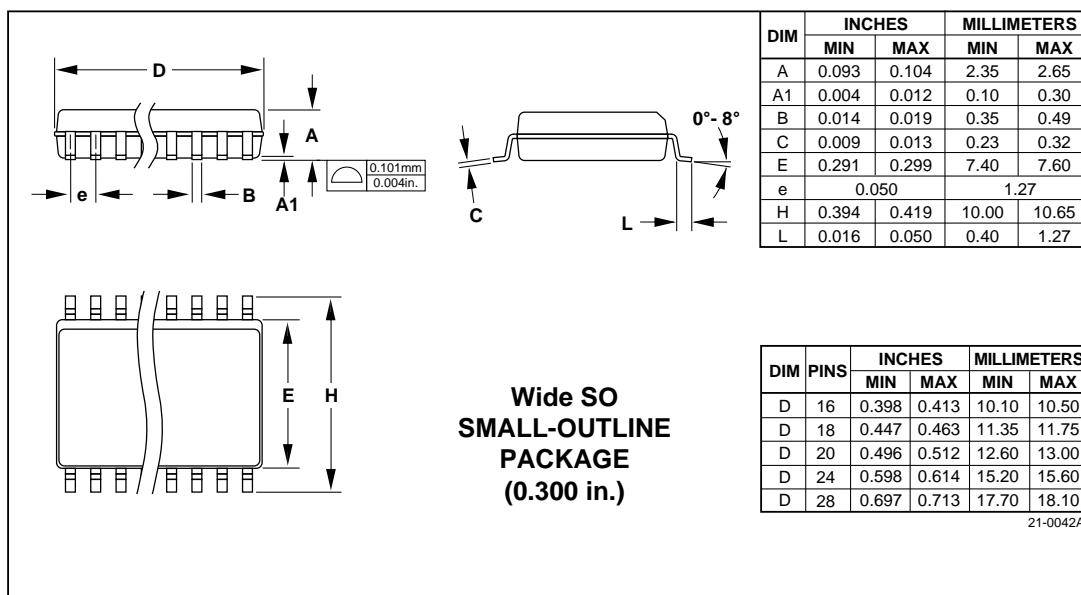
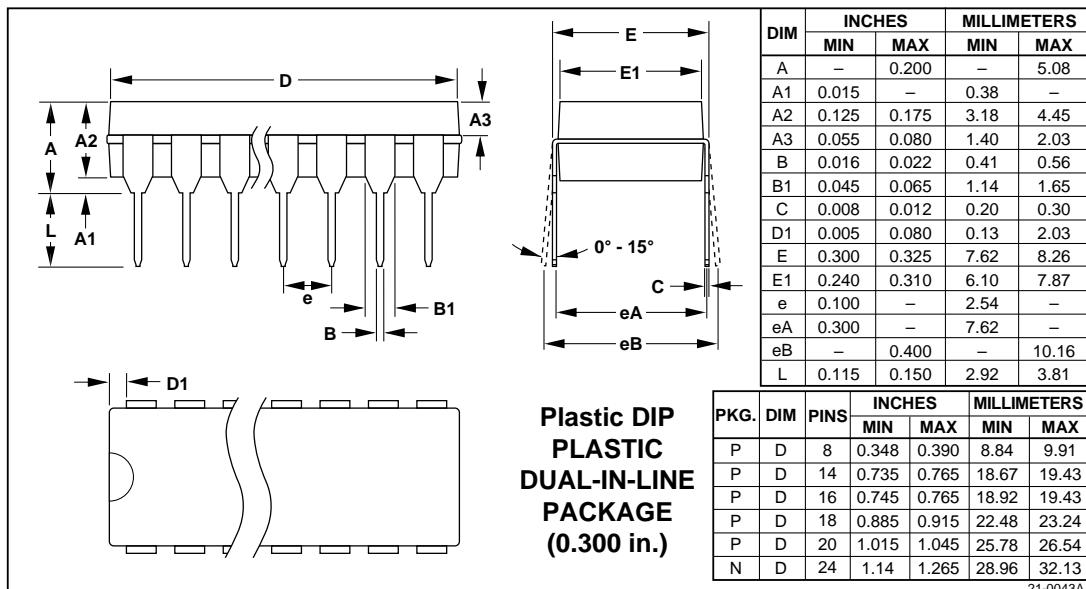
Chip Topographies


DG528

TRANSISTOR COUNT: 200

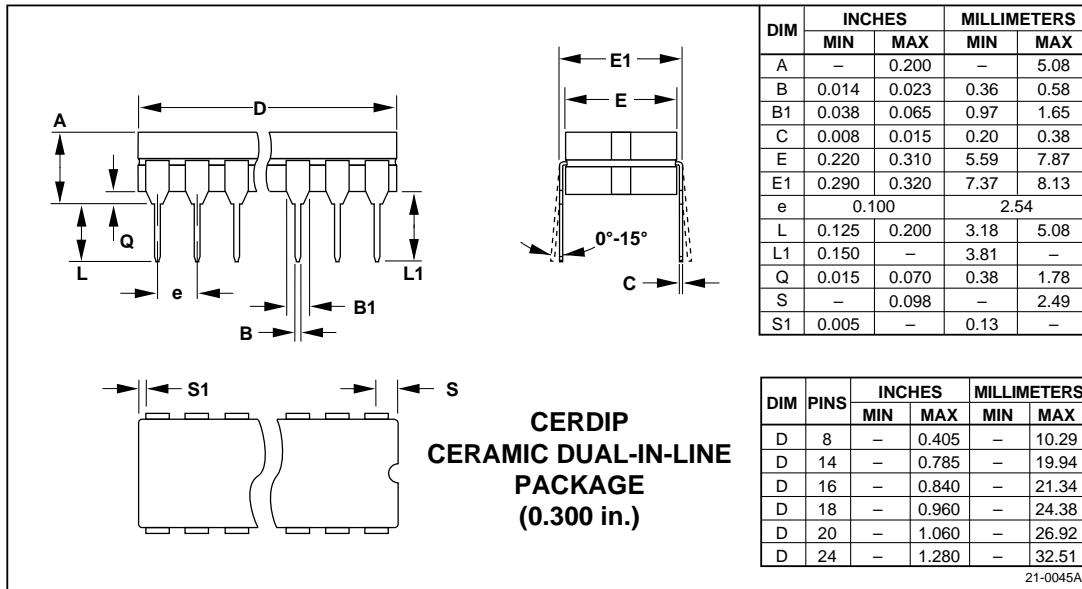
SUBSTRATE CONNECTED TO V+

DG529

TRANSISTOR COUNT: 200

SUBSTRATE CONNECTED TO V+


8-Channel Latchable Multiplexers

Package Information

8-Channel Latchable Multiplexers

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1995 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.